Novel Data Augmentation Employing Multivariate Gaussian Distribution for Neural Network-Based Blood Pressure Estimation

In this paper, we propose a novel data augmentation technique employing multivariate Gaussian distribution (DA-MGD) for neural network (NN)-based blood pressure (BP) estimation, which incorporates the relationship between the features in a multi-dimensional feature vector to describe the correlated...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 11; no. 9; p. 3923
Main Authors Song, Kwangsub, Park, Tae-Jun, Chang, Joon-Hyuk
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 2021
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app11093923

Cover

Abstract In this paper, we propose a novel data augmentation technique employing multivariate Gaussian distribution (DA-MGD) for neural network (NN)-based blood pressure (BP) estimation, which incorporates the relationship between the features in a multi-dimensional feature vector to describe the correlated real-valued random variables successfully. To verify the proposed algorithm against the conventional algorithm, we compare the results in terms of mean error (ME) with standard deviation and Pearson correlation using 110 subjects contributed to the database (DB) which includes the systolic BP (SBP), diastolic BP (DBP), photoplethysmography (PPG) signal, and electrocardiography (ECG) signal. For each subject, 3 times (or 6 times) measurements are accomplished in which the PPG and ECG signals are recorded for 20 s. And, to compare with the performance of the BP estimation (BPE) using the data augmentation algorithms, we train the BPE model using the two-stage system, called the stacked NN. Since the proposed algorithm can express properly the correlation between the features than the conventional algorithm, the errors turn out lower compared to the conventional algorithm, which shows the superiority of our approach.
AbstractList In this paper, we propose a novel data augmentation technique employing multivariate Gaussian distribution (DA-MGD) for neural network (NN)-based blood pressure (BP) estimation, which incorporates the relationship between the features in a multi-dimensional feature vector to describe the correlated real-valued random variables successfully. To verify the proposed algorithm against the conventional algorithm, we compare the results in terms of mean error (ME) with standard deviation and Pearson correlation using 110 subjects contributed to the database (DB) which includes the systolic BP (SBP), diastolic BP (DBP), photoplethysmography (PPG) signal, and electrocardiography (ECG) signal. For each subject, 3 times (or 6 times) measurements are accomplished in which the PPG and ECG signals are recorded for 20 s. And, to compare with the performance of the BP estimation (BPE) using the data augmentation algorithms, we train the BPE model using the two-stage system, called the stacked NN. Since the proposed algorithm can express properly the correlation between the features than the conventional algorithm, the errors turn out lower compared to the conventional algorithm, which shows the superiority of our approach.
Author Park, Tae-Jun
Song, Kwangsub
Chang, Joon-Hyuk
Author_xml – sequence: 1
  givenname: Kwangsub
  orcidid: 0000-0003-4367-709X
  surname: Song
  fullname: Song, Kwangsub
– sequence: 2
  givenname: Tae-Jun
  orcidid: 0000-0002-7466-0218
  surname: Park
  fullname: Park, Tae-Jun
– sequence: 3
  givenname: Joon-Hyuk
  orcidid: 0000-0003-2610-2323
  surname: Chang
  fullname: Chang, Joon-Hyuk
BookMark eNptUU1P3DAQtSoqlVJO_QOWeqxSbE_i2Ec-FopEKQd6tiaJvfI2G6e2A-Lf190FCVXM5Y1Gb97MvPlIDqYwWUI-c_YNQLMTnGfOmQYt4B05FKyVFdS8PXiVfyDHKW1YCc1BcXZIHm_Dgx3pBWakp8t6a6eM2YeJrrbzGJ78tKY_ljH7B4wes6VXuKTkcaIXPuXou2VHdiHSW7tEHAvkxxB_V2eY7EDPxhAGehdtSku0dJWy3-70P5H3Dsdkj5_xiPy6XN2ff69ufl5dn5_eVD3IOldO1DU2mjfQ99w5qRWgrlsnm77tHDTlXqw73WopoevQNs51w9DWToJT4Dgckeu97hBwY-ZYxscnE9CbXSHEtcGYfT9ag0INHLiWxcG6cUoJPSgNElonGqb7ovVlrzXH8GexKZtNWOJU1jeiEUq0TCkoLL5n9TGkFK0zvd97miP60XBm_r3LvHpX6fn6X8_Lpm-x_wLMXphu
CitedBy_id crossref_primary_10_18267_j_aip_209
crossref_primary_10_1016_j_bspc_2023_105074
crossref_primary_10_1016_j_ins_2022_01_070
crossref_primary_10_1007_s10462_022_10353_8
crossref_primary_10_3390_electronics13081599
crossref_primary_10_1038_s41746_023_00835_6
Cites_doi 10.1016/j.bspc.2012.04.002
10.1109/CSNT.2015.99
10.1109/TCSVT.2019.2936410
10.1109/JBHI.2015.2458779
10.1109/TASLP.2015.2509780
10.1007/s11517-012-0954-0
10.1109/BIOCAS.2018.8584751
10.1109/CVPR.2019.00874
10.1146/annurev-bioeng-071516-044442
10.1109/TBME.2014.2340991
10.1007/s00421-011-1983-3
10.1109/TCSVT.2017.2654543
10.1109/IMTC.2011.5944249
10.1109/TBME.2016.2580904
10.1155/2018/7804243
10.1109/ACCESS.2017.2701800
10.1109/ICASSP.2017.7952585
10.1109/LSP.2017.2657381
10.1109/MCOM.2012.6122530
10.1109/CVPR.2018.00508
10.1109/TII.2016.2612640
10.1109/ACCESS.2017.2788044
10.1109/TIP.2020.2973812
10.1109/ICASSP.2013.6639345
10.1109/TIM.2019.2947103
10.1007/s10916-008-9186-0
10.1016/j.sigpro.2017.06.001
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app11093923
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_a28d1319639245f8829d893637f2509c
10_3390_app11093923
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c364t-f244a59153cc1ff6983a947f65c7bf35109a4b979663bbae5ffbdd74f63f83f13
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:27:45 EDT 2025
Mon Jun 30 11:12:27 EDT 2025
Tue Jul 01 00:50:46 EDT 2025
Thu Apr 24 22:59:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-f244a59153cc1ff6983a947f65c7bf35109a4b979663bbae5ffbdd74f63f83f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7466-0218
0000-0003-2610-2323
0000-0003-4367-709X
OpenAccessLink https://doaj.org/article/a28d1319639245f8829d893637f2509c
PQID 2528270883
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_a28d1319639245f8829d893637f2509c
proquest_journals_2528270883
crossref_citationtrail_10_3390_app11093923
crossref_primary_10_3390_app11093923
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lee (ref_3) 2017; 13
Lee (ref_18) 2017; 5
McDuff (ref_25) 2014; 61
Song (ref_32) 2020; 69
ref_14
ref_13
ref_12
ref_34
ref_11
ref_33
Wang (ref_2) 2018; 2018
Lazaro (ref_22) 2013; 51
ref_30
Zhang (ref_8) 2019; 30
Nemati (ref_23) 2012; 50
Kachuee (ref_1) 2017; 64
ref_17
Zhang (ref_10) 2017; 28
ref_16
Shen (ref_5) 2017; 19
Chang (ref_9) 2020; 29
Lee (ref_31) 2016; 24
ref_21
Thomas (ref_24) 2016; 20
Ker (ref_6) 2017; 6
Ji (ref_15) 2018; 143
ref_29
Salamon (ref_4) 2017; 24
ref_28
Lee (ref_19) 2019; 9
Akar (ref_20) 2013; 8
Gesche (ref_26) 2012; 112
ref_7
Yoon (ref_27) 2009; 33
References_xml – ident: ref_7
– volume: 8
  start-page: 16
  year: 2013
  ident: ref_20
  article-title: Spectral analysis of photoplethysmographic signals: The importance of preprocessing
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2012.04.002
– ident: ref_34
– volume: 9
  start-page: 1
  year: 2019
  ident: ref_19
  article-title: Dempster-Shafer fusion based on a deep Boltzmann machine for blood pressure estimation
  publication-title: Appl. Sci.
– ident: ref_28
  doi: 10.1109/CSNT.2015.99
– ident: ref_11
– volume: 30
  start-page: 3140
  year: 2019
  ident: ref_8
  article-title: Fine-grained age estimation in the wild with attention LSTM networks
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2019.2936410
– volume: 20
  start-page: 1291
  year: 2016
  ident: ref_24
  article-title: BioWatch: A noninvasive wrist-based blood pressure monitor that incorporates training techniques for posture and subject variability
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2015.2458779
– volume: 24
  start-page: 378
  year: 2016
  ident: ref_31
  article-title: Packet loss concealment based on deep neural networks for digital speech transmission
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2015.2509780
– volume: 51
  start-page: 233
  year: 2013
  ident: ref_22
  article-title: Deriving respiration from photoplethysmographic pulse width
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-012-0954-0
– ident: ref_16
  doi: 10.1109/BIOCAS.2018.8584751
– ident: ref_17
  doi: 10.1109/CVPR.2019.00874
– volume: 19
  start-page: 221
  year: 2017
  ident: ref_5
  article-title: Deep learning in medical image analysis
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071516-044442
– volume: 61
  start-page: 2948
  year: 2014
  ident: ref_25
  article-title: Remote detection of photoplethysmographic systolic and diastolic peaks using a digital camera
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2340991
– volume: 112
  start-page: 309
  year: 2012
  ident: ref_26
  article-title: Continuous blood pressure measurement by using the pulse transit time: Comparison to a cuff-based method
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-011-1983-3
– volume: 28
  start-page: 1303
  year: 2017
  ident: ref_10
  article-title: Residual networks of residual networks: Multilevel residual networks
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2017.2654543
– ident: ref_21
  doi: 10.1109/IMTC.2011.5944249
– volume: 64
  start-page: 859
  year: 2017
  ident: ref_1
  article-title: Cuffless blood pressure estimation algorithm for continuous health-care monitoring
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2580904
– volume: 2018
  start-page: 1006
  year: 2018
  ident: ref_2
  article-title: A novel neural network model for blood pressure estimation using photoplethesmography without electrocardiogram
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2018/7804243
– volume: 5
  start-page: 9962
  year: 2017
  ident: ref_18
  article-title: Deep belief networks ensemble for blood pressure estimation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2701800
– ident: ref_30
  doi: 10.1109/ICASSP.2017.7952585
– ident: ref_33
– volume: 24
  start-page: 279
  year: 2017
  ident: ref_4
  article-title: Deep convolutional neural networks and data augmentation for environmental sound classification
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2017.2657381
– volume: 50
  start-page: 36
  year: 2012
  ident: ref_23
  article-title: A wireless wearable ECG sensor for long-term applications
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2012.6122530
– ident: ref_12
– ident: ref_14
  doi: 10.1109/CVPR.2018.00508
– ident: ref_13
– volume: 13
  start-page: 461
  year: 2017
  ident: ref_3
  article-title: Oscillometric blood pressure estimation based on deep learning
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2016.2612640
– volume: 6
  start-page: 9375
  year: 2017
  ident: ref_6
  article-title: Deep learning applications in medical image analysis
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2017.2788044
– volume: 29
  start-page: 4683
  year: 2020
  ident: ref_9
  article-title: The devil is in the channels: Mutual-channel loss for fine-grained image classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2973812
– ident: ref_29
  doi: 10.1109/ICASSP.2013.6639345
– volume: 69
  start-page: 4292
  year: 2020
  ident: ref_32
  article-title: Cuff-less deep learning-based blood pressure estimation for smart wristwatches
  publication-title: IEEE Trans. Inst. Meas.
  doi: 10.1109/TIM.2019.2947103
– volume: 33
  start-page: 261
  year: 2009
  ident: ref_27
  article-title: Non-constrained blood pressure monitoring using ECG and PPG for personal healthcare
  publication-title: Med. Syst.
  doi: 10.1007/s10916-008-9186-0
– volume: 143
  start-page: 364
  year: 2018
  ident: ref_15
  article-title: One-shot learning based pattern transition map for action early recognition
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2017.06.001
SSID ssj0000913810
Score 2.2160742
Snippet In this paper, we propose a novel data augmentation technique employing multivariate Gaussian distribution (DA-MGD) for neural network (NN)-based blood...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3923
SubjectTerms Algorithms
Bias
Blood pressure
data augmentation
Deep learning
Electrocardiography
Estimates
multivariate Gaussian distribution
Neural networks
Normal distribution
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gXOCA2AAxGCiHHQCpYm3aND2hDfYQEjsxabcqSZtdxjb24u9jp9kYAnFt06qqY_uzY38mpK6yhtaYqOJgCLzQMOZJZovGtVJC5jqW2I382ue9QfgyjIYu4bZwZZUbm2gNdTbVmCN_CCIIDmLQCfY4-_BwahSerroRGvvkwAdPg_tcdLrbHAtyXgq_UbTlMYju8VQYKTYBFLAfjsjy9f8yx9bHdE7IsQOHtFlIs0z28kmFHO1QBlZI2Snjgt46xui7U_LZn67zMX2WS0mbq9G76yea0GKeLzxIbaPtGgJjwJa0K1cLbJ6kz0ib6yZeUYCvFLk64Av6RXG41wIfl9EWFrfTopFwntM2WIWi4fGMDDrtt6ee5yYqeJrxcOkZcOYySsDKgYCM4YlgMgljwyMdK8NAPxMZqiSGGIgpJfPIGJVlcWg4M4IZn52T0mQ6yS8IlcqAfw2kZoqFXGQS1nCpAbDBO7kwVXK_-b2pdnTjOPVinELYgbJId2RRJfXt4lnBsvH3shbKabsEqbHthel8lDpNS2UgMt8aFggtIwMRRJIBKOMsNgD3El0ltY2UU6evi_R7d13-f_uKHAZY1WKTMDVSWs5X-TXAkqW6sXvvC9Fz5FE
  priority: 102
  providerName: ProQuest
Title Novel Data Augmentation Employing Multivariate Gaussian Distribution for Neural Network-Based Blood Pressure Estimation
URI https://www.proquest.com/docview/2528270883
https://doaj.org/article/a28d1319639245f8829d893637f2509c
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTwIxEJ4oXvRgBDWiSHrgoCYbge52t0eQV0wkxkjCbdN2t14QDC__vtMHBKOJF6-b2W7TeXdnvgGoyayulLmoYmgIglBTGghqi8aVlInIVSxMN_LTkA1G4eM4Gu-M-jI1YQ4e2B3cvWgmWcPKCWYKkcaAkGfoYxmNNXpvroz1rfP6TjJlbTBvGOgq15BHMa83_4MNuCauQr-5IIvU_8MQW-_SO4FjHxaSlttOEfbyaQmOdsACS1D0arggNx4r-vYUPoezdT4hHbEUpLV6e_edRFPiJvnii8S22K4xJcaokvTFamHaJknHAOb6WVcEA1diUDpwB0NXFh600btlpG3K2olrIZznpIv2wLU6nsGo1319GAR-lkKgKAuXgUY3LiKO9g1ZozXjCRU8jDWLVCw1Rc3kIpQ8xuyHSinySGuZZXGoGdUJ1Q16DoXpbJpfABFSo2dtCkUlDVmSCaRhQmGohmuyRJfhbnO8qfJA42bexSTFhMPwIt3hRRlqW-IPh6_xO1nb8GlLYkCx7QMUldSLSvqXqJShsuFy6jV1kTYjTDpjtLX08j--cQWHTVP1Yi9pKlBYzlf5NYYtS1mF_aTXr8JBuzt8fqlaef0CbrftWw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7Bcig9VIWCWEpbH6jUIkXsZhInOVQV2126FIgQAolbsJ2YC91d9oX6p_obO5M4W6oiblwTx7Iy43nY830DsKvzljF8UCXJEHiBRfQUlkXjRutYFSZSjEY-TWX_MvhxFV4twe8aC8NllbVNLA11PjR8Rr7vh5QcRLQn8OvozuOuUXy7WrfQqNTiuPh1Tynb5MtRl-T70fcPexff-p7rKuAZlMHUs-TQVJjQTqdFWiuTGFUSRFaGJtIWSUcTFegkojwAtVZFaK3O8yiwEm2Mto007zKsBIxobcBKp5eenS9OdZhlM263KiAgYtLie2gm9aQwBP9xfWWHgP8cQOnVDl_DKxeOioNKf9ZgqRisw8sHJIXrsOa2_0R8chzVn9_AfTqcF7eiq6ZKHMxufjoE00BUHYTpQ1FCe-eUilM0K76r2YThmqLLRL2ux5aggFkwOwitIK3K0b0OedVcdLicXlTQxXEhemSHKojlBlw-y9_ehMZgOCi2QChtyaP7yqDGQMa5ojFSGQoRaU4Z2ybs1b83M47gnPts3GaU6LAssgeyaMLuYvCo4vV4fFiH5bQYwmTc5YPh-CZzeztTfpy3S1NGyWxoKWdJcgoDJUaWAszENGGnlnLmLMQk-6vP20-__gAv-henJ9nJUXr8FlZ9rqkpj4B2oDEdz4p3FBRN9XuniQKun1v5_wAhziMb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4VLSAurQFH4oESFF3M4kdH1DVZbttKaw4UKm3YDtxL2W37KMVf41fx4zjLEUgbr0mE8vKjOflmW8Adm3VdY4TVZIUQZJ5xMRgKBp31hamdspwN_KnkTw-yz6c5-cr8LPtheGyylYnBkVdTRznyPfSnIIDRWcC93wsi_g8GO5ffU94ghTftLbjNBoROa1_3FD4Nnt3MiBev0rT4eGX98dJnDCQOJTZPPFk3Eyu6dTThr2XukCjM-Vl7pT1SPKqTWa1opgArTV17r2tKpV5ib5A30Na9x7cV6g0B37F8GiZ32G8zaLXbVoCEXWXb6QZ3pMcEvzDCIZZAX-ZgmDfho9hLTqm4qCRpHVYqccb8OgWXOEGrEdFMBOvI1r1mydwM5pc15diYOZGHCwuvsVeprFoZgnThyI0-V5TUE5-rTgyixk3booBQ_bGaVuCXGfBOCG0g1FTmJ70yb5Wos-F9aJpYpzW4pA0UtNs-RTO7uRfP4PV8WRcb4Iw1pNtT41Di5ksKkM00jhyFmlNWfgOvG1_b-ki1DlP3LgsKeRhXpS3eNGB3SXxVYPw8W-yPvNpScKw3OHBZHpRxlNemrSoekGpUVibe4pedEUOoUTlydXUrgPbLZfLqCtm5W_Jfv7_1y_hAYl8-fFkdLoFD1Murgm5oG1YnU8X9Q55R3P7IoihgK93Lfe_AGH0Jes
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Data+Augmentation+Employing+Multivariate+Gaussian+Distribution+for+Neural+Network-Based+Blood+Pressure+Estimation&rft.jtitle=Applied+sciences&rft.au=Kwangsub+Song&rft.au=Tae-Jun+Park&rft.au=Joon-Hyuk+Chang&rft.date=2021&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=9&rft.spage=3923&rft_id=info:doi/10.3390%2Fapp11093923&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a28d1319639245f8829d893637f2509c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon