Pseudo-Phoneme Label Loss for Text-Independent Speaker Verification
Compared with text-independent speaker verification (TI-SV) systems, text-dependent speaker verification (TD-SV) counterparts often have better performance for their efficient utilization of speech content information. On this account, some TI-SV methods tried to boost performance by incorporating a...
Saved in:
Published in | Applied sciences Vol. 12; no. 15; p. 7463 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Compared with text-independent speaker verification (TI-SV) systems, text-dependent speaker verification (TD-SV) counterparts often have better performance for their efficient utilization of speech content information. On this account, some TI-SV methods tried to boost performance by incorporating an extra automatic speech recognition (ASR) component to explore content information, such as c-vector. However, the introduced ASR component requires a large amount of annotated data and consumes high computation resources. In this paper, we propose a pseudo-phoneme label (PPL) loss for the TI-SR task by integrating content cluster loss at the frame level and speaker recognition loss at the segment level in a unified network by multitask learning, without additional data requirement and exhausting computation. By referring to HuBERT, we generate pseudo-phoneme labels to adjust a frame level feature distribution by deep cluster to ensure each cluster corresponds to an implicit pronunciation unit in the feature space. We compare the proposed loss with the softmax loss, center loss, triplet loss, log-likelihood-ratio cost loss, additive margin softmax loss and additive angular margin loss on the VoxCeleb database. Experimental results demonstrate the effectiveness of our proposed method. |
---|---|
AbstractList | Compared with text-independent speaker verification (TI-SV) systems, text-dependent speaker verification (TD-SV) counterparts often have better performance for their efficient utilization of speech content information. On this account, some TI-SV methods tried to boost performance by incorporating an extra automatic speech recognition (ASR) component to explore content information, such as c-vector. However, the introduced ASR component requires a large amount of annotated data and consumes high computation resources. In this paper, we propose a pseudo-phoneme label (PPL) loss for the TI-SR task by integrating content cluster loss at the frame level and speaker recognition loss at the segment level in a unified network by multitask learning, without additional data requirement and exhausting computation. By referring to HuBERT, we generate pseudo-phoneme labels to adjust a frame level feature distribution by deep cluster to ensure each cluster corresponds to an implicit pronunciation unit in the feature space. We compare the proposed loss with the softmax loss, center loss, triplet loss, log-likelihood-ratio cost loss, additive margin softmax loss and additive angular margin loss on the VoxCeleb database. Experimental results demonstrate the effectiveness of our proposed method. |
Author | Niu, Mengqi Zhao, Baowei Wang, Kai Fang, Zhihua He, Liang |
Author_xml | – sequence: 1 givenname: Mengqi surname: Niu fullname: Niu, Mengqi – sequence: 2 givenname: Liang surname: He fullname: He, Liang – sequence: 3 givenname: Zhihua orcidid: 0000-0002-3018-7414 surname: Fang fullname: Fang, Zhihua – sequence: 4 givenname: Baowei surname: Zhao fullname: Zhao, Baowei – sequence: 5 givenname: Kai surname: Wang fullname: Wang, Kai |
BookMark | eNpNkNtKw0AQhhdRsNZe-QIBLyU6e0h2cynFQ6FgwertsodZTW2zcZOCvr2pFelczInh-4f_jBw3sUFCLihcc17BjWlbymghRcmPyIiBLHMuqDw-6E_JpOtWMERFuaIwItNFh1sf88X7ANtgNjcW19k8dl0WYsqW-NXns8Zji0Nq-uy5RfOBKXvFVIfamb6OzTk5CWbd4eSvjsnL_d1y-pjPnx5m09t57ngp-jzwwAvGUYlKSPBeMk8LAQKUo2YYUQINpUNvma0oeJDcV8qjwspz6Rkfk9me66NZ6TbVG5O-dTS1_l3E9KZN6mu3Ri2Fs1YUwjnBhZGlQkVLa0tplZfAwsC63LPaFD-32PV6FbepGd7XTAIUQqhqp3i1v3JpcCRh-FeloHem6wPT-Q-Z4XSS |
CitedBy_id | crossref_primary_10_1016_j_fsisyn_2024_100466 |
Cites_doi | 10.1109/TSP52935.2021.9522589 10.1109/ICASSP39728.2021.9414676 10.1109/LSP.2006.870086 10.21437/Interspeech.2017-620 10.21437/Interspeech.2020-2650 10.1109/TASLP.2021.3122291 10.20944/preprints202106.0687.v1 10.21437/Interspeech.2020-2538 10.21437/Interspeech.2017-950 10.1109/TASLP.2018.2831456 10.21437/Interspeech.2021-1085 10.21437/Interspeech.2019-1606 10.21437/Odyssey.2022-45 10.21437/Interspeech.2018-1209 10.21437/Interspeech.2018-993 10.1109/CVPR46437.2021.01352 10.21437/Odyssey.2018-11 10.21437/Interspeech.2018-1015 10.1109/CVPR.2019.00482 10.1186/s13636-019-0166-8 10.3390/app12031478 10.1007/978-3-319-46478-7 10.1109/ICASSP.2017.7953194 10.1109/CVPR.2015.7298682 10.21437/Interspeech.2018-1158 10.1016/j.specom.2014.03.001 10.1109/ICASSP.2017.7953152 10.1109/LSP.2018.2822810 10.1109/IJCNN.2019.8852112 10.1109/ICASSP.2018.8462025 10.21437/Interspeech.2017-1608 10.1109/ISCSLP.2018.8706570 10.21437/Interspeech.2019-2357 10.1109/ICAA53760.2021.00076 10.1109/ICASSP.2018.8462665 10.21437/Interspeech.2020-1287 10.1109/ICASSP43922.2022.9747166 10.1109/TASL.2010.2064307 10.1109/SLT.2016.7846260 10.1006/csla.1998.0043 10.3390/app112110079 10.3390/app11083603 10.1007/978-3-030-01264-9_9 10.1109/ICCV.2007.4409052 10.1016/j.specom.2009.08.009 10.21437/Interspeech.2018-1929 10.1109/ICASSP.2018.8461375 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7T9 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PIMPY PQEST PQQKQ PQUKI DOA |
DOI | 10.3390/app12157463 |
DatabaseName | CrossRef Linguistics and Language Behavior Abstracts (LLBA) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Linguistics and Language Behavior Abstracts (LLBA) ProQuest One Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_74cbb454cc434a768e816bb67b8d702f 10_3390_app12157463 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARAPS ARCSS ATCPS BBNVY BCNDV BENPR BHPHI BKSAR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ HCIFZ IAO ITC K6- K6V K7- KB. KC. KQ8 L6V LK5 LK8 M0K M7P M7R M7S MODMG M~E N95 OK1 P62 PATMY PCBAR PDBOC PIMPY PROAC PYCSY RIG TUS 7T9 ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c364t-f3f3523e849470dd72d1540408c1add7e701f6cedb2b910d073d98de8e9d37d23 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Tue Oct 22 15:15:42 EDT 2024 Mon Nov 04 11:06:09 EST 2024 Wed Aug 07 14:11:21 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-f3f3523e849470dd72d1540408c1add7e701f6cedb2b910d073d98de8e9d37d23 |
ORCID | 0000-0002-3018-7414 |
OpenAccessLink | https://doaj.org/article/74cbb454cc434a768e816bb67b8d702f |
PQID | 2700544892 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_74cbb454cc434a768e816bb67b8d702f proquest_journals_2700544892 crossref_primary_10_3390_app12157463 |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Hsu (ref_38) 2021; 29 ref_50 Wang (ref_31) 2018; 25 Dehak (ref_22) 2011; 19 Hinton (ref_53) 2008; 9 ref_14 Larcher (ref_4) 2014; 60 ref_13 ref_12 ref_11 ref_10 ref_52 ref_51 Campbell (ref_3) 2006; 13 ref_19 ref_18 ref_17 ref_16 ref_15 Gales (ref_2) 1998; 12 ref_25 ref_24 ref_23 ref_21 ref_20 ref_29 ref_28 ref_27 ref_26 ref_36 ref_35 ref_34 ref_33 ref_32 Zhang (ref_37) 2018; 26 ref_30 ref_39 Liu (ref_5) 2019; 2019 ref_47 ref_46 ref_45 ref_44 ref_43 ref_42 ref_41 ref_40 Kinnunen (ref_1) 2010; 52 ref_49 ref_48 ref_9 ref_8 ref_7 ref_6 |
References_xml | – ident: ref_32 doi: 10.1109/TSP52935.2021.9522589 – ident: ref_49 – ident: ref_50 doi: 10.1109/ICASSP39728.2021.9414676 – volume: 13 start-page: 308 year: 2006 ident: ref_3 article-title: Support vector machines using GMM supervectors for speaker verification publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2006.870086 contributor: fullname: Campbell – ident: ref_18 doi: 10.21437/Interspeech.2017-620 – ident: ref_27 doi: 10.21437/Interspeech.2020-2650 – volume: 29 start-page: 3451 year: 2021 ident: ref_38 article-title: HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2021.3122291 contributor: fullname: Hsu – ident: ref_6 doi: 10.20944/preprints202106.0687.v1 – ident: ref_12 doi: 10.21437/Interspeech.2020-2538 – ident: ref_43 doi: 10.21437/Interspeech.2017-950 – volume: 26 start-page: 1633 year: 2018 ident: ref_37 article-title: Text-Independent Speaker Verification Based on Triplet Convolutional Neural Network Embeddings publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2018.2831456 contributor: fullname: Zhang – ident: ref_16 doi: 10.21437/Interspeech.2021-1085 – ident: ref_23 doi: 10.21437/Interspeech.2019-1606 – ident: ref_45 doi: 10.21437/Odyssey.2022-45 – ident: ref_15 doi: 10.21437/Interspeech.2018-1209 – ident: ref_20 doi: 10.21437/Interspeech.2018-993 – ident: ref_28 doi: 10.1109/CVPR46437.2021.01352 – ident: ref_41 doi: 10.21437/Odyssey.2018-11 – ident: ref_52 – ident: ref_8 doi: 10.21437/Interspeech.2018-1015 – ident: ref_34 doi: 10.1109/CVPR.2019.00482 – volume: 2019 start-page: 1 year: 2019 ident: ref_5 article-title: Introducing phonetic information to speaker embedding for speaker verification publication-title: EURASIP J. Audio Speech Music. Process. doi: 10.1186/s13636-019-0166-8 contributor: fullname: Liu – ident: ref_7 doi: 10.3390/app12031478 – ident: ref_30 doi: 10.1007/978-3-319-46478-7 – ident: ref_36 doi: 10.1109/ICASSP.2017.7953194 – ident: ref_35 doi: 10.1109/CVPR.2015.7298682 – ident: ref_21 doi: 10.21437/Interspeech.2018-1158 – volume: 9 start-page: 2579 year: 2008 ident: ref_53 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. contributor: fullname: Hinton – volume: 60 start-page: 56 year: 2014 ident: ref_4 article-title: Text-dependent speaker verification: Classifiers, databases and RSR2015 publication-title: Speech Commun. doi: 10.1016/j.specom.2014.03.001 contributor: fullname: Larcher – ident: ref_48 doi: 10.1109/ICASSP.2017.7953152 – volume: 25 start-page: 926 year: 2018 ident: ref_31 article-title: Additive Margin Softmax for Face Verification publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2018.2822810 contributor: fullname: Wang – ident: ref_11 doi: 10.1109/IJCNN.2019.8852112 – ident: ref_47 – ident: ref_42 doi: 10.1109/ICASSP.2018.8462025 – ident: ref_14 doi: 10.21437/Interspeech.2017-1608 – ident: ref_10 doi: 10.1109/ISCSLP.2018.8706570 – ident: ref_9 doi: 10.21437/Interspeech.2019-2357 – ident: ref_33 doi: 10.1109/ICAA53760.2021.00076 – ident: ref_24 doi: 10.1109/ICASSP.2018.8462665 – ident: ref_25 doi: 10.21437/Interspeech.2020-1287 – ident: ref_13 doi: 10.1109/ICASSP43922.2022.9747166 – volume: 19 start-page: 788 year: 2011 ident: ref_22 article-title: Front-End Factor Analysis for Speaker Verification publication-title: IEEE Trans. Audio Speech Lang. Process. doi: 10.1109/TASL.2010.2064307 contributor: fullname: Dehak – ident: ref_29 – ident: ref_46 – ident: ref_17 doi: 10.1109/SLT.2016.7846260 – volume: 12 start-page: 75 year: 1998 ident: ref_2 article-title: Maximum likelihood linear transformations for HMM-based speech recognition publication-title: Comput. Speech Lang. doi: 10.1006/csla.1998.0043 contributor: fullname: Gales – ident: ref_40 doi: 10.3390/app112110079 – ident: ref_26 doi: 10.3390/app11083603 – ident: ref_39 doi: 10.1007/978-3-030-01264-9_9 – ident: ref_51 doi: 10.1109/ICCV.2007.4409052 – volume: 52 start-page: 12 year: 2010 ident: ref_1 article-title: An overview of text-independent speaker recognition: From features to supervectors publication-title: Speech Commun. doi: 10.1016/j.specom.2009.08.009 contributor: fullname: Kinnunen – ident: ref_44 doi: 10.21437/Interspeech.2018-1929 – ident: ref_19 doi: 10.1109/ICASSP.2018.8461375 |
SSID | ssj0000913810 |
Score | 2.2740724 |
Snippet | Compared with text-independent speaker verification (TI-SV) systems, text-dependent speaker verification (TD-SV) counterparts often have better performance for... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 7463 |
SubjectTerms | Access control Automatic speech recognition Computation deep cluster Entropy Experiments Methods multitask learning Neural networks Phonemes Pronunciation pseudo-phoneme label loss Speaker identification speaker verification Speech Speech recognition Verification Voice recognition |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgXOCA2AAxXsphBzhEdG3WJCcE0xCggSZe4lY1iQsSsI09_j9Olw0QElJPbdVWdu34s-PPAA30tZ4odtyjDy60ldwYidyKKDdFQR6wpMy_uU0vH8X1c-s5JNzGYVvl3CeWjtoNrM-Rn_gCaYuwhI5Ph5_cT43y1dUwQmMZVmJCClEFVs47t727RZbFs16qZjRrzEsI3_u6sCdUkCJNfi1FJWP_H4dcrjIXG7AewkN2NtNnFZawX4O1H6SBNagGcxyzo8AZfbwJ7d4Yp27Ae6-DPn4g6-YG31mXXssoKmUPHt9eLSbeTtj9EPM3HLEnemgR0nZb8HjReWhf8jAfgdskFRNeJAWFTwkqoYWMnJOxo4CIrFLZJrktiTJqFqlFZ2JDUYEja3ZaOVSoXSJdnGxDpU9ftQPM-vIYqoIO3_qWa6tbGGmlrNCpUbYOjbmosuGMBiMj-OAlmv2QaB3OvRgXt3ju6vLEYPSSBVPIpLDGiJawViQiJ7iDqpkak0qjnIziog77cyVkwaDG2bf6d_-_vAerse9QKPfo7UNlMpriAcUNE3MYfo4v7EHB6Q priority: 102 providerName: ProQuest |
Title | Pseudo-Phoneme Label Loss for Text-Independent Speaker Verification |
URI | https://www.proquest.com/docview/2700544892 https://doaj.org/article/74cbb454cc434a768e816bb67b8d702f |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwED3xscCA-BSFUnlggCEiTZzYHilqKQhQBQV1i2L7IiSgrdr0_3NO0iqIgQUpUxTF1l3u_F7O9wxwjq7W4wfWc-zD48oIT2uBnuF-qrOMMmAhmf_4FPdf-f0oGtWO-nJ7wkp54NJwV4IbrXnEjeEhTwkco2zHWsdCSyv8ICuyr69qZKrIwartpKvKhryQeL2rBzshBcHj8McSVCj1_0rExerS24WdChay63I6e7CG433YrokF7sNeFYZzdlFpRV8ewM1gjgs78QbvkzF-IXtINX6yBxqWERplQ8dr71Yn3ebsZYrpB87YG700q37XHcJrrzu86XvVuQieCWOee1mYEWwKUXLFhW-tCCwBIYpGadqUrgQKv53FBq0ONKEBS1FslbQoUdlQ2CA8go0xzeoYmHFlMZQZXa7lLVVGRegrKQ1XsZamAedLUyXTUv4iIdrgLJrULNqAjjPj6hGnWV3cIE8mlSeTvzzZgObSCUkVSPPE1cUjopAqOPmPMU5hK3D9C8UOviZs5LMFnhGqyHUL1mXvtgWbne7T4LlVfE7fC57Ltw |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED4N9jB4QOOX6MY2P_DAHizS2I3tJ8TQujIKQlqZeIti-wISW1va8v9zl7oFNGlSnpIoie5y5-_ufN8BHCDXerI8So4-pHbBSO8NyqCzytc1ecCGMv_isuhd6583nZuUcJumbZULn9g46jgKnCM_4gJph2IJlx-PHyRPjeLqahqhsQJvtaK1mjvFuz-WORbmvLTtbN6Wpyi656ow0ykYXahXC1HD1_-PO27WmO572EjgUJzMtbkJb3C4BesvKAO3YDMZ41QcJsbor9twejXFxziSV3ejIf5F0a88_hF9eq0gTCoGHN2eLefdzsSvMVb3OBG_6aF1StrtwHX3--C0J9N0BBlUoWeyVjWBJ4VWO22yGE0eCQ6RTdrQJqdl0GTtuggYfe4JE0Sy5ehsRIsuKhNztQurQ_qqPRCBi2Noazq48a1ywXUwc9YG7QpvQwsOFqIqx3MSjJKCB5Zo-UKiLfjGYlzewszVzYnR5LZMhlAaHbzXHR2CVrqiYAdtu_C-MN5Gk-V1C_YXSiiTOU3LZ-V_-P_lL_CuN7jol_2zy_OPsJZzr0KzW28fVmeTR_xECGLmPze_yRPfXsN0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED9tRULjAfGxad2A-YEH9mCRJm5sP03jo4KtqyoGE29RbJ83aazt2vL_c5e6HQhpUp4SK4nOd-f7_B3AIXKuJ8uDZO9DKuu1dE6j9CqrXYykARvI_G-D8uJGfbnt3qb6p1kqq1zqxEZRh7HnGPkxJ0i75EvY_DimsojhWe_T5K_kCVKcaU3jNF7CmlZlkbVg7eR8MLxaRVwYAdN0skWTXkG-PueIGVyBlz85lhr0_mfKuTlxeluwmUxF8Xmxt9vwAkc7sPEIQHAHtpNozsRRwo_-uAunwxneh7Ec_hqP8A-Kfu3wTvTps4IsVHHNvu7lavrtXHyfYP0bp-IHvTSmEN5ruOmdX59eyDQrQfqiVHMZi0imVIFGWaWzEHQeyDgiCTW-QypMo846sfQYXO7IQggk2cGagAZtKHTIizfQGtFfvQXhOVWGJtLFbXC19baLmTXGK1s649twuCRVNVlAYlTkSjBFq0cUbcMJk3G1hHGsmxvj6c8qiUWllXdOdZX3qlA1uT5oOqVzpXYm6CyPbdhbbkKVhGtW_WOFd_9__AHWiUeq_uXg63t4lXPjQlO6twet-fQe98mcmLuDxCcPS4jJEQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudo-Phoneme+Label+Loss+for+Text-Independent+Speaker+Verification&rft.jtitle=Applied+sciences&rft.au=Mengqi+Niu&rft.au=Liang+He&rft.au=Zhihua+Fang&rft.au=Baowei+Zhao&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=15&rft.spage=7463&rft_id=info:doi/10.3390%2Fapp12157463&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_74cbb454cc434a768e816bb67b8d702f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |