A Method of Defect Depth Recognition in Active Infrared Thermography Based on GRU Networks
Active infrared thermography (AIRT) is a significant defect detection and evaluation method in the field of non-destructive testing, on account of the fact that it promptly provides visual information and that the results could be used for quantitative research of defects. At present, the quantitati...
Saved in:
Published in | Applied sciences Vol. 11; no. 14; p. 6387 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Active infrared thermography (AIRT) is a significant defect detection and evaluation method in the field of non-destructive testing, on account of the fact that it promptly provides visual information and that the results could be used for quantitative research of defects. At present, the quantitative evaluation of defects is an urgent problem to be solved in this field. In this work, a defect depth recognition method based on gated recurrent unit (GRU) networks is proposed to solve the problem of insufficient accuracy in defect depth recognition. AIRT is applied to obtain the raw thermal sequences of the surface temperature field distribution of the defect specimen. Before training the GRU model, principal component analysis (PCA) is used to reduce the dimension and to eliminate the correlation of the raw datasets. Then, the GRU model is employed to automatically recognize the depth of the defect. The defect depth recognition performance of the proposed method is evaluated through an experiment on polymethyl methacrylate (PMMA) with flat bottom holes. The results indicate that the PCA-processed datasets outperform the raw temperature datasets in model learning when assessing defect depth characteristics. A comparison with the BP network shows that the proposed method has better performance in defect depth recognition. |
---|---|
AbstractList | Active infrared thermography (AIRT) is a significant defect detection and evaluation method in the field of non-destructive testing, on account of the fact that it promptly provides visual information and that the results could be used for quantitative research of defects. At present, the quantitative evaluation of defects is an urgent problem to be solved in this field. In this work, a defect depth recognition method based on gated recurrent unit (GRU) networks is proposed to solve the problem of insufficient accuracy in defect depth recognition. AIRT is applied to obtain the raw thermal sequences of the surface temperature field distribution of the defect specimen. Before training the GRU model, principal component analysis (PCA) is used to reduce the dimension and to eliminate the correlation of the raw datasets. Then, the GRU model is employed to automatically recognize the depth of the defect. The defect depth recognition performance of the proposed method is evaluated through an experiment on polymethyl methacrylate (PMMA) with flat bottom holes. The results indicate that the PCA-processed datasets outperform the raw temperature datasets in model learning when assessing defect depth characteristics. A comparison with the BP network shows that the proposed method has better performance in defect depth recognition. |
Author | Xu, Li Hu, Jianzhong |
Author_xml | – sequence: 1 givenname: Li surname: Xu fullname: Xu, Li – sequence: 2 givenname: Jianzhong surname: Hu fullname: Hu, Jianzhong |
BookMark | eNptUU1LAzEQDVLBWnvyDwQ8SjXZZL-OtWotVIXSXryE2exsN7XdrNlU6b93axVEnMPM8HjzGN47JZ3KVkjIOWdXQqTsGuqacy4jkcRHpBuwOBoIyePOr_2E9JtmxdpKuUg465KXIX1EX9qc2oLeYoHat6P2JZ2htsvKeGMraio61N68I51UhQOHOZ2X6DZ26aAud_QGmhZqiePZgj6h_7DutTkjxwWsG-x_zx5Z3N_NRw-D6fN4MhpOB1pE0g8QYsgziSzIZIYCQ2gbgpChDoFJzWNIhEyYDlNWRBBIlia60FEmCowyHYoemRx0cwsrVTuzAbdTFoz6AqxbKnDe6DUqCDIBURpHGmKZBDKFUPIkD2KeaS6ZaLUuDlq1s29bbLxa2a2r2vdVEIZSsmBvcI_wA0s72zQOC6WNh71T3oFZK87UPhH1K5H25vLPzc-n_7E_AbGvjNM |
CitedBy_id | crossref_primary_10_3390_a14080251 crossref_primary_10_3390_a17100439 crossref_primary_10_1080_10589759_2025_2457593 crossref_primary_10_3390_s25061847 crossref_primary_10_1109_TIM_2022_3152243 crossref_primary_10_32604_csse_2023_036810 crossref_primary_10_3390_machines13020108 crossref_primary_10_1590_0001_3765202220211577 crossref_primary_10_1109_TII_2024_3413330 crossref_primary_10_1109_TIM_2023_3265110 |
Cites_doi | 10.1109/JSEN.2020.3040696 10.1109/TIE.2020.2989711 10.1016/j.infrared.2004.03.012 10.1016/j.infrared.2019.103032 10.3390/s140712305 10.1016/j.knosys.2011.04.019 10.1016/j.ndteint.2019.102147 10.1016/j.ndteint.2012.02.008 10.1016/S0963-8695(01)00041-X 10.1109/TGRS.2017.2776357 10.1016/j.infrared.2019.02.006 10.1109/JSEN.2014.2301168 10.1109/ACCESS.2020.3018116 10.20944/preprints202008.0565.v1 10.1016/S0263-8223(02)00161-7 10.1109/TPAMI.2017.2695539 10.1117/1.1566969 10.1016/j.polymertesting.2015.04.013 10.1051/epjap/2013120537 10.1016/B978-1-78242-171-9.00004-8 10.1016/j.infrared.2019.03.001 10.1007/s40815-015-0044-1 10.3390/math8020214 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app11146387 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_a2b3a6976ca748249a5418d271bc1403 10_3390_app11146387 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c364t-ea7adb4e02b4be3e5ae3eea345c5a04c17a83480c590f6a24098cfc6b3fe6bc53 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:29:54 EDT 2025 Mon Jun 30 07:36:05 EDT 2025 Tue Jul 01 00:50:57 EDT 2025 Thu Apr 24 22:54:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-ea7adb4e02b4be3e5ae3eea345c5a04c17a83480c590f6a24098cfc6b3fe6bc53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/a2b3a6976ca748249a5418d271bc1403 |
PQID | 2554402146 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a2b3a6976ca748249a5418d271bc1403 proquest_journals_2554402146 crossref_citationtrail_10_3390_app11146387 crossref_primary_10_3390_app11146387 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Usamentiaga (ref_20) 2014; 14 Zhang (ref_18) 2018; 40 Palano (ref_5) 2019; 38 Darabi (ref_15) 2002; 35 Marinetti (ref_7) 2004; 46 Zeng (ref_10) 2012; 48 Dey (ref_23) 2017; 2017 Pei (ref_13) 2018; 56 Hu (ref_17) 2019; 102 Rajic (ref_9) 2002; 58 ref_19 Tantrigoda (ref_1) 2019; 98 Vavilov (ref_3) 2015; 44 ref_16 Qu (ref_25) 2015; 17 Zhang (ref_11) 2020; 21 Cheng (ref_8) 2014; 14 Duan (ref_14) 2019; 107 Shepard (ref_6) 2003; 42 Wang (ref_2) 2020; 8 Ahmad (ref_4) 2019; 98 ref_22 Chen (ref_21) 2013; 62 Kanai (ref_24) 2017; 2017 Chen (ref_12) 2020; 68 Guo (ref_26) 2011; 24 |
References_xml | – volume: 2017 start-page: 436 year: 2017 ident: ref_24 article-title: Preventing gradient explosions in gated recurrent units publication-title: Adv. Neural Inf. Process. Syst. – volume: 21 start-page: 6476 year: 2020 ident: ref_11 article-title: Semi-Supervised Bearing Fault Diagnosis and Classification using Variational Autoencoder-Based Deep Generative Models publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3040696 – volume: 68 start-page: 5057 year: 2020 ident: ref_12 article-title: Adaptive Neural Network-Based Trajectory Tracking Control for a Nonholonomic Wheeled Mobile Robot with Velocity Constraints publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.2989711 – volume: 46 start-page: 85 year: 2004 ident: ref_7 article-title: Statistical analysis of IR thermographic sequences by PCA publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2004.03.012 – volume: 102 start-page: 103032 year: 2019 ident: ref_17 article-title: LSTM-RNN-based defect classification in honeycomb structures using infrared thermography publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2019.103032 – volume: 14 start-page: 12305 year: 2014 ident: ref_20 article-title: Infrared thermography for temperature measurement and non-destructive testing publication-title: Sensors doi: 10.3390/s140712305 – volume: 24 start-page: 1048 year: 2011 ident: ref_26 article-title: A case study on a hybrid wind speed forecasting method using BP neural network publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2011.04.019 – volume: 107 start-page: 102147 year: 2019 ident: ref_14 article-title: Automated defect classification in infrared thermography based on a neural network publication-title: NDT E Int. doi: 10.1016/j.ndteint.2019.102147 – volume: 48 start-page: 39 year: 2012 ident: ref_10 article-title: Depth prediction of non-air interface defect using pulsed thermography publication-title: NDT E Int. doi: 10.1016/j.ndteint.2012.02.008 – volume: 2017 start-page: 1597 year: 2017 ident: ref_23 article-title: Gate-variants of Gated Recurrent Unit (GRU) neural networks publication-title: Midwest Symp. Circuits Syst. – volume: 35 start-page: 165 year: 2002 ident: ref_15 article-title: Neural network based defect detection and depth estimation in TNDE publication-title: NDT E Int. doi: 10.1016/S0963-8695(01)00041-X – volume: 56 start-page: 2196 year: 2018 ident: ref_13 article-title: SAR automatic target recognition based on multiview deep learning framework publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2776357 – volume: 98 start-page: 45 year: 2019 ident: ref_4 article-title: An independent component analysis based approach for frequency modulated thermal wave imaging for subsurface defect detection in steel sample publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2019.02.006 – volume: 14 start-page: 1655 year: 2014 ident: ref_8 article-title: Impact damage detection and identification using eddy current pulsed thermography through integration of PCA and ICA publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2014.2301168 – volume: 8 start-page: 153385 year: 2020 ident: ref_2 article-title: Defect Depth Determination in Laser Infrared Thermography Based on LSTM-RNN publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3018116 – ident: ref_16 doi: 10.20944/preprints202008.0565.v1 – volume: 58 start-page: 521 year: 2002 ident: ref_9 article-title: Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures publication-title: Compos. Struct. doi: 10.1016/S0263-8223(02)00161-7 – volume: 40 start-page: 849 year: 2018 ident: ref_18 article-title: Drawing and Recognizing Chinese Characters with Recurrent Neural Network publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2695539 – volume: 42 start-page: 1337 year: 2003 ident: ref_6 article-title: Reconstruction and enhancement of active thermographic image sequences publication-title: Opt. Eng. doi: 10.1117/1.1566969 – volume: 38 start-page: 1 year: 2019 ident: ref_5 article-title: Pulsed Phase Thermography Approach for the Characterization of Delaminations in CFRP and Comparison to Phased Array Ultrasonic Testing publication-title: J. Nondestruct. Eval. – volume: 44 start-page: 224 year: 2015 ident: ref_3 article-title: A novel approach for one-sided thermal nondestructive testing of composites by using infrared thermography publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2015.04.013 – volume: 62 start-page: 1 year: 2013 ident: ref_21 article-title: Liquid ingress recognition in honeycomb structure by pulsed thermography publication-title: EPJ Appl. Phys. doi: 10.1051/epjap/2013120537 – ident: ref_22 doi: 10.1016/B978-1-78242-171-9.00004-8 – volume: 98 start-page: 89 year: 2019 ident: ref_1 article-title: Infrared thermography as a non-destructive testing method for adhesively bonded textile structures publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2019.03.001 – volume: 17 start-page: 471 year: 2015 ident: ref_25 article-title: Kernel-based Fuzzy-rough Nearest-neighbour Classification for Mammographic Risk Analysis publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-015-0044-1 – ident: ref_19 doi: 10.3390/math8020214 |
SSID | ssj0000913810 |
Score | 2.2583659 |
Snippet | Active infrared thermography (AIRT) is a significant defect detection and evaluation method in the field of non-destructive testing, on account of the fact... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 6387 |
SubjectTerms | active infrared thermography Conductivity Datasets Deep learning defect depth recognition Defects gated recurrent unit Heat conductivity Neural networks Polymethyl methacrylate principal component analysis Principal components analysis Radiation Thermography |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH9i5bIdEB9DdCvIBw4MKVoS24lzQi0fA6RVqKIS2iV6dhxAYklpu_-fZ9ctlTbtkkixlcN79vvw-_n3AI65zVOe2zTSRsSRKCoTFRZlZIQ0tpa6qq1n-xxm12Nx-yAfwoHbLMAqlzbRG-qqNe6M_DuFvkL4NtRnk9fIdY1y1dXQQuMDbJIJVqoDm4PL4d1odcriWC9VEi8u5nHK711dOHE3cbkD0a25Is_Y_5dB9l7mahu2QnjI-gt97sCGbXbh0xpp4C7shO04YyeBM_rbHvzqs5--FzRra3ZhHUaDXpP5ExstEUJtw54b1vf2jd009dRBzxktk-nvQFvNBuTS6A8N-zEas-ECID77DOOry_vz6yi0TYgMz8Q8sphjpYWNUy205VYiPSxykr7EWJgkR8WFio0s4jpDcumFMrXJNCe9aCP5PnSatrEHwCiaKhQqHVd5KqwpNFZYoKaUEXNXP-3C6VKCpQmc4q61xUtJuYUTd7km7i4cryZPFlQa_542cKpYTXH81_5DO30sw3YqMdUcMwqlDOZCUQqJUiSqSvNEG8dA2IXeUpFl2JSz8n0Jffn_8Ff4mDroikfl9qAzn_6xhxR7zPVRWGBvLA_ZaA priority: 102 providerName: ProQuest |
Title | A Method of Defect Depth Recognition in Active Infrared Thermography Based on GRU Networks |
URI | https://www.proquest.com/docview/2554402146 https://doaj.org/article/a2b3a6976ca748249a5418d271bc1403 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB58XPQg1gfWR9mDBxWCSXY3j2OrtipYpFgQL2F2s0FB09LW_-_sJpWAghcvCYQhCTOz82C__QbglJs45LEJPaWF74k0115qUHpaSG0KqfLCOLbPYXQ7FvfP8rkx6stiwip64EpxlxgqjhElTY2xSKhZQCmCJA_jQGnLNWejL-W8RjPlYnAaWOqq6kAep77e7gcH9gQut-C5RgpyTP0_ArHLLv1t2KrLQtatfqcFK6bcgc0GWeAOtOplOGdnNVf0-S68dNmDmwHNJgW7NhabQbfp4pWNlsigScneStZ1cY3dlcXMQs4Zucfso6arZj1KZfSGkg1GYzasgOHzPRj3b56ubr16XIKneSQWnsEYcyWMHyqhDDcS6WKQk9Yl-kIHMSZcJL6WqV9ESKk8TXShI8XJHkpLvg9r5aQ0B8CoikoTTJSfx6EwOlWYY4qKWkWM7b5pGy6WGsx0zSVuR1q8Z9RTWHVnDXW34fRbeFpRaPwu1rOm-BaxvNfuAXlDVntD9pc3tOF4acisXozzjLomIdwE88P_-MYRbIQW2OIwu8ewtph9mhOqTBaqA6tJf9CB9d7N8HHUcS75BadX4fo |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEC0glhbwoUiAFJHYzuuA0Jay3aXtHqquVHEJY8cBJJosu4sQf4rfyIyTLCuBuPWSSLEVWePxPOzx9wEcKJdKlToZGKvDQOelDXKHcWB1bF0Vm7JyHu1zmoxn-v1lfLkFv_q7MFxW2dtEb6jLxvIe-SsKfbX2NNRv5t8CZo3i09WeQqNVixP38welbMvXkyOa32dSjt5dvB0HHatAYFWiV4HDFEujXSiNNk65GOnhUNHgYgy1jVLMlM5CG-dhlSB5vDyzlU2MomEbyywRZPJvaEWenG-mj47XezqMsZlFYXsNkNpDPoWO-N6v4pK9Dcfn-QH-Mv_ep43uwp0uGBXDVnt2YMvVu3B7A6JwF3a6xb8UzzuE6hf34MNQnHnmadFU4shxRQi95qvP4ryvR2pq8aUWQ29NxaSuFlzoLkgpF1cdSLY4JAdKf6jF8flMTNty9OV9mF2LOB_Adt3U7iEIit3yDDMTlqnUzuYGS8zRUIKKKZ_WDuBlL8HCdgjmTKTxtaBMhsVdbIh7AAfrzvMWuOPf3Q55KtZdGG3bf2gWn4pu8RYojcKEAjeLqc4oYcVYR1kp08hYxjscwH4_kUVnApbFH4V99P_mp3BzfHF2WpxOpid7cEty0YyvB96H7dXiu3tMUc_KPPGqJuDjdev2b2HeFtU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFL2aOgnBA2IDRGGAH4YESNES24mTB4RaurIyqKaKShMvme04MGkkpS1C_DV-HfcmTqkE4m0viZRYUWLf3A_7-ByAQ-EUF8rxwFgZBjIrbJA5HQdWxtaVsSlK17B9TpOTuXx3Hp_vwK9uLwzBKjuf2DjqorY0R36Eqa-UjQz1UelhEWej8evFt4AUpGiltZPTaE3k1P38geXb6tVkhGP9jPPx8cc3J4FXGAisSOQ6cFrpwkgXciONEy7WeHBa4IvGOpQ2UjoVMg1tnIVlojH6ZaktbWIEfoKxpBiB7n9XUVXUg93h8fRstpnhIcbNNArbTYFCZCGtSUe0C1gQgG8rDDZqAX8FgybCje_AbZ-askFrS3uw46p9uLVFWLgPe94VrNhzz1f94i58GrAPjQ41q0s2coQPwdNi_YXNOnRSXbHLig0a38omVbkk2DtDE11-9ZTZbIjhFJ9QsbezOZu24PTVPZhfS4feh15VV-4BMMzkslSnJiwUl85mRhc60wbLVa1o7bYPL7sezK3nMydZjasc6xrq7nyru_twuGm8aGk8_t1sSEOxaULc282Fevk5979yrrkROsE0zmolUyxfdSyjtOAqMpbYD_tw0A1k7h3CKv9jvg__f_sp3EC7zt9PpqeP4CYnBE0DDj6A3nr53T3GFGhtnnhbY3Bx3eb9G8vVHGc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+of+Defect+Depth+Recognition+in+Active+Infrared+Thermography+Based+on+GRU+Networks&rft.jtitle=Applied+sciences&rft.au=Xu%2C+Li&rft.au=Hu%2C+Jianzhong&rft.date=2021-07-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=11&rft.issue=14&rft.spage=6387&rft_id=info:doi/10.3390%2Fapp11146387&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app11146387 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |