Robust phase retrieval with green noise binary masks

•Coded phase retrieval methods use random masks to generate diffraction patterns.•The non-bandlimited problem of the traditional white noise masks is often overlooked.•Green noise masks have energy concentrated at the mid-frequency region.•Green noise masks outperform the traditional white noise mas...

Full description

Saved in:
Bibliographic Details
Published inOptics and lasers in engineering Vol. 149; p. 106808
Main Authors Ye, Qiuliang, Chan, Yuk-Hee, Somekh, Michael G., Lun, Daniel P.K.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Coded phase retrieval methods use random masks to generate diffraction patterns.•The non-bandlimited problem of the traditional white noise masks is often overlooked.•Green noise masks have energy concentrated at the mid-frequency region.•Green noise masks outperform the traditional white noise masks in phase retrieval. Phase retrieval with pre-defined optical masks can provide extra constraints and thus achieve improved performance. Recent progress in optimization theory demonstrates the superiority of random masks in enhancing the accuracy of phase retrieval algorithms. However, traditional approaches only focus on the randomness of the masks but ignore their non-bandlimited nature. When using these masks for phase retrieval, the intensity measurements contain many significant high-frequency components that the phase retrieval algorithm cannot take care of and thus leads to degraded performance. Based on the concept of digital halftoning, this paper proposes a green noise binary masking scheme that can significantly reduce the high-frequency contents of the masks while fulfilling the randomness requirement. The resulting intensity measurements will contain data concentrated in the mid-frequency band and around zero frequency areas which can be fully utilized in the phase retrieval optimization process. Our experimental results show that the proposed green noise binary masking scheme consistently outperforms the traditional ones when using in binary coded diffraction pattern phase retrieval systems.
AbstractList •Coded phase retrieval methods use random masks to generate diffraction patterns.•The non-bandlimited problem of the traditional white noise masks is often overlooked.•Green noise masks have energy concentrated at the mid-frequency region.•Green noise masks outperform the traditional white noise masks in phase retrieval. Phase retrieval with pre-defined optical masks can provide extra constraints and thus achieve improved performance. Recent progress in optimization theory demonstrates the superiority of random masks in enhancing the accuracy of phase retrieval algorithms. However, traditional approaches only focus on the randomness of the masks but ignore their non-bandlimited nature. When using these masks for phase retrieval, the intensity measurements contain many significant high-frequency components that the phase retrieval algorithm cannot take care of and thus leads to degraded performance. Based on the concept of digital halftoning, this paper proposes a green noise binary masking scheme that can significantly reduce the high-frequency contents of the masks while fulfilling the randomness requirement. The resulting intensity measurements will contain data concentrated in the mid-frequency band and around zero frequency areas which can be fully utilized in the phase retrieval optimization process. Our experimental results show that the proposed green noise binary masking scheme consistently outperforms the traditional ones when using in binary coded diffraction pattern phase retrieval systems.
ArticleNumber 106808
Author Ye, Qiuliang
Lun, Daniel P.K.
Chan, Yuk-Hee
Somekh, Michael G.
Author_xml – sequence: 1
  givenname: Qiuliang
  surname: Ye
  fullname: Ye, Qiuliang
  organization: Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, People’s Republic of China
– sequence: 2
  givenname: Yuk-Hee
  surname: Chan
  fullname: Chan, Yuk-Hee
  organization: Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, People’s Republic of China
– sequence: 3
  givenname: Michael G.
  surname: Somekh
  fullname: Somekh, Michael G.
  organization: Center for Nanophotonics, Shenzhen University, Shenzhen PRC 518060, People’s Republic of China
– sequence: 4
  givenname: Daniel P.K.
  surname: Lun
  fullname: Lun, Daniel P.K.
  email: enpklun@polyu.edu.hk
  organization: Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, People’s Republic of China
BookMark eNqFj11LwzAUhoNMsJv-BvsHWnOSNs0ux_ALBoLodUjT0y21S0tSJ_57MyreenXgPTwv77MkCzc4JOQWaA4UxF2XD-PU64BunzPKIKZCUnlBEpAVzyinbEESCgXPJAhxRZYhdDSSBUBCiteh_gxTOh5iQ-px8hZPuk-_7HRI9x7RpW6w8VVbp_13etThI1yTy1b3AW9-74q8P9y_bZ-y3cvj83azywwXxZRhjYZLxqA1VNdGgqRlyZEbyRpWlGCwbEwVRzGxrivNdNU2skRoC20asUa-ItXca_wQgsdWjd4e4wwFVJ3lVaf-5NVZXs3ykdzMJMZ5J4teBWPRGWysRzOpZrD_dvwA4AJplg
CitedBy_id crossref_primary_10_1016_j_optlaseng_2022_107233
crossref_primary_10_1109_TSP_2024_3397001
crossref_primary_10_1016_j_optlastec_2023_109861
crossref_primary_10_1364_OE_496418
crossref_primary_10_1364_OE_464086
crossref_primary_10_1364_OE_489492
Cites_doi 10.1109/TIP.2010.2044961
10.1016/S1076-5670(07)00003-1
10.1016/j.optlaseng.2017.09.014
10.1364/OL.42.001448
10.1364/AO.21.002758
10.1364/AO.49.001826
10.1038/22498
10.1016/j.optlaseng.2019.03.022
10.1109/MSP.2014.2352673
10.1016/j.optlaseng.2018.01.004
10.1117/1.1758728
10.1109/TIT.2015.2399924
10.1364/OE.26.021929
10.1016/j.acha.2014.09.004
10.1364/OL.39.006466
10.1364/OE.23.028691
10.1364/AO.53.005307
10.1561/2200000016
10.1137/16M1103270
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.optlaseng.2021.106808
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-0302
ExternalDocumentID 10_1016_j_optlaseng_2021_106808
S0143816621002785
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
VOH
WUQ
XPP
ZMT
~02
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c364t-ebec38221fc0abc8180553e3c82d2451ce5dc7816269b7a2a7fd85e1f4acd69e3
IEDL.DBID AIKHN
ISSN 0143-8166
IngestDate Thu Sep 26 16:01:56 EDT 2024
Fri Feb 23 02:47:32 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Phase retrieval
Green noise mask
Coded diffraction patterns
Non-bandlimited noise
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-ebec38221fc0abc8180553e3c82d2451ce5dc7816269b7a2a7fd85e1f4acd69e3
OpenAccessLink http://ira.lib.polyu.edu.hk/bitstream/10397/95727/1/Green_Noise_Mask.pdf
ParticipantIDs crossref_primary_10_1016_j_optlaseng_2021_106808
elsevier_sciencedirect_doi_10_1016_j_optlaseng_2021_106808
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationTitle Optics and lasers in engineering
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Horisaki, Egami, Tanida (bib0013) 2015; 23 22
Horisaki, Ogura, Aino, Tanida (bib0012) 2014; 39 22
Chang, Lou, Duan, Marchesini (bib0016) 2018; 11
Guo, Shen, Tan, Bao, Liu, Liu (bib0007) 2018; 101
Pan, Liu, Zhu (bib0019) 2018; 26
Rodenburg (bib0004) 2008; 150
Chan, Cheung (bib0021) 2004; 13
Fienup (bib0002) 1982; 21
Boyd, Parikh, Chu, Peleato, Eckstein (bib0017) 2011; 3
Ding, Ren, Gong, Fang, Lu (bib0018) 2014; 53 24
Miao, Charalambous, Kirz, Sayre (bib0003) 1999; 400
Ulichney (bib0020) 1987
Shen, Guo, Tan, Liu, Liu (bib0006) 2018; 105
Falldorf, Agour, Kopylow, Bergmann (bib0011) 2010; 49 10
Gerchberg (bib0001) 1972; 35
Fung, Chan (bib0015) 2010; 19
Candes, Li, Soltanolkotabi (bib0010) 2015; 61
Shechtman, Eldar, Cohen, Chapman, Miao, Segev (bib0008) 2015; 32
Candes, Li, Soltanolkotabi (bib0009) 2015; 39
Xu, Ye, Hoorfar, Meng (bib0005) 2019; 121
Zheng, Zhou, Kuang, Zhao, Yaqoob, So (bib0014) 2017; 42 7
Candes (10.1016/j.optlaseng.2021.106808_bib0010) 2015; 61
Falldorf (10.1016/j.optlaseng.2021.106808_bib0011) 2010; 49 10
Xu (10.1016/j.optlaseng.2021.106808_bib0005) 2019; 121
Fienup (10.1016/j.optlaseng.2021.106808_bib0002) 1982; 21
Shen (10.1016/j.optlaseng.2021.106808_bib0006) 2018; 105
Pan (10.1016/j.optlaseng.2021.106808_bib0019) 2018; 26
Fung (10.1016/j.optlaseng.2021.106808_bib0015) 2010; 19
Boyd (10.1016/j.optlaseng.2021.106808_bib0017) 2011; 3
Chan (10.1016/j.optlaseng.2021.106808_bib0021) 2004; 13
Horisaki (10.1016/j.optlaseng.2021.106808_bib0013) 2015; 23 22
Zheng (10.1016/j.optlaseng.2021.106808_bib0014) 2017; 42 7
Ding (10.1016/j.optlaseng.2021.106808_bib0018) 2014; 53 24
Miao (10.1016/j.optlaseng.2021.106808_bib0003) 1999; 400
Shechtman (10.1016/j.optlaseng.2021.106808_bib0008) 2015; 32
Chang (10.1016/j.optlaseng.2021.106808_bib0016) 2018; 11
Gerchberg (10.1016/j.optlaseng.2021.106808_bib0001) 1972; 35
Rodenburg (10.1016/j.optlaseng.2021.106808_bib0004) 2008; 150
Candes (10.1016/j.optlaseng.2021.106808_bib0009) 2015; 39
Ulichney (10.1016/j.optlaseng.2021.106808_bib0020) 1987
Guo (10.1016/j.optlaseng.2021.106808_bib0007) 2018; 101
Horisaki (10.1016/j.optlaseng.2021.106808_bib0012) 2014; 39 22
References_xml – volume: 150
  start-page: 87
  year: 2008
  end-page: 184
  ident: bib0004
  article-title: Ptychography and related diffractive imaging methods
  publication-title: Advances in Imaging and Electron Physics
  contributor:
    fullname: Rodenburg
– volume: 35
  start-page: 237
  year: 1972
  end-page: 246
  ident: bib0001
  article-title: A practical algorithm for the determination of phase from image and diffraction plane pictures
  publication-title: Optik (Stuttg)
  contributor:
    fullname: Gerchberg
– volume: 53 24
  start-page: 5307
  year: 2014
  end-page: 5311
  ident: bib0018
  article-title: Microscopic lithography with pixelate diffraction of a digital micro-mirror device for micro-lens fabrication
  publication-title: Appl Opt
  contributor:
    fullname: Lu
– volume: 121
  start-page: 96
  year: 2019
  end-page: 103
  ident: bib0005
  article-title: Extrapolative phase retrieval based on a hybrid of phasecut and alternating projection techniques
  publication-title: Opt Lasers Eng
  contributor:
    fullname: Meng
– volume: 400
  start-page: 342
  year: 1999
  end-page: 344
  ident: bib0003
  article-title: Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens
  publication-title: Nature
  contributor:
    fullname: Sayre
– volume: 21
  start-page: 2758
  year: 1982
  end-page: 2769
  ident: bib0002
  article-title: Phase retrieval algorithms: a comparison
  publication-title: Appl Opt
  contributor:
    fullname: Fienup
– volume: 105
  start-page: 54
  year: 2018
  end-page: 59
  ident: bib0006
  article-title: Complex amplitude reconstruction by iterative amplitude-phase retrieval algorithm with reference
  publication-title: Opt Lasers Eng
  contributor:
    fullname: Liu
– volume: 39
  start-page: 277
  year: 2015
  end-page: 299
  ident: bib0009
  article-title: Phase retrieval from coded diffraction patterns
  publication-title: Appl Comput Harmon Anal
  contributor:
    fullname: Soltanolkotabi
– volume: 39 22
  start-page: 6466
  year: 2014
  end-page: 6469
  ident: bib0012
  article-title: Single-shot phase imaging with a coded aperture
  publication-title: Opt Lett
  contributor:
    fullname: Tanida
– volume: 13
  start-page: 639
  year: 2004
  end-page: 645
  ident: bib0021
  article-title: Feature-preserving multiscale error diffusion for digital halftoning
  publication-title: J Electronic Imaging
  contributor:
    fullname: Cheung
– volume: 23 22
  start-page: 28691
  year: 2015
  end-page: 28697
  ident: bib0013
  article-title: Experimental demonstration of single-shot phase imaging with a coded aperture
  publication-title: Opt Express
  contributor:
    fullname: Tanida
– volume: 11
  start-page: 24
  year: 2018
  end-page: 55
  ident: bib0016
  article-title: Total variation–based phase retrieval for poisson noise removal
  publication-title: SIAM J Imaging Sci
  contributor:
    fullname: Marchesini
– volume: 32
  start-page: 87
  year: 2015
  end-page: 109
  ident: bib0008
  article-title: Phase retrieval with application to optical imaging: a contemporary overview
  publication-title: IEEE Signal Process Mag
  contributor:
    fullname: Segev
– volume: 42 7
  start-page: 1448
  year: 2017
  end-page: 1451
  ident: bib0014
  article-title: Digital micromirror device-based common-path quantitative phase imaging
  publication-title: Opt Lett
  contributor:
    fullname: So
– year: 1987
  ident: bib0020
  article-title: Digital halftoning
  contributor:
    fullname: Ulichney
– volume: 61
  start-page: 1985
  year: 2015
  end-page: 2007
  ident: bib0010
  article-title: Phase retrieval via wirtinger flow: theory and algorithms
  publication-title: IEEE Trans Inf Theory
  contributor:
    fullname: Soltanolkotabi
– volume: 26
  start-page: 21929
  year: 2018
  ident: bib0019
  article-title: Coherent amplitude modulation imaging based on partially saturated diffraction pattern
  publication-title: Opt Express
  contributor:
    fullname: Zhu
– volume: 49 10
  start-page: 1826
  year: 2010
  end-page: 1830
  ident: bib0011
  article-title: Phase retrieval by means of a spatial light modulator in the fourier domain of an imaging system
  publication-title: Appl Opt
  contributor:
    fullname: Bergmann
– volume: 101
  start-page: 16
  year: 2018
  end-page: 22
  ident: bib0007
  article-title: A robust multi-image phase retrieval
  publication-title: Opt Lasers Eng
  contributor:
    fullname: Liu
– volume: 19
  start-page: 1808
  year: 2010
  end-page: 1823
  ident: bib0015
  article-title: Green noise digital halftoning with multiscale error diffusion
  publication-title: IEEE Trans Image Process
  contributor:
    fullname: Chan
– volume: 3
  start-page: 1
  year: 2011
  end-page: 122
  ident: bib0017
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found Trends Mach Learn
  contributor:
    fullname: Eckstein
– volume: 35
  start-page: 237
  year: 1972
  ident: 10.1016/j.optlaseng.2021.106808_bib0001
  article-title: A practical algorithm for the determination of phase from image and diffraction plane pictures
  publication-title: Optik (Stuttg)
  contributor:
    fullname: Gerchberg
– volume: 19
  start-page: 1808
  issue: 7
  year: 2010
  ident: 10.1016/j.optlaseng.2021.106808_bib0015
  article-title: Green noise digital halftoning with multiscale error diffusion
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2010.2044961
  contributor:
    fullname: Fung
– volume: 150
  start-page: 87
  year: 2008
  ident: 10.1016/j.optlaseng.2021.106808_bib0004
  article-title: Ptychography and related diffractive imaging methods
  publication-title: Advances in Imaging and Electron Physics
  doi: 10.1016/S1076-5670(07)00003-1
  contributor:
    fullname: Rodenburg
– volume: 101
  start-page: 16
  year: 2018
  ident: 10.1016/j.optlaseng.2021.106808_bib0007
  article-title: A robust multi-image phase retrieval
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2017.09.014
  contributor:
    fullname: Guo
– volume: 42 7
  start-page: 1448
  year: 2017
  ident: 10.1016/j.optlaseng.2021.106808_bib0014
  article-title: Digital micromirror device-based common-path quantitative phase imaging
  publication-title: Opt Lett
  doi: 10.1364/OL.42.001448
  contributor:
    fullname: Zheng
– volume: 21
  start-page: 2758
  issue: 15
  year: 1982
  ident: 10.1016/j.optlaseng.2021.106808_bib0002
  article-title: Phase retrieval algorithms: a comparison
  publication-title: Appl Opt
  doi: 10.1364/AO.21.002758
  contributor:
    fullname: Fienup
– year: 1987
  ident: 10.1016/j.optlaseng.2021.106808_bib0020
  contributor:
    fullname: Ulichney
– volume: 49 10
  start-page: 1826
  year: 2010
  ident: 10.1016/j.optlaseng.2021.106808_bib0011
  article-title: Phase retrieval by means of a spatial light modulator in the fourier domain of an imaging system
  publication-title: Appl Opt
  doi: 10.1364/AO.49.001826
  contributor:
    fullname: Falldorf
– volume: 400
  start-page: 342
  year: 1999
  ident: 10.1016/j.optlaseng.2021.106808_bib0003
  article-title: Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens
  publication-title: Nature
  doi: 10.1038/22498
  contributor:
    fullname: Miao
– volume: 121
  start-page: 96
  year: 2019
  ident: 10.1016/j.optlaseng.2021.106808_bib0005
  article-title: Extrapolative phase retrieval based on a hybrid of phasecut and alternating projection techniques
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2019.03.022
  contributor:
    fullname: Xu
– volume: 32
  start-page: 87
  year: 2015
  ident: 10.1016/j.optlaseng.2021.106808_bib0008
  article-title: Phase retrieval with application to optical imaging: a contemporary overview
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2014.2352673
  contributor:
    fullname: Shechtman
– volume: 105
  start-page: 54
  year: 2018
  ident: 10.1016/j.optlaseng.2021.106808_bib0006
  article-title: Complex amplitude reconstruction by iterative amplitude-phase retrieval algorithm with reference
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2018.01.004
  contributor:
    fullname: Shen
– volume: 13
  start-page: 639
  year: 2004
  ident: 10.1016/j.optlaseng.2021.106808_bib0021
  article-title: Feature-preserving multiscale error diffusion for digital halftoning
  publication-title: J Electronic Imaging
  doi: 10.1117/1.1758728
  contributor:
    fullname: Chan
– volume: 61
  start-page: 1985
  issue: 4
  year: 2015
  ident: 10.1016/j.optlaseng.2021.106808_bib0010
  article-title: Phase retrieval via wirtinger flow: theory and algorithms
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2015.2399924
  contributor:
    fullname: Candes
– volume: 26
  start-page: 21929
  issue: 17
  year: 2018
  ident: 10.1016/j.optlaseng.2021.106808_bib0019
  article-title: Coherent amplitude modulation imaging based on partially saturated diffraction pattern
  publication-title: Opt Express
  doi: 10.1364/OE.26.021929
  contributor:
    fullname: Pan
– volume: 39
  start-page: 277
  issue: 2
  year: 2015
  ident: 10.1016/j.optlaseng.2021.106808_bib0009
  article-title: Phase retrieval from coded diffraction patterns
  publication-title: Appl Comput Harmon Anal
  doi: 10.1016/j.acha.2014.09.004
  contributor:
    fullname: Candes
– volume: 39 22
  start-page: 6466
  year: 2014
  ident: 10.1016/j.optlaseng.2021.106808_bib0012
  article-title: Single-shot phase imaging with a coded aperture
  publication-title: Opt Lett
  doi: 10.1364/OL.39.006466
  contributor:
    fullname: Horisaki
– volume: 23 22
  start-page: 28691
  year: 2015
  ident: 10.1016/j.optlaseng.2021.106808_bib0013
  article-title: Experimental demonstration of single-shot phase imaging with a coded aperture
  publication-title: Opt Express
  doi: 10.1364/OE.23.028691
  contributor:
    fullname: Horisaki
– volume: 53 24
  start-page: 5307
  year: 2014
  ident: 10.1016/j.optlaseng.2021.106808_bib0018
  article-title: Microscopic lithography with pixelate diffraction of a digital micro-mirror device for micro-lens fabrication
  publication-title: Appl Opt
  doi: 10.1364/AO.53.005307
  contributor:
    fullname: Ding
– volume: 3
  start-page: 1
  year: 2011
  ident: 10.1016/j.optlaseng.2021.106808_bib0017
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000016
  contributor:
    fullname: Boyd
– volume: 11
  start-page: 24
  issue: 1
  year: 2018
  ident: 10.1016/j.optlaseng.2021.106808_bib0016
  article-title: Total variation–based phase retrieval for poisson noise removal
  publication-title: SIAM J Imaging Sci
  doi: 10.1137/16M1103270
  contributor:
    fullname: Chang
SSID ssj0016411
Score 2.4174333
Snippet •Coded phase retrieval methods use random masks to generate diffraction patterns.•The non-bandlimited problem of the traditional white noise masks is often...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 106808
SubjectTerms Coded diffraction patterns
Green noise mask
Non-bandlimited noise
Phase retrieval
Title Robust phase retrieval with green noise binary masks
URI https://dx.doi.org/10.1016/j.optlaseng.2021.106808
Volume 149
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB76QNCDaFWsj5KD19hkH2nirRRLtdhDsdhb2N1saxWT0KRXf7u7m6S0IHjwFNgw7Obbzcwk880MwB32RSCpdGzkC24TwajNfMRt1FtETsRYEJkCpi8TbzQjz3M6r8GgyoXRtMpS9xc63WjrcqRbotlNV6uupiWZqBdyTfiM1qGpzBEhDWj2n8ajyTaY4BG3aEtIsK0F9mheSZorN1XGS_WtiFw1qntR_G6kdgzP8ASOS4_R6heLOoWajFtwtFNHsAUHhscpsjMg04RvstxK39Vs1tq0y1JnydK_W62l5thYcbJSt7jJw7W-WPaZncNs-Pg6GNllYwRbYI_ktgYeK8vuLoTDuNDp2pRiiYWPIkSoKySNRE89KvIC3mOIKeB9Kt0FYSLyAokvoBEnsbwEiwTY41xtCReYEBH5-hWnAktXBhJFThucCokwLepfhBUx7CPcghdq8MICvDY8VIiFe1sZKi39l_DVf4Sv4RDp7ARDqr6BRr7eyFvlM-S8A_X7b7dTngx9HU_fxj-gsMOh
link.rule.ids 315,786,790,4521,24144,27955,27956,45618,45712
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH9BjFEPRlEjfu7gtbL1Y2zeDJGgAgcDCbel7YqicSxsXP3bbbuNQGLiwWvXl62_du-9tr_3HsAtCWSomHIRDqRAVHKGeIAFwu1p7Mach7FNYDoY-r0xfZ6wSQ06VSyMoVWWur_Q6VZbly2tEs1WOpu1DC3J3nphz16fsS3YNt6A4XXdfa94Hno74BVFCSlBpvsGyWue5tpJVcmb3iliT7eaShS_m6g1s9M9hIPSX3Qeik86gppKGrC_lkWwATuWxSmzY6Cvc7HMcid9129zFrZYll5Jjjlsdd4Mw8ZJ5jP9SNgoXOeLZ5_ZCYy7j6NOD5VlEZAkPs2RgZ1ou-5NpcuFNMHajBFFZIBjTJknFYtlWw8V-6Foc8w17AFT3pRyGfuhIqdQT-aJOgOHhsQXQk-IkIRSGQfmB2eSKE-FCsduE9wKiSgtsl9EFS3sI1qBFxnwogK8JtxXiEUbExlpHf2X8Pl_hG9gtzca9KP-0_DlAvawiVOw9OpLqOeLpbrS3kMuru3q-AE_SMLT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+phase+retrieval+with+green+noise+binary+masks&rft.jtitle=Optics+and+lasers+in+engineering&rft.au=Ye%2C+Qiuliang&rft.au=Chan%2C+Yuk-Hee&rft.au=Somekh%2C+Michael+G.&rft.au=Lun%2C+Daniel+P.K.&rft.date=2022-02-01&rft.issn=0143-8166&rft.volume=149&rft.spage=106808&rft_id=info:doi/10.1016%2Fj.optlaseng.2021.106808&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optlaseng_2021_106808
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-8166&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-8166&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-8166&client=summon