Novel Data Augmentation Employing Multivariate Gaussian Distribution for Neural Network-Based Blood Pressure Estimation
In this paper, we propose a novel data augmentation technique employing multivariate Gaussian distribution (DA-MGD) for neural network (NN)-based blood pressure (BP) estimation, which incorporates the relationship between the features in a multi-dimensional feature vector to describe the correlated...
Saved in:
Published in | Applied sciences Vol. 11; no. 9; p. 3923 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-3417 2076-3417 |
DOI | 10.3390/app11093923 |
Cover
Abstract | In this paper, we propose a novel data augmentation technique employing multivariate Gaussian distribution (DA-MGD) for neural network (NN)-based blood pressure (BP) estimation, which incorporates the relationship between the features in a multi-dimensional feature vector to describe the correlated real-valued random variables successfully. To verify the proposed algorithm against the conventional algorithm, we compare the results in terms of mean error (ME) with standard deviation and Pearson correlation using 110 subjects contributed to the database (DB) which includes the systolic BP (SBP), diastolic BP (DBP), photoplethysmography (PPG) signal, and electrocardiography (ECG) signal. For each subject, 3 times (or 6 times) measurements are accomplished in which the PPG and ECG signals are recorded for 20 s. And, to compare with the performance of the BP estimation (BPE) using the data augmentation algorithms, we train the BPE model using the two-stage system, called the stacked NN. Since the proposed algorithm can express properly the correlation between the features than the conventional algorithm, the errors turn out lower compared to the conventional algorithm, which shows the superiority of our approach. |
---|---|
AbstractList | In this paper, we propose a novel data augmentation technique employing multivariate Gaussian distribution (DA-MGD) for neural network (NN)-based blood pressure (BP) estimation, which incorporates the relationship between the features in a multi-dimensional feature vector to describe the correlated real-valued random variables successfully. To verify the proposed algorithm against the conventional algorithm, we compare the results in terms of mean error (ME) with standard deviation and Pearson correlation using 110 subjects contributed to the database (DB) which includes the systolic BP (SBP), diastolic BP (DBP), photoplethysmography (PPG) signal, and electrocardiography (ECG) signal. For each subject, 3 times (or 6 times) measurements are accomplished in which the PPG and ECG signals are recorded for 20 s. And, to compare with the performance of the BP estimation (BPE) using the data augmentation algorithms, we train the BPE model using the two-stage system, called the stacked NN. Since the proposed algorithm can express properly the correlation between the features than the conventional algorithm, the errors turn out lower compared to the conventional algorithm, which shows the superiority of our approach. |
Author | Park, Tae-Jun Song, Kwangsub Chang, Joon-Hyuk |
Author_xml | – sequence: 1 givenname: Kwangsub orcidid: 0000-0003-4367-709X surname: Song fullname: Song, Kwangsub – sequence: 2 givenname: Tae-Jun orcidid: 0000-0002-7466-0218 surname: Park fullname: Park, Tae-Jun – sequence: 3 givenname: Joon-Hyuk orcidid: 0000-0003-2610-2323 surname: Chang fullname: Chang, Joon-Hyuk |
BookMark | eNptUU1P3DAQtSoqlVJO_QOWeqxSbE_i2Ec-FopEKQd6tiaJvfI2G6e2A-Lf190FCVXM5Y1Gb97MvPlIDqYwWUI-c_YNQLMTnGfOmQYt4B05FKyVFdS8PXiVfyDHKW1YCc1BcXZIHm_Dgx3pBWakp8t6a6eM2YeJrrbzGJ78tKY_ljH7B4wes6VXuKTkcaIXPuXou2VHdiHSW7tEHAvkxxB_V2eY7EDPxhAGehdtSku0dJWy3-70P5H3Dsdkj5_xiPy6XN2ff69ufl5dn5_eVD3IOldO1DU2mjfQ99w5qRWgrlsnm77tHDTlXqw73WopoevQNs51w9DWToJT4Dgckeu97hBwY-ZYxscnE9CbXSHEtcGYfT9ag0INHLiWxcG6cUoJPSgNElonGqb7ovVlrzXH8GexKZtNWOJU1jeiEUq0TCkoLL5n9TGkFK0zvd97miP60XBm_r3LvHpX6fn6X8_Lpm-x_wLMXphu |
CitedBy_id | crossref_primary_10_18267_j_aip_209 crossref_primary_10_1016_j_bspc_2023_105074 crossref_primary_10_1016_j_ins_2022_01_070 crossref_primary_10_1007_s10462_022_10353_8 crossref_primary_10_3390_electronics13081599 crossref_primary_10_1038_s41746_023_00835_6 |
Cites_doi | 10.1016/j.bspc.2012.04.002 10.1109/CSNT.2015.99 10.1109/TCSVT.2019.2936410 10.1109/JBHI.2015.2458779 10.1109/TASLP.2015.2509780 10.1007/s11517-012-0954-0 10.1109/BIOCAS.2018.8584751 10.1109/CVPR.2019.00874 10.1146/annurev-bioeng-071516-044442 10.1109/TBME.2014.2340991 10.1007/s00421-011-1983-3 10.1109/TCSVT.2017.2654543 10.1109/IMTC.2011.5944249 10.1109/TBME.2016.2580904 10.1155/2018/7804243 10.1109/ACCESS.2017.2701800 10.1109/ICASSP.2017.7952585 10.1109/LSP.2017.2657381 10.1109/MCOM.2012.6122530 10.1109/CVPR.2018.00508 10.1109/TII.2016.2612640 10.1109/ACCESS.2017.2788044 10.1109/TIP.2020.2973812 10.1109/ICASSP.2013.6639345 10.1109/TIM.2019.2947103 10.1007/s10916-008-9186-0 10.1016/j.sigpro.2017.06.001 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app11093923 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_a28d1319639245f8829d893637f2509c 10_3390_app11093923 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c364t-f244a59153cc1ff6983a947f65c7bf35109a4b979663bbae5ffbdd74f63f83f13 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:27:45 EDT 2025 Mon Jun 30 11:12:27 EDT 2025 Tue Jul 01 00:50:46 EDT 2025 Thu Apr 24 22:59:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-f244a59153cc1ff6983a947f65c7bf35109a4b979663bbae5ffbdd74f63f83f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7466-0218 0000-0003-2610-2323 0000-0003-4367-709X |
OpenAccessLink | https://doaj.org/article/a28d1319639245f8829d893637f2509c |
PQID | 2528270883 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a28d1319639245f8829d893637f2509c proquest_journals_2528270883 crossref_citationtrail_10_3390_app11093923 crossref_primary_10_3390_app11093923 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Lee (ref_3) 2017; 13 Lee (ref_18) 2017; 5 McDuff (ref_25) 2014; 61 Song (ref_32) 2020; 69 ref_14 ref_13 ref_12 ref_34 ref_11 ref_33 Wang (ref_2) 2018; 2018 Lazaro (ref_22) 2013; 51 ref_30 Zhang (ref_8) 2019; 30 Nemati (ref_23) 2012; 50 Kachuee (ref_1) 2017; 64 ref_17 Zhang (ref_10) 2017; 28 ref_16 Shen (ref_5) 2017; 19 Chang (ref_9) 2020; 29 Lee (ref_31) 2016; 24 ref_21 Thomas (ref_24) 2016; 20 Ker (ref_6) 2017; 6 Ji (ref_15) 2018; 143 ref_29 Salamon (ref_4) 2017; 24 ref_28 Lee (ref_19) 2019; 9 Akar (ref_20) 2013; 8 Gesche (ref_26) 2012; 112 ref_7 Yoon (ref_27) 2009; 33 |
References_xml | – ident: ref_7 – volume: 8 start-page: 16 year: 2013 ident: ref_20 article-title: Spectral analysis of photoplethysmographic signals: The importance of preprocessing publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2012.04.002 – ident: ref_34 – volume: 9 start-page: 1 year: 2019 ident: ref_19 article-title: Dempster-Shafer fusion based on a deep Boltzmann machine for blood pressure estimation publication-title: Appl. Sci. – ident: ref_28 doi: 10.1109/CSNT.2015.99 – ident: ref_11 – volume: 30 start-page: 3140 year: 2019 ident: ref_8 article-title: Fine-grained age estimation in the wild with attention LSTM networks publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2019.2936410 – volume: 20 start-page: 1291 year: 2016 ident: ref_24 article-title: BioWatch: A noninvasive wrist-based blood pressure monitor that incorporates training techniques for posture and subject variability publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2015.2458779 – volume: 24 start-page: 378 year: 2016 ident: ref_31 article-title: Packet loss concealment based on deep neural networks for digital speech transmission publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2015.2509780 – volume: 51 start-page: 233 year: 2013 ident: ref_22 article-title: Deriving respiration from photoplethysmographic pulse width publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-012-0954-0 – ident: ref_16 doi: 10.1109/BIOCAS.2018.8584751 – ident: ref_17 doi: 10.1109/CVPR.2019.00874 – volume: 19 start-page: 221 year: 2017 ident: ref_5 article-title: Deep learning in medical image analysis publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071516-044442 – volume: 61 start-page: 2948 year: 2014 ident: ref_25 article-title: Remote detection of photoplethysmographic systolic and diastolic peaks using a digital camera publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2340991 – volume: 112 start-page: 309 year: 2012 ident: ref_26 article-title: Continuous blood pressure measurement by using the pulse transit time: Comparison to a cuff-based method publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-011-1983-3 – volume: 28 start-page: 1303 year: 2017 ident: ref_10 article-title: Residual networks of residual networks: Multilevel residual networks publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2017.2654543 – ident: ref_21 doi: 10.1109/IMTC.2011.5944249 – volume: 64 start-page: 859 year: 2017 ident: ref_1 article-title: Cuffless blood pressure estimation algorithm for continuous health-care monitoring publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2580904 – volume: 2018 start-page: 1006 year: 2018 ident: ref_2 article-title: A novel neural network model for blood pressure estimation using photoplethesmography without electrocardiogram publication-title: J. Healthc. Eng. doi: 10.1155/2018/7804243 – volume: 5 start-page: 9962 year: 2017 ident: ref_18 article-title: Deep belief networks ensemble for blood pressure estimation publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2701800 – ident: ref_30 doi: 10.1109/ICASSP.2017.7952585 – ident: ref_33 – volume: 24 start-page: 279 year: 2017 ident: ref_4 article-title: Deep convolutional neural networks and data augmentation for environmental sound classification publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2017.2657381 – volume: 50 start-page: 36 year: 2012 ident: ref_23 article-title: A wireless wearable ECG sensor for long-term applications publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2012.6122530 – ident: ref_12 – ident: ref_14 doi: 10.1109/CVPR.2018.00508 – ident: ref_13 – volume: 13 start-page: 461 year: 2017 ident: ref_3 article-title: Oscillometric blood pressure estimation based on deep learning publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2016.2612640 – volume: 6 start-page: 9375 year: 2017 ident: ref_6 article-title: Deep learning applications in medical image analysis publication-title: IEEE Access. doi: 10.1109/ACCESS.2017.2788044 – volume: 29 start-page: 4683 year: 2020 ident: ref_9 article-title: The devil is in the channels: Mutual-channel loss for fine-grained image classification publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2973812 – ident: ref_29 doi: 10.1109/ICASSP.2013.6639345 – volume: 69 start-page: 4292 year: 2020 ident: ref_32 article-title: Cuff-less deep learning-based blood pressure estimation for smart wristwatches publication-title: IEEE Trans. Inst. Meas. doi: 10.1109/TIM.2019.2947103 – volume: 33 start-page: 261 year: 2009 ident: ref_27 article-title: Non-constrained blood pressure monitoring using ECG and PPG for personal healthcare publication-title: Med. Syst. doi: 10.1007/s10916-008-9186-0 – volume: 143 start-page: 364 year: 2018 ident: ref_15 article-title: One-shot learning based pattern transition map for action early recognition publication-title: Signal Process. doi: 10.1016/j.sigpro.2017.06.001 |
SSID | ssj0000913810 |
Score | 2.2160742 |
Snippet | In this paper, we propose a novel data augmentation technique employing multivariate Gaussian distribution (DA-MGD) for neural network (NN)-based blood... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 3923 |
SubjectTerms | Algorithms Bias Blood pressure data augmentation Deep learning Electrocardiography Estimates multivariate Gaussian distribution Neural networks Normal distribution |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gXOCA2AAxGCiHHQCpYm3aND2hDfYQEjsxabcqSZtdxjb24u9jp9kYAnFt06qqY_uzY38mpK6yhtaYqOJgCLzQMOZJZovGtVJC5jqW2I382ue9QfgyjIYu4bZwZZUbm2gNdTbVmCN_CCIIDmLQCfY4-_BwahSerroRGvvkwAdPg_tcdLrbHAtyXgq_UbTlMYju8VQYKTYBFLAfjsjy9f8yx9bHdE7IsQOHtFlIs0z28kmFHO1QBlZI2Snjgt46xui7U_LZn67zMX2WS0mbq9G76yea0GKeLzxIbaPtGgJjwJa0K1cLbJ6kz0ib6yZeUYCvFLk64Av6RXG41wIfl9EWFrfTopFwntM2WIWi4fGMDDrtt6ee5yYqeJrxcOkZcOYySsDKgYCM4YlgMgljwyMdK8NAPxMZqiSGGIgpJfPIGJVlcWg4M4IZn52T0mQ6yS8IlcqAfw2kZoqFXGQS1nCpAbDBO7kwVXK_-b2pdnTjOPVinELYgbJId2RRJfXt4lnBsvH3shbKabsEqbHthel8lDpNS2UgMt8aFggtIwMRRJIBKOMsNgD3El0ltY2UU6evi_R7d13-f_uKHAZY1WKTMDVSWs5X-TXAkqW6sXvvC9Fz5FE priority: 102 providerName: ProQuest |
Title | Novel Data Augmentation Employing Multivariate Gaussian Distribution for Neural Network-Based Blood Pressure Estimation |
URI | https://www.proquest.com/docview/2528270883 https://doaj.org/article/a28d1319639245f8829d893637f2509c |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTwIxEJ4oXvRgBDWiSHrgoCYbge52t0eQV0wkxkjCbdN2t14QDC__vtMHBKOJF6-b2W7TeXdnvgGoyayulLmoYmgIglBTGghqi8aVlInIVSxMN_LTkA1G4eM4Gu-M-jI1YQ4e2B3cvWgmWcPKCWYKkcaAkGfoYxmNNXpvroz1rfP6TjJlbTBvGOgq15BHMa83_4MNuCauQr-5IIvU_8MQW-_SO4FjHxaSlttOEfbyaQmOdsACS1D0arggNx4r-vYUPoezdT4hHbEUpLV6e_edRFPiJvnii8S22K4xJcaokvTFamHaJknHAOb6WVcEA1diUDpwB0NXFh600btlpG3K2olrIZznpIv2wLU6nsGo1319GAR-lkKgKAuXgUY3LiKO9g1ZozXjCRU8jDWLVCw1Rc3kIpQ8xuyHSinySGuZZXGoGdUJ1Q16DoXpbJpfABFSo2dtCkUlDVmSCaRhQmGohmuyRJfhbnO8qfJA42bexSTFhMPwIt3hRRlqW-IPh6_xO1nb8GlLYkCx7QMUldSLSvqXqJShsuFy6jV1kTYjTDpjtLX08j--cQWHTVP1Yi9pKlBYzlf5NYYtS1mF_aTXr8JBuzt8fqlaef0CbrftWw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7Bcig9VIWCWEpbH6jUIkXsZhInOVQV2126FIgQAolbsJ2YC91d9oX6p_obO5M4W6oiblwTx7Iy43nY830DsKvzljF8UCXJEHiBRfQUlkXjRutYFSZSjEY-TWX_MvhxFV4twe8aC8NllbVNLA11PjR8Rr7vh5QcRLQn8OvozuOuUXy7WrfQqNTiuPh1Tynb5MtRl-T70fcPexff-p7rKuAZlMHUs-TQVJjQTqdFWiuTGFUSRFaGJtIWSUcTFegkojwAtVZFaK3O8yiwEm2Mto007zKsBIxobcBKp5eenS9OdZhlM263KiAgYtLie2gm9aQwBP9xfWWHgP8cQOnVDl_DKxeOioNKf9ZgqRisw8sHJIXrsOa2_0R8chzVn9_AfTqcF7eiq6ZKHMxufjoE00BUHYTpQ1FCe-eUilM0K76r2YThmqLLRL2ux5aggFkwOwitIK3K0b0OedVcdLicXlTQxXEhemSHKojlBlw-y9_ehMZgOCi2QChtyaP7yqDGQMa5ojFSGQoRaU4Z2ybs1b83M47gnPts3GaU6LAssgeyaMLuYvCo4vV4fFiH5bQYwmTc5YPh-CZzeztTfpy3S1NGyWxoKWdJcgoDJUaWAszENGGnlnLmLMQk-6vP20-__gAv-henJ9nJUXr8FlZ9rqkpj4B2oDEdz4p3FBRN9XuniQKun1v5_wAhziMb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4VLSAurQFH4oESFF3M4kdH1DVZbttKaw4UKm3YDtxL2W37KMVf41fx4zjLEUgbr0mE8vKjOflmW8Adm3VdY4TVZIUQZJ5xMRgKBp31hamdspwN_KnkTw-yz6c5-cr8LPtheGyylYnBkVdTRznyPfSnIIDRWcC93wsi_g8GO5ffU94ghTftLbjNBoROa1_3FD4Nnt3MiBev0rT4eGX98dJnDCQOJTZPPFk3Eyu6dTThr2XukCjM-Vl7pT1SPKqTWa1opgArTV17r2tKpV5ib5A30Na9x7cV6g0B37F8GiZ32G8zaLXbVoCEXWXb6QZ3pMcEvzDCIZZAX-ZgmDfho9hLTqm4qCRpHVYqccb8OgWXOEGrEdFMBOvI1r1mydwM5pc15diYOZGHCwuvsVeprFoZgnThyI0-V5TUE5-rTgyixk3booBQ_bGaVuCXGfBOCG0g1FTmJ70yb5Wos-F9aJpYpzW4pA0UtNs-RTO7uRfP4PV8WRcb4Iw1pNtT41Di5ksKkM00jhyFmlNWfgOvG1_b-ki1DlP3LgsKeRhXpS3eNGB3SXxVYPw8W-yPvNpScKw3OHBZHpRxlNemrSoekGpUVibe4pedEUOoUTlydXUrgPbLZfLqCtm5W_Jfv7_1y_hAYl8-fFkdLoFD1Murgm5oG1YnU8X9Q55R3P7IoihgK93Lfe_AGH0Jes |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Data+Augmentation+Employing+Multivariate+Gaussian+Distribution+for+Neural+Network-Based+Blood+Pressure+Estimation&rft.jtitle=Applied+sciences&rft.au=Kwangsub+Song&rft.au=Tae-Jun+Park&rft.au=Joon-Hyuk+Chang&rft.date=2021&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=9&rft.spage=3923&rft_id=info:doi/10.3390%2Fapp11093923&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a28d1319639245f8829d893637f2509c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |