Pseudo-Phoneme Label Loss for Text-Independent Speaker Verification

Compared with text-independent speaker verification (TI-SV) systems, text-dependent speaker verification (TD-SV) counterparts often have better performance for their efficient utilization of speech content information. On this account, some TI-SV methods tried to boost performance by incorporating a...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 12; no. 15; p. 7463
Main Authors Niu, Mengqi, He, Liang, Fang, Zhihua, Zhao, Baowei, Wang, Kai
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Compared with text-independent speaker verification (TI-SV) systems, text-dependent speaker verification (TD-SV) counterparts often have better performance for their efficient utilization of speech content information. On this account, some TI-SV methods tried to boost performance by incorporating an extra automatic speech recognition (ASR) component to explore content information, such as c-vector. However, the introduced ASR component requires a large amount of annotated data and consumes high computation resources. In this paper, we propose a pseudo-phoneme label (PPL) loss for the TI-SR task by integrating content cluster loss at the frame level and speaker recognition loss at the segment level in a unified network by multitask learning, without additional data requirement and exhausting computation. By referring to HuBERT, we generate pseudo-phoneme labels to adjust a frame level feature distribution by deep cluster to ensure each cluster corresponds to an implicit pronunciation unit in the feature space. We compare the proposed loss with the softmax loss, center loss, triplet loss, log-likelihood-ratio cost loss, additive margin softmax loss and additive angular margin loss on the VoxCeleb database. Experimental results demonstrate the effectiveness of our proposed method.
AbstractList Compared with text-independent speaker verification (TI-SV) systems, text-dependent speaker verification (TD-SV) counterparts often have better performance for their efficient utilization of speech content information. On this account, some TI-SV methods tried to boost performance by incorporating an extra automatic speech recognition (ASR) component to explore content information, such as c-vector. However, the introduced ASR component requires a large amount of annotated data and consumes high computation resources. In this paper, we propose a pseudo-phoneme label (PPL) loss for the TI-SR task by integrating content cluster loss at the frame level and speaker recognition loss at the segment level in a unified network by multitask learning, without additional data requirement and exhausting computation. By referring to HuBERT, we generate pseudo-phoneme labels to adjust a frame level feature distribution by deep cluster to ensure each cluster corresponds to an implicit pronunciation unit in the feature space. We compare the proposed loss with the softmax loss, center loss, triplet loss, log-likelihood-ratio cost loss, additive margin softmax loss and additive angular margin loss on the VoxCeleb database. Experimental results demonstrate the effectiveness of our proposed method.
Author Niu, Mengqi
Zhao, Baowei
Wang, Kai
Fang, Zhihua
He, Liang
Author_xml – sequence: 1
  givenname: Mengqi
  surname: Niu
  fullname: Niu, Mengqi
– sequence: 2
  givenname: Liang
  surname: He
  fullname: He, Liang
– sequence: 3
  givenname: Zhihua
  orcidid: 0000-0002-3018-7414
  surname: Fang
  fullname: Fang, Zhihua
– sequence: 4
  givenname: Baowei
  surname: Zhao
  fullname: Zhao, Baowei
– sequence: 5
  givenname: Kai
  surname: Wang
  fullname: Wang, Kai
BookMark eNpNkNtKw0AQhhdRsNZe-QIBLyU6e0h2cynFQ6FgwertsodZTW2zcZOCvr2pFelczInh-4f_jBw3sUFCLihcc17BjWlbymghRcmPyIiBLHMuqDw-6E_JpOtWMERFuaIwItNFh1sf88X7ANtgNjcW19k8dl0WYsqW-NXns8Zji0Nq-uy5RfOBKXvFVIfamb6OzTk5CWbd4eSvjsnL_d1y-pjPnx5m09t57ngp-jzwwAvGUYlKSPBeMk8LAQKUo2YYUQINpUNvma0oeJDcV8qjwspz6Rkfk9me66NZ6TbVG5O-dTS1_l3E9KZN6mu3Ri2Fs1YUwjnBhZGlQkVLa0tplZfAwsC63LPaFD-32PV6FbepGd7XTAIUQqhqp3i1v3JpcCRh-FeloHem6wPT-Q-Z4XSS
CitedBy_id crossref_primary_10_1016_j_fsisyn_2024_100466
Cites_doi 10.1109/TSP52935.2021.9522589
10.1109/ICASSP39728.2021.9414676
10.1109/LSP.2006.870086
10.21437/Interspeech.2017-620
10.21437/Interspeech.2020-2650
10.1109/TASLP.2021.3122291
10.20944/preprints202106.0687.v1
10.21437/Interspeech.2020-2538
10.21437/Interspeech.2017-950
10.1109/TASLP.2018.2831456
10.21437/Interspeech.2021-1085
10.21437/Interspeech.2019-1606
10.21437/Odyssey.2022-45
10.21437/Interspeech.2018-1209
10.21437/Interspeech.2018-993
10.1109/CVPR46437.2021.01352
10.21437/Odyssey.2018-11
10.21437/Interspeech.2018-1015
10.1109/CVPR.2019.00482
10.1186/s13636-019-0166-8
10.3390/app12031478
10.1007/978-3-319-46478-7
10.1109/ICASSP.2017.7953194
10.1109/CVPR.2015.7298682
10.21437/Interspeech.2018-1158
10.1016/j.specom.2014.03.001
10.1109/ICASSP.2017.7953152
10.1109/LSP.2018.2822810
10.1109/IJCNN.2019.8852112
10.1109/ICASSP.2018.8462025
10.21437/Interspeech.2017-1608
10.1109/ISCSLP.2018.8706570
10.21437/Interspeech.2019-2357
10.1109/ICAA53760.2021.00076
10.1109/ICASSP.2018.8462665
10.21437/Interspeech.2020-1287
10.1109/ICASSP43922.2022.9747166
10.1109/TASL.2010.2064307
10.1109/SLT.2016.7846260
10.1006/csla.1998.0043
10.3390/app112110079
10.3390/app11083603
10.1007/978-3-030-01264-9_9
10.1109/ICCV.2007.4409052
10.1016/j.specom.2009.08.009
10.21437/Interspeech.2018-1929
10.1109/ICASSP.2018.8461375
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7T9
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PIMPY
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app12157463
DatabaseName CrossRef
Linguistics and Language Behavior Abstracts (LLBA)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Linguistics and Language Behavior Abstracts (LLBA)
ProQuest One Academic
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_74cbb454cc434a768e816bb67b8d702f
10_3390_app12157463
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARAPS
ARCSS
ATCPS
BBNVY
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6-
K6V
K7-
KB.
KC.
KQ8
L6V
LK5
LK8
M0K
M7P
M7R
M7S
MODMG
M~E
N95
OK1
P62
PATMY
PCBAR
PDBOC
PIMPY
PROAC
PYCSY
RIG
TUS
7T9
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c364t-f3f3523e849470dd72d1540408c1add7e701f6cedb2b910d073d98de8e9d37d23
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Tue Oct 22 15:15:42 EDT 2024
Mon Nov 04 11:06:09 EST 2024
Wed Aug 07 14:11:21 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-f3f3523e849470dd72d1540408c1add7e701f6cedb2b910d073d98de8e9d37d23
ORCID 0000-0002-3018-7414
OpenAccessLink https://doaj.org/article/74cbb454cc434a768e816bb67b8d702f
PQID 2700544892
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_74cbb454cc434a768e816bb67b8d702f
proquest_journals_2700544892
crossref_primary_10_3390_app12157463
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Hsu (ref_38) 2021; 29
ref_50
Wang (ref_31) 2018; 25
Dehak (ref_22) 2011; 19
Hinton (ref_53) 2008; 9
ref_14
Larcher (ref_4) 2014; 60
ref_13
ref_12
ref_11
ref_10
ref_52
ref_51
Campbell (ref_3) 2006; 13
ref_19
ref_18
ref_17
ref_16
ref_15
Gales (ref_2) 1998; 12
ref_25
ref_24
ref_23
ref_21
ref_20
ref_29
ref_28
ref_27
ref_26
ref_36
ref_35
ref_34
ref_33
ref_32
Zhang (ref_37) 2018; 26
ref_30
ref_39
Liu (ref_5) 2019; 2019
ref_47
ref_46
ref_45
ref_44
ref_43
ref_42
ref_41
ref_40
Kinnunen (ref_1) 2010; 52
ref_49
ref_48
ref_9
ref_8
ref_7
ref_6
References_xml – ident: ref_32
  doi: 10.1109/TSP52935.2021.9522589
– ident: ref_49
– ident: ref_50
  doi: 10.1109/ICASSP39728.2021.9414676
– volume: 13
  start-page: 308
  year: 2006
  ident: ref_3
  article-title: Support vector machines using GMM supervectors for speaker verification
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2006.870086
  contributor:
    fullname: Campbell
– ident: ref_18
  doi: 10.21437/Interspeech.2017-620
– ident: ref_27
  doi: 10.21437/Interspeech.2020-2650
– volume: 29
  start-page: 3451
  year: 2021
  ident: ref_38
  article-title: HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2021.3122291
  contributor:
    fullname: Hsu
– ident: ref_6
  doi: 10.20944/preprints202106.0687.v1
– ident: ref_12
  doi: 10.21437/Interspeech.2020-2538
– ident: ref_43
  doi: 10.21437/Interspeech.2017-950
– volume: 26
  start-page: 1633
  year: 2018
  ident: ref_37
  article-title: Text-Independent Speaker Verification Based on Triplet Convolutional Neural Network Embeddings
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2018.2831456
  contributor:
    fullname: Zhang
– ident: ref_16
  doi: 10.21437/Interspeech.2021-1085
– ident: ref_23
  doi: 10.21437/Interspeech.2019-1606
– ident: ref_45
  doi: 10.21437/Odyssey.2022-45
– ident: ref_15
  doi: 10.21437/Interspeech.2018-1209
– ident: ref_20
  doi: 10.21437/Interspeech.2018-993
– ident: ref_28
  doi: 10.1109/CVPR46437.2021.01352
– ident: ref_41
  doi: 10.21437/Odyssey.2018-11
– ident: ref_52
– ident: ref_8
  doi: 10.21437/Interspeech.2018-1015
– ident: ref_34
  doi: 10.1109/CVPR.2019.00482
– volume: 2019
  start-page: 1
  year: 2019
  ident: ref_5
  article-title: Introducing phonetic information to speaker embedding for speaker verification
  publication-title: EURASIP J. Audio Speech Music. Process.
  doi: 10.1186/s13636-019-0166-8
  contributor:
    fullname: Liu
– ident: ref_7
  doi: 10.3390/app12031478
– ident: ref_30
  doi: 10.1007/978-3-319-46478-7
– ident: ref_36
  doi: 10.1109/ICASSP.2017.7953194
– ident: ref_35
  doi: 10.1109/CVPR.2015.7298682
– ident: ref_21
  doi: 10.21437/Interspeech.2018-1158
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref_53
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Hinton
– volume: 60
  start-page: 56
  year: 2014
  ident: ref_4
  article-title: Text-dependent speaker verification: Classifiers, databases and RSR2015
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2014.03.001
  contributor:
    fullname: Larcher
– ident: ref_48
  doi: 10.1109/ICASSP.2017.7953152
– volume: 25
  start-page: 926
  year: 2018
  ident: ref_31
  article-title: Additive Margin Softmax for Face Verification
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2018.2822810
  contributor:
    fullname: Wang
– ident: ref_11
  doi: 10.1109/IJCNN.2019.8852112
– ident: ref_47
– ident: ref_42
  doi: 10.1109/ICASSP.2018.8462025
– ident: ref_14
  doi: 10.21437/Interspeech.2017-1608
– ident: ref_10
  doi: 10.1109/ISCSLP.2018.8706570
– ident: ref_9
  doi: 10.21437/Interspeech.2019-2357
– ident: ref_33
  doi: 10.1109/ICAA53760.2021.00076
– ident: ref_24
  doi: 10.1109/ICASSP.2018.8462665
– ident: ref_25
  doi: 10.21437/Interspeech.2020-1287
– ident: ref_13
  doi: 10.1109/ICASSP43922.2022.9747166
– volume: 19
  start-page: 788
  year: 2011
  ident: ref_22
  article-title: Front-End Factor Analysis for Speaker Verification
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASL.2010.2064307
  contributor:
    fullname: Dehak
– ident: ref_29
– ident: ref_46
– ident: ref_17
  doi: 10.1109/SLT.2016.7846260
– volume: 12
  start-page: 75
  year: 1998
  ident: ref_2
  article-title: Maximum likelihood linear transformations for HMM-based speech recognition
  publication-title: Comput. Speech Lang.
  doi: 10.1006/csla.1998.0043
  contributor:
    fullname: Gales
– ident: ref_40
  doi: 10.3390/app112110079
– ident: ref_26
  doi: 10.3390/app11083603
– ident: ref_39
  doi: 10.1007/978-3-030-01264-9_9
– ident: ref_51
  doi: 10.1109/ICCV.2007.4409052
– volume: 52
  start-page: 12
  year: 2010
  ident: ref_1
  article-title: An overview of text-independent speaker recognition: From features to supervectors
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2009.08.009
  contributor:
    fullname: Kinnunen
– ident: ref_44
  doi: 10.21437/Interspeech.2018-1929
– ident: ref_19
  doi: 10.1109/ICASSP.2018.8461375
SSID ssj0000913810
Score 2.2740724
Snippet Compared with text-independent speaker verification (TI-SV) systems, text-dependent speaker verification (TD-SV) counterparts often have better performance for...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 7463
SubjectTerms Access control
Automatic speech recognition
Computation
deep cluster
Entropy
Experiments
Methods
multitask learning
Neural networks
Phonemes
Pronunciation
pseudo-phoneme label loss
Speaker identification
speaker verification
Speech
Speech recognition
Verification
Voice recognition
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgXOCA2AAxXsphBzhEdG3WJCcE0xCggSZe4lY1iQsSsI09_j9Olw0QElJPbdVWdu34s-PPAA30tZ4odtyjDy60ldwYidyKKDdFQR6wpMy_uU0vH8X1c-s5JNzGYVvl3CeWjtoNrM-Rn_gCaYuwhI5Ph5_cT43y1dUwQmMZVmJCClEFVs47t727RZbFs16qZjRrzEsI3_u6sCdUkCJNfi1FJWP_H4dcrjIXG7AewkN2NtNnFZawX4O1H6SBNagGcxyzo8AZfbwJ7d4Yp27Ae6-DPn4g6-YG31mXXssoKmUPHt9eLSbeTtj9EPM3HLEnemgR0nZb8HjReWhf8jAfgdskFRNeJAWFTwkqoYWMnJOxo4CIrFLZJrktiTJqFqlFZ2JDUYEja3ZaOVSoXSJdnGxDpU9ftQPM-vIYqoIO3_qWa6tbGGmlrNCpUbYOjbmosuGMBiMj-OAlmv2QaB3OvRgXt3ju6vLEYPSSBVPIpLDGiJawViQiJ7iDqpkak0qjnIziog77cyVkwaDG2bf6d_-_vAerse9QKPfo7UNlMpriAcUNE3MYfo4v7EHB6Q
  priority: 102
  providerName: ProQuest
Title Pseudo-Phoneme Label Loss for Text-Independent Speaker Verification
URI https://www.proquest.com/docview/2700544892
https://doaj.org/article/74cbb454cc434a768e816bb67b8d702f
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwED3xscCA-BSFUnlggCEiTZzYHilqKQhQBQV1i2L7IiSgrdr0_3NO0iqIgQUpUxTF1l3u_F7O9wxwjq7W4wfWc-zD48oIT2uBnuF-qrOMMmAhmf_4FPdf-f0oGtWO-nJ7wkp54NJwV4IbrXnEjeEhTwkco2zHWsdCSyv8ICuyr69qZKrIwartpKvKhryQeL2rBzshBcHj8McSVCj1_0rExerS24WdChay63I6e7CG433YrokF7sNeFYZzdlFpRV8ewM1gjgs78QbvkzF-IXtINX6yBxqWERplQ8dr71Yn3ebsZYrpB87YG700q37XHcJrrzu86XvVuQieCWOee1mYEWwKUXLFhW-tCCwBIYpGadqUrgQKv53FBq0ONKEBS1FslbQoUdlQ2CA8go0xzeoYmHFlMZQZXa7lLVVGRegrKQ1XsZamAedLUyXTUv4iIdrgLJrULNqAjjPj6hGnWV3cIE8mlSeTvzzZgObSCUkVSPPE1cUjopAqOPmPMU5hK3D9C8UOviZs5LMFnhGqyHUL1mXvtgWbne7T4LlVfE7fC57Ltw
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED4N9jB4QOOX6MY2P_DAHizS2I3tJ8TQujIKQlqZeIti-wISW1va8v9zl7oFNGlSnpIoie5y5-_ufN8BHCDXerI8So4-pHbBSO8NyqCzytc1ecCGMv_isuhd6583nZuUcJumbZULn9g46jgKnCM_4gJph2IJlx-PHyRPjeLqahqhsQJvtaK1mjvFuz-WORbmvLTtbN6Wpyi656ow0ykYXahXC1HD1_-PO27WmO572EjgUJzMtbkJb3C4BesvKAO3YDMZ41QcJsbor9twejXFxziSV3ejIf5F0a88_hF9eq0gTCoGHN2eLefdzsSvMVb3OBG_6aF1StrtwHX3--C0J9N0BBlUoWeyVjWBJ4VWO22yGE0eCQ6RTdrQJqdl0GTtuggYfe4JE0Sy5ehsRIsuKhNztQurQ_qqPRCBi2Noazq48a1ywXUwc9YG7QpvQwsOFqIqx3MSjJKCB5Zo-UKiLfjGYlzewszVzYnR5LZMhlAaHbzXHR2CVrqiYAdtu_C-MN5Gk-V1C_YXSiiTOU3LZ-V_-P_lL_CuN7jol_2zy_OPsJZzr0KzW28fVmeTR_xECGLmPze_yRPfXsN0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED9tRULjAfGxad2A-YEH9mCRJm5sP03jo4KtqyoGE29RbJ83aazt2vL_c5e6HQhpUp4SK4nOd-f7_B3AIXKuJ8uDZO9DKuu1dE6j9CqrXYykARvI_G-D8uJGfbnt3qb6p1kqq1zqxEZRh7HnGPkxJ0i75EvY_DimsojhWe_T5K_kCVKcaU3jNF7CmlZlkbVg7eR8MLxaRVwYAdN0skWTXkG-PueIGVyBlz85lhr0_mfKuTlxeluwmUxF8Xmxt9vwAkc7sPEIQHAHtpNozsRRwo_-uAunwxneh7Ec_hqP8A-Kfu3wTvTps4IsVHHNvu7lavrtXHyfYP0bp-IHvTSmEN5ruOmdX59eyDQrQfqiVHMZi0imVIFGWaWzEHQeyDgiCTW-QypMo846sfQYXO7IQggk2cGagAZtKHTIizfQGtFfvQXhOVWGJtLFbXC19baLmTXGK1s649twuCRVNVlAYlTkSjBFq0cUbcMJk3G1hHGsmxvj6c8qiUWllXdOdZX3qlA1uT5oOqVzpXYm6CyPbdhbbkKVhGtW_WOFd_9__AHWiUeq_uXg63t4lXPjQlO6twet-fQe98mcmLuDxCcPS4jJEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudo-Phoneme+Label+Loss+for+Text-Independent+Speaker+Verification&rft.jtitle=Applied+sciences&rft.au=Mengqi+Niu&rft.au=Liang+He&rft.au=Zhihua+Fang&rft.au=Baowei+Zhao&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=15&rft.spage=7463&rft_id=info:doi/10.3390%2Fapp12157463&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_74cbb454cc434a768e816bb67b8d702f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon