Screening of Potential Indonesia Herbal Compounds Based on Multi-Label Classification for 2019 Coronavirus Disease
Coronavirus disease 2019 pandemic spreads rapidly and requires an acceleration in the process of drug discovery. Drug repurposing can help accelerate the drug discovery process by identifying new efficacy for approved drugs, and it is considered an efficient and economical approach. Research in drug...
Saved in:
Published in | Big data and cognitive computing Vol. 5; no. 4; p. 75 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Coronavirus disease 2019 pandemic spreads rapidly and requires an acceleration in the process of drug discovery. Drug repurposing can help accelerate the drug discovery process by identifying new efficacy for approved drugs, and it is considered an efficient and economical approach. Research in drug repurposing can be done by observing the interactions of drug compounds with protein related to a disease (DTI), then predicting the new drug-target interactions. This study conducted multilabel DTI prediction using the stack autoencoder-deep neural network (SAE-DNN) algorithm. Compound features were extracted using PubChem fingerprint, daylight fingerprint, MACCS fingerprint, and circular fingerprint. The results showed that the SAE-DNN model was able to predict DTI in COVID-19 cases with good performance. The SAE-DNN model with a circular fingerprint dataset produced the best average metrics with an accuracy of 0.831, recall of 0.918, precision of 0.888, and F-measure of 0.89. Herbal compounds prediction results using the SAE-DNN model with the circular, daylight, and PubChem fingerprint dataset resulted in 92, 65, and 79 herbal compounds contained in herbal plants in Indonesia respectively. |
---|---|
AbstractList | Coronavirus disease 2019 pandemic spreads rapidly and requires an acceleration in the process of drug discovery. Drug repurposing can help accelerate the drug discovery process by identifying new efficacy for approved drugs, and it is considered an efficient and economical approach. Research in drug repurposing can be done by observing the interactions of drug compounds with protein related to a disease (DTI), then predicting the new drug-target interactions. This study conducted multilabel DTI prediction using the stack autoencoder-deep neural network (SAE-DNN) algorithm. Compound features were extracted using PubChem fingerprint, daylight fingerprint, MACCS fingerprint, and circular fingerprint. The results showed that the SAE-DNN model was able to predict DTI in COVID-19 cases with good performance. The SAE-DNN model with a circular fingerprint dataset produced the best average metrics with an accuracy of 0.831, recall of 0.918, precision of 0.888, and F-measure of 0.89. Herbal compounds prediction results using the SAE-DNN model with the circular, daylight, and PubChem fingerprint dataset resulted in 92, 65, and 79 herbal compounds contained in herbal plants in Indonesia respectively. |
Author | Kusuma, Wisnu Ananta Annisa Batubara, Irmanida Fadli, Aulia Heryanto, Rudi |
Author_xml | – sequence: 1 givenname: Aulia surname: Fadli fullname: Fadli, Aulia – sequence: 2 givenname: Wisnu Ananta orcidid: 0000-0002-3682-244X surname: Kusuma fullname: Kusuma, Wisnu Ananta – sequence: 3 surname: Annisa fullname: Annisa – sequence: 4 givenname: Irmanida orcidid: 0000-0001-8201-7807 surname: Batubara fullname: Batubara, Irmanida – sequence: 5 givenname: Rudi surname: Heryanto fullname: Heryanto, Rudi |
BookMark | eNpNkVuLFDEQhYOs4Lruk38g4KO05p7Oo46XHZhFQX0O1Un1kqE3GZNuwX9vdGTZpzqcqvrqQD0nF7lkJOQlZ2-kdOztFEPQTDFm9RNyKbochBjdxSP9jFy3dmSMCaGU4fyS1G-hIuaU72iZ6deyYl4TLHSfY6e3BPQG69SNXbk_lS3HRt9Dw0hLprfbsqbhABP29gKtpTkFWFNvzaVSwbjra7Vk-JXq1uiH1LDvviBPZ1gaXv-vV-THp4_fdzfD4cvn_e7dYQjSqHWYtYQYnIscLOKorbQaAJziTLNZRBRaq1EbZ7ThdhRCoxR8tJJxKVAEeUX2Z24scPSnmu6h_vYFkv9nlHrnoa4pLOgDWKWCDai0UJo5B9jTRzMaO6kQps56dWadavm5YVv9sWw19_heGC6sFsaqPvX6PBVqaa3i_HCVM__3R_7Rj-Qft6yEBA |
CitedBy_id | crossref_primary_10_3389_fphar_2022_978741 |
Cites_doi | 10.1002/ddr.21688 10.1109/IC3INA.2016.7863032 10.1038/s41598-021-90701-w 10.1038/s41467-017-00680-8 10.1186/1471-2105-8-300 10.1111/jcmm.15674 10.3389/fphar.2013.00177 10.1016/j.ymeth.2014.08.005 10.1371/journal.pcbi.1007129 10.1186/s13073-021-00881-3 10.1016/j.compbiolchem.2021.107536 10.1109/TCBB.2019.2951378 10.1142/S0192415X11008737 10.1016/S0140-6736(20)30211-7 10.1021/ci00062a008 10.1016/j.ab.2019.113507 10.1111/jth.15533 10.4314/tjpr.v18i6.19 10.1007/978-981-16-5559-3_39 10.1016/j.ejps.2020.105522 10.1155/2021/8874339 10.1109/ICACSIS51025.2020.9263241 10.1021/ci010132r 10.1371/journal.ppat.1008341 10.1038/s41564-020-0695-z 10.1186/s12859-020-3379-z 10.1186/s13321-017-0195-1 10.1186/s12859-017-1898-z 10.1021/np400803n 10.1093/bib/bbaa205 10.1186/s13321-018-0303-x 10.1093/bib/bbab291 10.1093/nar/gkj067 10.1093/pcp/pcr165 10.1093/nar/gkm795 10.1109/JPROC.2015.2494218 10.3390/pharmaceutics11090466 10.1093/bioinformatics/btn162 10.21203/rs.3.rs-29119/v1 10.3390/molecules25194513 10.1073/pnas.2105070118 10.1021/ci100050t 10.1271/bbb.80714 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ P5Z P62 PIMPY PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/bdcc5040075 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2504-2289 |
ExternalDocumentID | oai_doaj_org_article_ca744c7ce45245099ae201d6867b4ccb 10_3390_bdcc5040075 |
GeographicLocations | Indonesia |
GeographicLocations_xml | – name: Indonesia |
GroupedDBID | 8FE 8FG AADQD AAFWJ AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO MODMG M~E OK1 P62 PIMPY PROAC ABUWG AZQEC COVID DWQXO PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c364t-f53adc99d1a7ee857375aaa941050f2de25548569656178225e3218730132e2c3 |
IEDL.DBID | DOA |
ISSN | 2504-2289 |
IngestDate | Tue Oct 22 15:09:38 EDT 2024 Thu Oct 10 16:52:19 EDT 2024 Wed Jul 24 12:23:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-f53adc99d1a7ee857375aaa941050f2de25548569656178225e3218730132e2c3 |
ORCID | 0000-0002-3682-244X 0000-0001-8201-7807 |
OpenAccessLink | https://doaj.org/article/ca744c7ce45245099ae201d6867b4ccb |
PQID | 2612752674 |
PQPubID | 2061777 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ca744c7ce45245099ae201d6867b4ccb proquest_journals_2612752674 crossref_primary_10_3390_bdcc5040075 |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Big data and cognitive computing |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Durant (ref_29) 2002; 42 ref_13 ref_11 ref_55 ref_10 ref_19 Zagidullin (ref_14) 2021; 22 ref_15 Vagapova (ref_50) 2021; 11 Larasati (ref_9) 2020; 7 Mahmud (ref_16) 2020; 589 Du (ref_47) 2020; 24 Aboudounya (ref_49) 2021; 2021 Ma (ref_53) 2018; 42 ref_20 Rogers (ref_31) 2010; 50 Talasaz (ref_58) 2021; 19 ref_28 Kuhn (ref_59) 2008; 36 ref_27 Xing (ref_57) 2021; 18 Jnawali (ref_56) 2014; 77 Kim (ref_52) 2011; 39 Srivastava (ref_36) 2014; 15 Weininger (ref_32) 2002; 29 Wambier (ref_51) 2020; 81 Sechidis (ref_41) 2011; Volume 6913 ref_35 Maxwell (ref_22) 2017; 18 ref_30 Yadav (ref_4) 2020; 155 Pliakos (ref_18) 2019; 18 ref_39 Ojeda (ref_33) 2015; 71 Hao (ref_46) 2018; 10 ref_37 Chen (ref_1) 2020; 395 Attia (ref_44) 2021; 93 Shahriari (ref_38) 2016; 104 (ref_12) 2017; 9 Stelzer (ref_24) 2016; 2016 Jin (ref_45) 2021; 118 Wishart (ref_26) 2006; 34 Chu (ref_17) 2021; 22 Afendi (ref_23) 2011; 53 ref_43 ref_42 Huang (ref_5) 2020; 16 ref_40 Zhang (ref_48) 2021; 13 ref_3 Yamanishi (ref_21) 2008; 24 Gorbalenya (ref_2) 2020; 5 Park (ref_54) 2009; 73 ref_8 Kuhn (ref_25) 2008; 36 ref_7 Bahi (ref_34) 2018; 522 ref_6 |
References_xml | – volume: 15 start-page: 1929 year: 2014 ident: ref_36 article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting publication-title: J. Mach. Learn. Res. contributor: fullname: Srivastava – volume: 81 start-page: 771 year: 2020 ident: ref_51 article-title: Androgen Sensitivity Gateway to COVID-19 Disease Severity publication-title: Drug Dev. Res. doi: 10.1002/ddr.21688 contributor: fullname: Wambier – ident: ref_19 doi: 10.1109/IC3INA.2016.7863032 – volume: 11 start-page: 11234 year: 2021 ident: ref_50 article-title: Viral Fibrotic Scoring and Drug Screen Based on MAPK Activity Uncovers EGFR as a Key Regulator of COVID-19 Fibrosis publication-title: Sci. Rep. doi: 10.1038/s41598-021-90701-w contributor: fullname: Vagapova – ident: ref_39 – ident: ref_35 – ident: ref_10 doi: 10.1038/s41467-017-00680-8 – ident: ref_11 doi: 10.1186/1471-2105-8-300 – volume: 24 start-page: 10274 year: 2020 ident: ref_47 article-title: The Potential Effects of DPP-4 Inhibitors on Cardiovascular System in COVID-19 Patients publication-title: J. Cell. Mol. Med. doi: 10.1111/jcmm.15674 contributor: fullname: Du – volume: 7 start-page: 727 year: 2020 ident: ref_9 article-title: Model Prediksi Interaksi Senyawa Dan Protein Untuk Drug Repositioning Menggunakan Deep Semi-Supervised Learning publication-title: J. Teknol. Inf. Dan Ilmu Komput. contributor: fullname: Larasati – volume: Volume 6913 start-page: 145 year: 2011 ident: ref_41 article-title: On the Stratification of Multi-Label Data publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) LNAI contributor: fullname: Sechidis – ident: ref_8 doi: 10.3389/fphar.2013.00177 – volume: 71 start-page: 58 year: 2015 ident: ref_33 article-title: Molecular Fingerprint Similarity Search in Virtual Screening publication-title: Methods doi: 10.1016/j.ymeth.2014.08.005 contributor: fullname: Ojeda – ident: ref_13 doi: 10.1371/journal.pcbi.1007129 – ident: ref_27 – volume: 13 start-page: 64 year: 2021 ident: ref_48 article-title: IFN-γ and TNF-α Drive a CXCL10+ CCL2+ Macrophage Phenotype Expanded in Severe COVID-19 Lungs and Inflammatory Diseases with Tissue Inflammation publication-title: Genome Med. doi: 10.1186/s13073-021-00881-3 contributor: fullname: Zhang – volume: 2016 start-page: 1.30.1 year: 2016 ident: ref_24 article-title: The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses publication-title: Curr. Protoc. Bioinform. contributor: fullname: Stelzer – volume: 93 start-page: 107536 year: 2021 ident: ref_44 article-title: Efficient Machine Learning Model for Predicting Drug-Target Interactions with Case Study for Covid-19 publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2021.107536 contributor: fullname: Attia – volume: 18 start-page: 1596 year: 2019 ident: ref_18 article-title: Predicting Drug-Target Interactions With Multi-Label Classification and Label Partitioning publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2019.2951378 contributor: fullname: Pliakos – volume: 39 start-page: 171 year: 2011 ident: ref_52 article-title: Anti-Inflammatory Activity of Hyperoside through the Suppression of Nuclear Factor-ΚB Activation in Mouse Peritoneal Macrophages publication-title: Am. J. Chin. Med. doi: 10.1142/S0192415X11008737 contributor: fullname: Kim – volume: 395 start-page: 507 year: 2020 ident: ref_1 article-title: Epidemiological and Clinical Characteristics of 99 Cases of 2019 Novel Coronavirus Pneumonia in Wuhan, China: A Descriptive Study publication-title: Lancet doi: 10.1016/S0140-6736(20)30211-7 contributor: fullname: Chen – volume: 29 start-page: 97 year: 2002 ident: ref_32 article-title: SMILES. 2. Algorithm for Generation of Unique SMILES Notation publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci00062a008 contributor: fullname: Weininger – volume: 589 start-page: 113507 year: 2020 ident: ref_16 article-title: Prediction of Drug-Target Interaction Based on Protein Features Using Undersampling and Feature Selection Techniques with Boosting publication-title: Anal. Biochem. doi: 10.1016/j.ab.2019.113507 contributor: fullname: Mahmud – volume: 19 start-page: 3080 year: 2021 ident: ref_58 article-title: Use of Novel Antithrombotic Agents for COVID-19: Systematic Summary of Ongoing Randomized Controlled Trials publication-title: J. Thromb. Haemost. doi: 10.1111/jth.15533 contributor: fullname: Talasaz – volume: 18 start-page: 1277 year: 2021 ident: ref_57 article-title: Anti-Asthmatic Effect of Laurotetanine Extracted from Litsea Cubeba (Lour.) Pers. Root on Ovalbumin-Induced Allergic Asthma Rats, and Elucidation of Its Mechanism of Action publication-title: Trop. J. Pharm. Res. doi: 10.4314/tjpr.v18i6.19 contributor: fullname: Xing – ident: ref_7 – ident: ref_28 – ident: ref_30 – ident: ref_42 doi: 10.1007/978-981-16-5559-3_39 – volume: 155 start-page: 105522 year: 2020 ident: ref_4 article-title: Emerging Strategies on in Silico Drug Development against COVID-19: Challenges and Opportunities publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2020.105522 contributor: fullname: Yadav – volume: 2021 start-page: 8874339 year: 2021 ident: ref_49 article-title: COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation publication-title: Mediat. Inflamm. doi: 10.1155/2021/8874339 contributor: fullname: Aboudounya – ident: ref_3 doi: 10.1109/ICACSIS51025.2020.9263241 – volume: 42 start-page: 1273 year: 2002 ident: ref_29 article-title: Reoptimization of MDL Keys for Use in Drug Discovery publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci010132r contributor: fullname: Durant – volume: 36 start-page: D919 year: 2008 ident: ref_25 article-title: SuperTarget and Matador: Resources for Exploring Drug-Target Relationships publication-title: Nucleic Acids Res. contributor: fullname: Kuhn – volume: 16 start-page: 1 year: 2020 ident: ref_5 article-title: Identification of Amitriptyline HCl, Flavin Adenine Dinucleotide, Azacitidine and Calcitriol as Repurposing Drugs for Influenza A H5N1 Virus-Induced Lung Injury publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1008341 contributor: fullname: Huang – ident: ref_40 – ident: ref_37 – volume: 5 start-page: 536 year: 2020 ident: ref_2 article-title: The Species Severe Acute Respiratory Syndrome-Related Coronavirus: Classifying 2019-NCoV and Naming It SARS-CoV-2 publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-0695-z contributor: fullname: Gorbalenya – ident: ref_20 doi: 10.1186/s12859-020-3379-z – volume: 9 start-page: 9 year: 2017 ident: ref_12 article-title: Database Fingerprint (DFP): An Approach to Represent Molecular Databases publication-title: J. Cheminform. doi: 10.1186/s13321-017-0195-1 – volume: 42 start-page: 1925 year: 2018 ident: ref_53 article-title: Aloin Suppresses Lipopolysaccharide-Induced Inflammation by Inhibiting JAK1-STAT1/3 Activation and ROS Production in RAW264.7 Cells publication-title: Int. J. Mol. Med. contributor: fullname: Ma – volume: 18 start-page: 121 year: 2017 ident: ref_22 article-title: Deep Learning Architectures for Multi-Label Classification of Intelligent Health Risk Prediction publication-title: BMC Bioinform. doi: 10.1186/s12859-017-1898-z contributor: fullname: Maxwell – volume: 77 start-page: 258 year: 2014 ident: ref_56 article-title: Anti-Inflammatory Activity of Rhamnetin and a Model of Its Binding to c-Jun NH 2-Terminal Kinase 1 and P38 MAPK publication-title: J. Nat. Prod. doi: 10.1021/np400803n contributor: fullname: Jnawali – volume: 22 start-page: bbaa205 year: 2021 ident: ref_17 article-title: DTI-MLCD: Predicting Drug-Target Interactions Using Multi-Label Learning with Community Detection Method publication-title: Brief. Bioinform. doi: 10.1093/bib/bbaa205 contributor: fullname: Chu – volume: 10 start-page: 1 year: 2018 ident: ref_46 article-title: A New Chemoinformatics Approach with Improved Strategies for Effective Predictions of Potential Drugs publication-title: J. Cheminform. doi: 10.1186/s13321-018-0303-x contributor: fullname: Hao – volume: 22 start-page: bbab291 year: 2021 ident: ref_14 article-title: Comparative Analysis of Molecular Fingerprints in Prediction of Drug Combination Effects publication-title: Brief. Bioinform. doi: 10.1093/bib/bbab291 contributor: fullname: Zagidullin – volume: 34 start-page: D668 year: 2006 ident: ref_26 article-title: DrugBank: A Comprehensive Resource for in Silico Drug Discovery and Exploration publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkj067 contributor: fullname: Wishart – volume: 53 start-page: e1 year: 2011 ident: ref_23 article-title: KNApSAcK Family Databases: Integrated Metabolite-Plant Species Databases for Multifaceted Plant Research publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcr165 contributor: fullname: Afendi – volume: 36 start-page: D684 year: 2008 ident: ref_59 article-title: STITCH: Interaction Networks of Chemicals and Proteins publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm795 contributor: fullname: Kuhn – volume: 104 start-page: 148 year: 2016 ident: ref_38 article-title: Taking the Human out of the Loop: A Review of Bayesian Optimization publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2494218 contributor: fullname: Shahriari – volume: 522 start-page: 302 year: 2018 ident: ref_34 article-title: Drug-Target Interaction Prediction in Drug Repositioning Based on Deep Semi-Supervised Learning publication-title: IFIP Adv. Inf. Commun. Technol. contributor: fullname: Bahi – ident: ref_15 doi: 10.3390/pharmaceutics11090466 – volume: 24 start-page: i232 year: 2008 ident: ref_21 article-title: Prediction of Drug–Target Interaction Networks from the Integration of Chemical and Genomic Spaces publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn162 contributor: fullname: Yamanishi – ident: ref_43 – ident: ref_6 doi: 10.21203/rs.3.rs-29119/v1 – ident: ref_55 doi: 10.3390/molecules25194513 – volume: 118 start-page: e2105070118 year: 2021 ident: ref_45 article-title: Deep Learning Identifies Synergistic Drug Combinations for Treating COVID-19 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2105070118 contributor: fullname: Jin – volume: 50 start-page: 742 year: 2010 ident: ref_31 article-title: Extended-Connectivity Fingerprints publication-title: J. Chem. Inf. Modeling doi: 10.1021/ci100050t contributor: fullname: Rogers – volume: 73 start-page: 828 year: 2009 ident: ref_54 article-title: Evaluation of Aloin and Aloe-Emodin as Anti-Inflammatory Agents in Aloe by Using Murine Macrophages publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.80714 contributor: fullname: Park |
SSID | ssj0002244611 |
Score | 2.249273 |
Snippet | Coronavirus disease 2019 pandemic spreads rapidly and requires an acceleration in the process of drug discovery. Drug repurposing can help accelerate the drug... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 75 |
SubjectTerms | Accuracy Algorithms Artificial neural networks Classification coronavirus disease 2019 Coronaviruses COVID-19 Datasets Daylight drug repurposing drug-target interaction Drugs Feature extraction Fingerprints health Infectious diseases Kinases Machine learning multilabel classification Neural networks Pandemics Predictions Proteins R&D Research & development Severe acute respiratory syndrome coronavirus 2 stack autoencoder-deep neural network Viral diseases |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu3BBIECMl3LYNdqaOGl7QgyGBoJp4iFxq9I0RVzW0RZ-P3bbARISUk9JKrWOne9z4tiMDVFLVKACLahakYA0lsJK6YWKkBwgZqQS6HLy_dzMnuH2Rb90G25VF1a5XhObhTorHO2RjyjVVailCeF89S6oahSdrnYlNDZZX6KnMO6x_mQ6Xzx877IgQIEJgvZinkL_fpRmzmnSXIos_AVFTcb-PwtygzLXO2y7o4f8op3PXbbhl3usfHQUHYMgw4ucL4qaInxw1A1V4vDVm-UzFA42kHFTmaSKTxCcMl4seXPBVtzZ1GM3MWUKDWpmgyNd5QjMMb5WIh__fCs_Kn7VHtjss-fr6dPlTHS1EoRTBmqRa2UzF8dZYEPvIx2qUFtrY4riHOcy8-g6QKRNjPwtIFagvUJ0J_tW0kunDlhvid98yHg-BrCQo6thFBgTRd7mEh8cDNanesCGa7ElqzYlRoKuBEk3-SXdAZuQSL-HUB7rpqEoX5POLBJnQwAXOg9aAnKX2Hr88cxEJkzBuXTATtYTknTGVSU_qnD0f_cx25IUgtJEn5ywXl1--FPkEHV61inKF8k3xZQ priority: 102 providerName: ProQuest |
Title | Screening of Potential Indonesia Herbal Compounds Based on Multi-Label Classification for 2019 Coronavirus Disease |
URI | https://www.proquest.com/docview/2612752674 https://doaj.org/article/ca744c7ce45245099ae201d6867b4ccb |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF20XryIomK1lj30GtrsV5Kj_bIVrUWt9BY2mw3UQytN6u93ZpNKwIMXIRBINmQzs7vvDXk7Q0gHRgn3uS89rFbkiSRinmbMejwEcgCYkTCBm5OfZmqyEA9LuayV-kJNWJkeuDRc1-hACBMYKyQTgG6RtoBZqQpVkAhjErf69qJaMPXhkrpAmOP75YY8DnF9N0mNkThiUVFYgyCXqf_XQuzQZXxKTipaSO_K7pyRA7s-J9tXg6oYABe6yeh8U6CyB1pNsQKHzVeaTsAocAEnNZZHymkfQCmlmzV1G2u9R51YuI0MGSVBzgsUaCqFj4vgsS3w8K_VdpfTYfmj5oIsxqO3wcSraiR4hitReJnkOjVRlPo6sDaUAQ-k1jpC9WYvY6mFkEGEUkXA23xkA9JyQHWc15xZZvglaayhz1eEZj0htMggxFBcKBWGVmcMDmgstE1kk3T2Zos_y1QYMYQQaN24Zt0m6aNJf5pg_mp3AbwaV16N__Jqk7T2DomrSZXHmO0skEwF4vo_3nFDjhkKVJw2pUUaxXZnb4FhFEmbHIbj-zY56o9m8xc4D57fp8O2G2Lf0GPQ6g |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,38528,43612,43817,43907,74369,74636,74746 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELVaOLSX0opW3RZaH7gaNvbYSU6oQNEuLBSJD3GzbMdBqNKGJtke-PWdSbIUFakHpJyciWRnxjPP9vMMY1toJSpRiRZUrUiAz6VwUkahMgQHGDO8BLqcfHJqJpdwdK2vhw23ZqBVLn1i56iLKtAe-Q6lukq1NCns3v0SVDWKTleHEhov2SoG1jEuvlb3f1xNDx52WTBAgUmS_mKeQpEdX4SgyXKJWfgoFHUZ-5845C7KHK4xu-xfTy75ub1o_Xa4_yd14_MH8Ja9GQAo_9ZbzDv2Is7XWX0eiH-DYYxXJT-rWuIQodSUan3E5tbxCf5-bCD3QYWYGr6H4a_g1Zx3V3jFzPmIrwmLE_mo0zdHQMwx9Of4WY2I__dtvWj4QX8k9J5dHn6_2J-IoRqDCMpAK0qtXBHyvEhcGmOmU5Vq51xOPNFxKYuIixPItMkRISaEO3RUiB_IgygZZVAf2Moc-_yR8XIM4KDExYxRYEyWRVdKfFAYXPR6xLaWirF3fdINi4sV0p99pL8R2yOlPYhQpuyuoapv7DDxbHApQEhDBC0B0VHuIg68MJlJPYTgR2xjqS47TN_G_tXVp_-__speTS5OZnY2PT3-zF5LIrx0XJcNttLWi7iJiKX1Xwaz_AP-WOtw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA7-APEiiorTqTnsGmaTl7Q9iVPn5i8GOtitpGkqu6zaTv9-3-u6KQhCT0kK7ctLvi_Jl_cY66CXqEAFWlC2IgFpLIWV0gsVITlAzEgl0OXkp2czGMP9RE8a_VPVyCqXc2I9UWeFoz3yLoW6CrU0IXTzRhYxuulfvn8IyiBFJ61NOo11tomoaMjDo_7dar8FoQpMECyu6Clc6XfTzDlNPkwaw1-gVMfu_zM113jT32U7DVHkV4ue3WNrfrbPyhdHOhmEG17kfFTMSeuDrYaUk8NXU8sHaCYsoGFOCZMq3kOYyngx4_VVW_FoU4_VxJlJJFT3C0fiyhGiY3ytRGb-NS0_K36zOLo5YOP-7ev1QDRZE4RTBuYi18pmLo6zwIbeRzpUobbWxqTnvMhl5nERAZE2MTK5gPiB9gpxnka6kl46dcg2ZvjNR4znFwAWclx0GAXGRJG3ucQHG4P1qW6xztJsyfsiOEaCiwqybvLLui3WI5OumlBE67qgKN-SZoAkzoYALnQetARkMbH1-OOZiUyYgnNpi7WXHZI0w6xKfpzi-P_qc7aF3pI8Dp8fTti2JF1KLUlps415-elPkVjM07PaY74BHfDLXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Screening+of+Potential+Indonesia+Herbal+Compounds+Based+on+Multi-Label+Classification+for+2019+Coronavirus+Disease&rft.jtitle=Big+data+and+cognitive+computing&rft.au=Fadli%2C+Aulia&rft.au=Kusuma%2C+Wisnu+Ananta&rft.au=Annisa&rft.au=Batubara%2C+Irmanida&rft.date=2021-12-01&rft.issn=2504-2289&rft.eissn=2504-2289&rft.volume=5&rft.issue=4&rft.spage=75&rft_id=info:doi/10.3390%2Fbdcc5040075&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_bdcc5040075 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-2289&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-2289&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-2289&client=summon |