A Method of Defect Depth Recognition in Active Infrared Thermography Based on GRU Networks

Active infrared thermography (AIRT) is a significant defect detection and evaluation method in the field of non-destructive testing, on account of the fact that it promptly provides visual information and that the results could be used for quantitative research of defects. At present, the quantitati...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 11; no. 14; p. 6387
Main Authors Xu, Li, Hu, Jianzhong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Active infrared thermography (AIRT) is a significant defect detection and evaluation method in the field of non-destructive testing, on account of the fact that it promptly provides visual information and that the results could be used for quantitative research of defects. At present, the quantitative evaluation of defects is an urgent problem to be solved in this field. In this work, a defect depth recognition method based on gated recurrent unit (GRU) networks is proposed to solve the problem of insufficient accuracy in defect depth recognition. AIRT is applied to obtain the raw thermal sequences of the surface temperature field distribution of the defect specimen. Before training the GRU model, principal component analysis (PCA) is used to reduce the dimension and to eliminate the correlation of the raw datasets. Then, the GRU model is employed to automatically recognize the depth of the defect. The defect depth recognition performance of the proposed method is evaluated through an experiment on polymethyl methacrylate (PMMA) with flat bottom holes. The results indicate that the PCA-processed datasets outperform the raw temperature datasets in model learning when assessing defect depth characteristics. A comparison with the BP network shows that the proposed method has better performance in defect depth recognition.
AbstractList Active infrared thermography (AIRT) is a significant defect detection and evaluation method in the field of non-destructive testing, on account of the fact that it promptly provides visual information and that the results could be used for quantitative research of defects. At present, the quantitative evaluation of defects is an urgent problem to be solved in this field. In this work, a defect depth recognition method based on gated recurrent unit (GRU) networks is proposed to solve the problem of insufficient accuracy in defect depth recognition. AIRT is applied to obtain the raw thermal sequences of the surface temperature field distribution of the defect specimen. Before training the GRU model, principal component analysis (PCA) is used to reduce the dimension and to eliminate the correlation of the raw datasets. Then, the GRU model is employed to automatically recognize the depth of the defect. The defect depth recognition performance of the proposed method is evaluated through an experiment on polymethyl methacrylate (PMMA) with flat bottom holes. The results indicate that the PCA-processed datasets outperform the raw temperature datasets in model learning when assessing defect depth characteristics. A comparison with the BP network shows that the proposed method has better performance in defect depth recognition.
Author Xu, Li
Hu, Jianzhong
Author_xml – sequence: 1
  givenname: Li
  surname: Xu
  fullname: Xu, Li
– sequence: 2
  givenname: Jianzhong
  surname: Hu
  fullname: Hu, Jianzhong
BookMark eNptUU1LAzEQDVLBWnvyDwQ8SjXZZL-OtWotVIXSXryE2exsN7XdrNlU6b93axVEnMPM8HjzGN47JZ3KVkjIOWdXQqTsGuqacy4jkcRHpBuwOBoIyePOr_2E9JtmxdpKuUg465KXIX1EX9qc2oLeYoHat6P2JZ2htsvKeGMraio61N68I51UhQOHOZ2X6DZ26aAud_QGmhZqiePZgj6h_7DutTkjxwWsG-x_zx5Z3N_NRw-D6fN4MhpOB1pE0g8QYsgziSzIZIYCQ2gbgpChDoFJzWNIhEyYDlNWRBBIlia60FEmCowyHYoemRx0cwsrVTuzAbdTFoz6AqxbKnDe6DUqCDIBURpHGmKZBDKFUPIkD2KeaS6ZaLUuDlq1s29bbLxa2a2r2vdVEIZSsmBvcI_wA0s72zQOC6WNh71T3oFZK87UPhH1K5H25vLPzc-n_7E_AbGvjNM
CitedBy_id crossref_primary_10_3390_a14080251
crossref_primary_10_3390_a17100439
crossref_primary_10_1080_10589759_2025_2457593
crossref_primary_10_3390_s25061847
crossref_primary_10_1109_TIM_2022_3152243
crossref_primary_10_32604_csse_2023_036810
crossref_primary_10_3390_machines13020108
crossref_primary_10_1590_0001_3765202220211577
crossref_primary_10_1109_TII_2024_3413330
crossref_primary_10_1109_TIM_2023_3265110
Cites_doi 10.1109/JSEN.2020.3040696
10.1109/TIE.2020.2989711
10.1016/j.infrared.2004.03.012
10.1016/j.infrared.2019.103032
10.3390/s140712305
10.1016/j.knosys.2011.04.019
10.1016/j.ndteint.2019.102147
10.1016/j.ndteint.2012.02.008
10.1016/S0963-8695(01)00041-X
10.1109/TGRS.2017.2776357
10.1016/j.infrared.2019.02.006
10.1109/JSEN.2014.2301168
10.1109/ACCESS.2020.3018116
10.20944/preprints202008.0565.v1
10.1016/S0263-8223(02)00161-7
10.1109/TPAMI.2017.2695539
10.1117/1.1566969
10.1016/j.polymertesting.2015.04.013
10.1051/epjap/2013120537
10.1016/B978-1-78242-171-9.00004-8
10.1016/j.infrared.2019.03.001
10.1007/s40815-015-0044-1
10.3390/math8020214
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app11146387
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_a2b3a6976ca748249a5418d271bc1403
10_3390_app11146387
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c364t-ea7adb4e02b4be3e5ae3eea345c5a04c17a83480c590f6a24098cfc6b3fe6bc53
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:29:54 EDT 2025
Mon Jun 30 07:36:05 EDT 2025
Tue Jul 01 00:50:57 EDT 2025
Thu Apr 24 22:54:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-ea7adb4e02b4be3e5ae3eea345c5a04c17a83480c590f6a24098cfc6b3fe6bc53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/a2b3a6976ca748249a5418d271bc1403
PQID 2554402146
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_a2b3a6976ca748249a5418d271bc1403
proquest_journals_2554402146
crossref_citationtrail_10_3390_app11146387
crossref_primary_10_3390_app11146387
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Usamentiaga (ref_20) 2014; 14
Zhang (ref_18) 2018; 40
Palano (ref_5) 2019; 38
Darabi (ref_15) 2002; 35
Marinetti (ref_7) 2004; 46
Zeng (ref_10) 2012; 48
Dey (ref_23) 2017; 2017
Pei (ref_13) 2018; 56
Hu (ref_17) 2019; 102
Rajic (ref_9) 2002; 58
ref_19
Tantrigoda (ref_1) 2019; 98
Vavilov (ref_3) 2015; 44
ref_16
Qu (ref_25) 2015; 17
Zhang (ref_11) 2020; 21
Cheng (ref_8) 2014; 14
Duan (ref_14) 2019; 107
Shepard (ref_6) 2003; 42
Wang (ref_2) 2020; 8
Ahmad (ref_4) 2019; 98
ref_22
Chen (ref_21) 2013; 62
Kanai (ref_24) 2017; 2017
Chen (ref_12) 2020; 68
Guo (ref_26) 2011; 24
References_xml – volume: 2017
  start-page: 436
  year: 2017
  ident: ref_24
  article-title: Preventing gradient explosions in gated recurrent units
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 21
  start-page: 6476
  year: 2020
  ident: ref_11
  article-title: Semi-Supervised Bearing Fault Diagnosis and Classification using Variational Autoencoder-Based Deep Generative Models
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3040696
– volume: 68
  start-page: 5057
  year: 2020
  ident: ref_12
  article-title: Adaptive Neural Network-Based Trajectory Tracking Control for a Nonholonomic Wheeled Mobile Robot with Velocity Constraints
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.2989711
– volume: 46
  start-page: 85
  year: 2004
  ident: ref_7
  article-title: Statistical analysis of IR thermographic sequences by PCA
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2004.03.012
– volume: 102
  start-page: 103032
  year: 2019
  ident: ref_17
  article-title: LSTM-RNN-based defect classification in honeycomb structures using infrared thermography
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2019.103032
– volume: 14
  start-page: 12305
  year: 2014
  ident: ref_20
  article-title: Infrared thermography for temperature measurement and non-destructive testing
  publication-title: Sensors
  doi: 10.3390/s140712305
– volume: 24
  start-page: 1048
  year: 2011
  ident: ref_26
  article-title: A case study on a hybrid wind speed forecasting method using BP neural network
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2011.04.019
– volume: 107
  start-page: 102147
  year: 2019
  ident: ref_14
  article-title: Automated defect classification in infrared thermography based on a neural network
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2019.102147
– volume: 48
  start-page: 39
  year: 2012
  ident: ref_10
  article-title: Depth prediction of non-air interface defect using pulsed thermography
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2012.02.008
– volume: 2017
  start-page: 1597
  year: 2017
  ident: ref_23
  article-title: Gate-variants of Gated Recurrent Unit (GRU) neural networks
  publication-title: Midwest Symp. Circuits Syst.
– volume: 35
  start-page: 165
  year: 2002
  ident: ref_15
  article-title: Neural network based defect detection and depth estimation in TNDE
  publication-title: NDT E Int.
  doi: 10.1016/S0963-8695(01)00041-X
– volume: 56
  start-page: 2196
  year: 2018
  ident: ref_13
  article-title: SAR automatic target recognition based on multiview deep learning framework
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2776357
– volume: 98
  start-page: 45
  year: 2019
  ident: ref_4
  article-title: An independent component analysis based approach for frequency modulated thermal wave imaging for subsurface defect detection in steel sample
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2019.02.006
– volume: 14
  start-page: 1655
  year: 2014
  ident: ref_8
  article-title: Impact damage detection and identification using eddy current pulsed thermography through integration of PCA and ICA
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2014.2301168
– volume: 8
  start-page: 153385
  year: 2020
  ident: ref_2
  article-title: Defect Depth Determination in Laser Infrared Thermography Based on LSTM-RNN
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3018116
– ident: ref_16
  doi: 10.20944/preprints202008.0565.v1
– volume: 58
  start-page: 521
  year: 2002
  ident: ref_9
  article-title: Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures
  publication-title: Compos. Struct.
  doi: 10.1016/S0263-8223(02)00161-7
– volume: 40
  start-page: 849
  year: 2018
  ident: ref_18
  article-title: Drawing and Recognizing Chinese Characters with Recurrent Neural Network
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2695539
– volume: 42
  start-page: 1337
  year: 2003
  ident: ref_6
  article-title: Reconstruction and enhancement of active thermographic image sequences
  publication-title: Opt. Eng.
  doi: 10.1117/1.1566969
– volume: 38
  start-page: 1
  year: 2019
  ident: ref_5
  article-title: Pulsed Phase Thermography Approach for the Characterization of Delaminations in CFRP and Comparison to Phased Array Ultrasonic Testing
  publication-title: J. Nondestruct. Eval.
– volume: 44
  start-page: 224
  year: 2015
  ident: ref_3
  article-title: A novel approach for one-sided thermal nondestructive testing of composites by using infrared thermography
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2015.04.013
– volume: 62
  start-page: 1
  year: 2013
  ident: ref_21
  article-title: Liquid ingress recognition in honeycomb structure by pulsed thermography
  publication-title: EPJ Appl. Phys.
  doi: 10.1051/epjap/2013120537
– ident: ref_22
  doi: 10.1016/B978-1-78242-171-9.00004-8
– volume: 98
  start-page: 89
  year: 2019
  ident: ref_1
  article-title: Infrared thermography as a non-destructive testing method for adhesively bonded textile structures
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2019.03.001
– volume: 17
  start-page: 471
  year: 2015
  ident: ref_25
  article-title: Kernel-based Fuzzy-rough Nearest-neighbour Classification for Mammographic Risk Analysis
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-015-0044-1
– ident: ref_19
  doi: 10.3390/math8020214
SSID ssj0000913810
Score 2.2583659
Snippet Active infrared thermography (AIRT) is a significant defect detection and evaluation method in the field of non-destructive testing, on account of the fact...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 6387
SubjectTerms active infrared thermography
Conductivity
Datasets
Deep learning
defect depth recognition
Defects
gated recurrent unit
Heat conductivity
Neural networks
Polymethyl methacrylate
principal component analysis
Principal components analysis
Radiation
Thermography
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH9i5bIdEB9DdCvIBw4MKVoS24lzQi0fA6RVqKIS2iV6dhxAYklpu_-fZ9ctlTbtkkixlcN79vvw-_n3AI65zVOe2zTSRsSRKCoTFRZlZIQ0tpa6qq1n-xxm12Nx-yAfwoHbLMAqlzbRG-qqNe6M_DuFvkL4NtRnk9fIdY1y1dXQQuMDbJIJVqoDm4PL4d1odcriWC9VEi8u5nHK711dOHE3cbkD0a25Is_Y_5dB9l7mahu2QnjI-gt97sCGbXbh0xpp4C7shO04YyeBM_rbHvzqs5--FzRra3ZhHUaDXpP5ExstEUJtw54b1vf2jd009dRBzxktk-nvQFvNBuTS6A8N-zEas-ECID77DOOry_vz6yi0TYgMz8Q8sphjpYWNUy205VYiPSxykr7EWJgkR8WFio0s4jpDcumFMrXJNCe9aCP5PnSatrEHwCiaKhQqHVd5KqwpNFZYoKaUEXNXP-3C6VKCpQmc4q61xUtJuYUTd7km7i4cryZPFlQa_542cKpYTXH81_5DO30sw3YqMdUcMwqlDOZCUQqJUiSqSvNEG8dA2IXeUpFl2JSz8n0Jffn_8Ff4mDroikfl9qAzn_6xhxR7zPVRWGBvLA_ZaA
  priority: 102
  providerName: ProQuest
Title A Method of Defect Depth Recognition in Active Infrared Thermography Based on GRU Networks
URI https://www.proquest.com/docview/2554402146
https://doaj.org/article/a2b3a6976ca748249a5418d271bc1403
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB58XPQg1gfWR9mDBxWCSXY3j2OrtipYpFgQL2F2s0FB09LW_-_sJpWAghcvCYQhCTOz82C__QbglJs45LEJPaWF74k0115qUHpaSG0KqfLCOLbPYXQ7FvfP8rkx6stiwip64EpxlxgqjhElTY2xSKhZQCmCJA_jQGnLNWejL-W8RjPlYnAaWOqq6kAep77e7gcH9gQut-C5RgpyTP0_ArHLLv1t2KrLQtatfqcFK6bcgc0GWeAOtOplOGdnNVf0-S68dNmDmwHNJgW7NhabQbfp4pWNlsigScneStZ1cY3dlcXMQs4Zucfso6arZj1KZfSGkg1GYzasgOHzPRj3b56ubr16XIKneSQWnsEYcyWMHyqhDDcS6WKQk9Yl-kIHMSZcJL6WqV9ESKk8TXShI8XJHkpLvg9r5aQ0B8CoikoTTJSfx6EwOlWYY4qKWkWM7b5pGy6WGsx0zSVuR1q8Z9RTWHVnDXW34fRbeFpRaPwu1rOm-BaxvNfuAXlDVntD9pc3tOF4acisXozzjLomIdwE88P_-MYRbIQW2OIwu8ewtph9mhOqTBaqA6tJf9CB9d7N8HHUcS75BadX4fo
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEC0glhbwoUiAFJHYzuuA0Jay3aXtHqquVHEJY8cBJJosu4sQf4rfyIyTLCuBuPWSSLEVWePxPOzx9wEcKJdKlToZGKvDQOelDXKHcWB1bF0Vm7JyHu1zmoxn-v1lfLkFv_q7MFxW2dtEb6jLxvIe-SsKfbX2NNRv5t8CZo3i09WeQqNVixP38welbMvXkyOa32dSjt5dvB0HHatAYFWiV4HDFEujXSiNNk65GOnhUNHgYgy1jVLMlM5CG-dhlSB5vDyzlU2MomEbyywRZPJvaEWenG-mj47XezqMsZlFYXsNkNpDPoWO-N6v4pK9Dcfn-QH-Mv_ep43uwp0uGBXDVnt2YMvVu3B7A6JwF3a6xb8UzzuE6hf34MNQnHnmadFU4shxRQi95qvP4ryvR2pq8aUWQ29NxaSuFlzoLkgpF1cdSLY4JAdKf6jF8flMTNty9OV9mF2LOB_Adt3U7iEIit3yDDMTlqnUzuYGS8zRUIKKKZ_WDuBlL8HCdgjmTKTxtaBMhsVdbIh7AAfrzvMWuOPf3Q55KtZdGG3bf2gWn4pu8RYojcKEAjeLqc4oYcVYR1kp08hYxjscwH4_kUVnApbFH4V99P_mp3BzfHF2WpxOpid7cEty0YyvB96H7dXiu3tMUc_KPPGqJuDjdev2b2HeFtU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFL2aOgnBA2IDRGGAH4YESNES24mTB4RaurIyqKaKShMvme04MGkkpS1C_DV-HfcmTqkE4m0viZRYUWLf3A_7-ByAQ-EUF8rxwFgZBjIrbJA5HQdWxtaVsSlK17B9TpOTuXx3Hp_vwK9uLwzBKjuf2DjqorY0R36Eqa-UjQz1UelhEWej8evFt4AUpGiltZPTaE3k1P38geXb6tVkhGP9jPPx8cc3J4FXGAisSOQ6cFrpwkgXciONEy7WeHBa4IvGOpQ2UjoVMg1tnIVlojH6ZaktbWIEfoKxpBiB7n9XUVXUg93h8fRstpnhIcbNNArbTYFCZCGtSUe0C1gQgG8rDDZqAX8FgybCje_AbZ-askFrS3uw46p9uLVFWLgPe94VrNhzz1f94i58GrAPjQ41q0s2coQPwdNi_YXNOnRSXbHLig0a38omVbkk2DtDE11-9ZTZbIjhFJ9QsbezOZu24PTVPZhfS4feh15VV-4BMMzkslSnJiwUl85mRhc60wbLVa1o7bYPL7sezK3nMydZjasc6xrq7nyru_twuGm8aGk8_t1sSEOxaULc282Fevk5979yrrkROsE0zmolUyxfdSyjtOAqMpbYD_tw0A1k7h3CKv9jvg__f_sp3EC7zt9PpqeP4CYnBE0DDj6A3nr53T3GFGhtnnhbY3Bx3eb9G8vVHGc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+of+Defect+Depth+Recognition+in+Active+Infrared+Thermography+Based+on+GRU+Networks&rft.jtitle=Applied+sciences&rft.au=Xu%2C+Li&rft.au=Hu%2C+Jianzhong&rft.date=2021-07-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=11&rft.issue=14&rft.spage=6387&rft_id=info:doi/10.3390%2Fapp11146387&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app11146387
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon