Progressive collapse analysis of precast reinforced concrete beam-column assemblies with different dry connections

•Conduct tests on PC beam-column assemblies with dry connections.•Establish high-fidelity 3D numerical models of PC beam-column assemblies.•Investigate influence of connection defects on collapse resistance performance.•Optimize existing connection types for PC beam-column assemblies.•Identify resis...

Full description

Saved in:
Bibliographic Details
Published inEngineering structures Vol. 287; p. 116174
Main Authors Zhao, Zidong, Cheng, Xiaowei, Li, Yi, Diao, Mengzhu, Guan, Hong, An, Yi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Conduct tests on PC beam-column assemblies with dry connections.•Establish high-fidelity 3D numerical models of PC beam-column assemblies.•Investigate influence of connection defects on collapse resistance performance.•Optimize existing connection types for PC beam-column assemblies.•Identify resistance contributions from different resisting mechanisms. Beam-column joints using dry connections usually experience severe damage under large deformations, causing precast concrete (PC) frames with dry connections to become highly vulnerable to progressive collapse. Hence, this study conducted a static pushdown test adopting uniformly distributed loading on four PC beam-column assemblies using dry connections and one reinforced concrete (RC) substructure to investigate the collapse-resisting behavior under the middle-column removal scenario. The tested dry connections included top-and-seat angle connection (TA), strengthened top-seat angle connection (STA), and two refined connections with unbonded post-tensioning tendons (UPTA and UPSTA, respectively). Results showed that compared with specimen RC, the resistance of specimen TA at the beam flexural and compressive arch action (B-CAA) and catenary action (CA) stages dropped by 41% and 27%, respectively, due to the buckling of steel angles and endplates (B-CAA) and the fracture of steel angles and bolts (CA). Specimen STA had a 7% greater resistance of B-CAA because of the strengthened steel angles. However, the ductility decreased, with the displacement of rebar fracture decreasing by 37%, leading to a 30% resistance reduction of CA. The unbonded post-tensioning tendons dramatically improved the structural integrity, contributing to 52% and 97% increase in the resistance of the CA of UPTA and UPSTA, respectively. Further numerical analyses indicated that the restraint gaps reduced the initial stiffness of the collapse responses, and a good rebars welding anchorage condition could remarkably improve the resistance in the B-CAA and CA stages. An improved joint was proposed based on UPTA and rebar welding anchorage to improve deformation capacity while retaining reasonable collapse resistance. Finally, the resistance contributions from different mechanisms and components were identified through a developed calculation procedure.
AbstractList •Conduct tests on PC beam-column assemblies with dry connections.•Establish high-fidelity 3D numerical models of PC beam-column assemblies.•Investigate influence of connection defects on collapse resistance performance.•Optimize existing connection types for PC beam-column assemblies.•Identify resistance contributions from different resisting mechanisms. Beam-column joints using dry connections usually experience severe damage under large deformations, causing precast concrete (PC) frames with dry connections to become highly vulnerable to progressive collapse. Hence, this study conducted a static pushdown test adopting uniformly distributed loading on four PC beam-column assemblies using dry connections and one reinforced concrete (RC) substructure to investigate the collapse-resisting behavior under the middle-column removal scenario. The tested dry connections included top-and-seat angle connection (TA), strengthened top-seat angle connection (STA), and two refined connections with unbonded post-tensioning tendons (UPTA and UPSTA, respectively). Results showed that compared with specimen RC, the resistance of specimen TA at the beam flexural and compressive arch action (B-CAA) and catenary action (CA) stages dropped by 41% and 27%, respectively, due to the buckling of steel angles and endplates (B-CAA) and the fracture of steel angles and bolts (CA). Specimen STA had a 7% greater resistance of B-CAA because of the strengthened steel angles. However, the ductility decreased, with the displacement of rebar fracture decreasing by 37%, leading to a 30% resistance reduction of CA. The unbonded post-tensioning tendons dramatically improved the structural integrity, contributing to 52% and 97% increase in the resistance of the CA of UPTA and UPSTA, respectively. Further numerical analyses indicated that the restraint gaps reduced the initial stiffness of the collapse responses, and a good rebars welding anchorage condition could remarkably improve the resistance in the B-CAA and CA stages. An improved joint was proposed based on UPTA and rebar welding anchorage to improve deformation capacity while retaining reasonable collapse resistance. Finally, the resistance contributions from different mechanisms and components were identified through a developed calculation procedure.
ArticleNumber 116174
Author Guan, Hong
Zhao, Zidong
Diao, Mengzhu
Cheng, Xiaowei
An, Yi
Li, Yi
Author_xml – sequence: 1
  givenname: Zidong
  surname: Zhao
  fullname: Zhao, Zidong
  organization: Beijing Key Laboratory of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing 100124, China
– sequence: 2
  givenname: Xiaowei
  surname: Cheng
  fullname: Cheng, Xiaowei
  organization: Beijing Key Laboratory of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing 100124, China
– sequence: 3
  givenname: Yi
  surname: Li
  fullname: Li, Yi
  email: yili@bjut.edu.cn
  organization: Beijing Key Laboratory of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing 100124, China
– sequence: 4
  givenname: Mengzhu
  surname: Diao
  fullname: Diao, Mengzhu
  email: mengzhu.diao@griffith.edu.au
  organization: School of Engineering and Built Environment, Griffith University, Gold Coast Campus, Queensland 4222, Australia
– sequence: 5
  givenname: Hong
  surname: Guan
  fullname: Guan, Hong
  organization: School of Engineering and Built Environment, Griffith University, Gold Coast Campus, Queensland 4222, Australia
– sequence: 6
  givenname: Yi
  surname: An
  fullname: An, Yi
  organization: Beijing Key Laboratory of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing 100124, China
BookMark eNqNkMtOwzAQRS1UJNrCN-AfSPAjjdMFi6riJVWCBawtx5kUV4ldeUxR_55ERSzYwGpmMedq7pmRiQ8eCLnmLOeMlze7HPwWU_ywKRdMyJzzkqvijEx5pWSmpJATMmW84BkTy_KCzBB3jDFRVWxK4ksM2wiI7gDUhq4zewRqvOmO6JCGlu4jWIOJRnC-DdFCM9x5GyEBrcH02UB99J4aROjrzgHST5feaePaFiL4RJt4HBEPNrng8ZKct6ZDuPqec_J2f_e6fsw2zw9P69Ums7IsUgZVwaVp1YLV5aISCy4FNErZwoJt1FARDDOFkDUUZtjkEmRVLyvZcmbKUgg5J7enXBsDYoRWW5fM-EKKxnWaMz0K1Dv9I1CPAvVJ4MCrX_w-ut7E4z_I1YmEod7BQdRoHfhBnRtkJt0E92fGF5gGllI
CitedBy_id crossref_primary_10_1016_j_engstruct_2024_119232
crossref_primary_10_1016_j_engfailanal_2024_108995
crossref_primary_10_1016_j_engstruct_2025_120134
crossref_primary_10_1016_j_jobe_2024_109236
crossref_primary_10_1002_suco_202401287
crossref_primary_10_1016_j_engstruct_2023_117251
crossref_primary_10_1016_j_engstruct_2024_119330
crossref_primary_10_1016_j_engstruct_2024_118442
crossref_primary_10_1016_j_jobe_2024_109430
crossref_primary_10_1016_j_engstruct_2024_117820
crossref_primary_10_1016_j_jobe_2025_112035
crossref_primary_10_1016_j_istruc_2024_107817
crossref_primary_10_1016_j_engstruct_2024_119206
crossref_primary_10_1016_j_jobe_2025_111985
crossref_primary_10_1016_j_engstruct_2023_116746
crossref_primary_10_1016_j_istruc_2024_106105
crossref_primary_10_1002_tal_2130
crossref_primary_10_1002_tal_2175
crossref_primary_10_1016_j_engfailanal_2023_107839
crossref_primary_10_1016_j_engstruct_2023_116861
crossref_primary_10_1016_j_jobe_2023_108338
crossref_primary_10_1063_5_0214890
crossref_primary_10_1016_j_engstruct_2025_120138
crossref_primary_10_1016_j_jobe_2024_109405
Cites_doi 10.1061/(ASCE)ST.1943-541X.0002263
10.1061/(ASCE)ST.1943-541X.0000658
10.1061/(ASCE)CF.1943-5509.0001179
10.1061/(ASCE)0887-3828(2005)19:2(172)
10.1016/j.engstruct.2011.08.040
10.1016/j.engstruct.2019.109719
10.1016/j.engstruct.2015.03.027
10.1016/j.engstruct.2016.07.039
10.1016/j.engstruct.2017.03.039
10.1007/s12205-018-1518-0
10.1016/j.engstruct.2021.113470
10.1016/j.conbuildmat.2017.03.120
10.1016/j.engfailanal.2019.104324
10.1061/(ASCE)ST.1943-541X.0001828
10.15554/pcij62.5-01
10.1007/s11709-021-0766-0
10.1016/j.engstruct.2016.07.042
10.1016/j.engstruct.2020.111272
10.1016/j.engstruct.2015.12.010
10.1061/(ASCE)0733-9445(2005)131:1(6)
10.1016/j.engstruct.2018.04.097
10.1061/(ASCE)ST.1943-541X.0001046
10.1016/j.engstruct.2017.12.038
10.1016/j.engstruct.2015.02.003
10.1061/(ASCE)ST.1943-541X.0002714
10.1061/(ASCE)ST.1943-541X.0003065
10.1016/j.engstruct.2019.110032
10.1016/j.engstruct.2019.109552
10.1016/j.engstruct.2015.04.034
10.1520/CCA10470J
10.1016/j.engstruct.2022.114010
10.1061/(ASCE)ST.1943-541X.0002214
10.15554/pcij62.5-02
10.1061/(ASCE)0733-9445(1985)111:3(505)
10.1016/j.engstruct.2008.01.019
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engstruct.2023.116174
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7323
ExternalDocumentID 10_1016_j_engstruct_2023_116174
S0141029623005886
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SET
SSH
VH1
WUQ
ZY4
ID FETCH-LOGICAL-c364t-e8413af750b65825132ed77c4cecd7617ea0a423be4aa0a39e38b983f10a66223
IEDL.DBID .~1
ISSN 0141-0296
IngestDate Thu Apr 24 22:53:26 EDT 2025
Tue Jul 01 01:22:03 EDT 2025
Fri Feb 23 02:35:35 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Progressive collapse
Resistance contribution analysis
PC frame with dry connections
Resistance calculation procedure
Experimental and numerical analyses
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-e8413af750b65825132ed77c4cecd7617ea0a423be4aa0a39e38b983f10a66223
OpenAccessLink http://hdl.handle.net/10072/429586
ParticipantIDs crossref_citationtrail_10_1016_j_engstruct_2023_116174
crossref_primary_10_1016_j_engstruct_2023_116174
elsevier_sciencedirect_doi_10_1016_j_engstruct_2023_116174
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-15
PublicationDateYYYYMMDD 2023-07-15
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-15
  day: 15
PublicationDecade 2020
PublicationTitle Engineering structures
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References CEB-FIP Model Code. Design of concrete structures. F ́ede ́ration Internationaledu Be ́ton fib/International Federation for Structural Concrete; 2010.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD). Code for seismic design of building. GB 50011-2010. Beijing, China; 2010.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD). Code for design of concrete structures. GB 50010-2010. Beijing, China; 2010.
Qian, Liang, Fu, Li (b0145) 2021; 147
EN 1991-1-7, Actions on structures, Part 1-7: General actions - accidental actions, European Committee for Standardization, Brussels, Belgium, 2006.
Qian, Li (b0155) 2019; 116
Qian, Weng, Fu, Deng (b0125) 2021; 33
Shan, Li, Xu, Xie (b0075) 2016; 111
Bao, Main, Lew, Sadek (b0185) 2017; 62
Qian, Liang, Feng, Fu, Wu (b0195) 2020; 146
Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD). Code for design of steel structures. GB50017-2017. Beijing, China: 2017.
Issa, Islam, Issa, Yousif (b0235) 2000; 22
Li, Lu, Guan, Ye (b0110) 2014; 111
Kazemi-Moghaddam, Sasani (b0010) 2015; 89
Rabbat, Russell (b0265) 1985; 111
Yu, Tang, Luo, Fang (b0070) 2020; 225
Liu, Zhao, Cheng, Li, Diao, Sun (b0250) 2022; 256
Kang, Wang, Gao (b0105) 2020; 206
Approved document A, The building regulation, A3: Disproportional collapse, UK HM Government, London, UK, 2010.
Kang, Tan, Yang (b0140) 2015; 98
Almusallam, Elsanadedy, Al-Salloum, Siddiqui, Iqbal (b0165) 2018; 22
Kang, Tan (b0095) 2017; 141
Lew, Main, Bao, Sadek, Chiarito, Robert (b0180) 2017; 62
Abrams (b0220) 1987; 84
Lu, Guan, Sun, Li, Zheng, Fei (b0020) 2021; 15
Yu, Luo, Li (b0260) 2018; 159
Zhou, Chen, Pei, Hwang, Hu, Yi (b0175) 2019; 200
Qian, Liang, Fu, Fang (b0190) 2019; 198
Yu, Tan (b0045) 2013; 55
Kang, Tan (b0135) 2015; 93
Pham, Tan, Yu (b0120) 2017; 149
Pham, Tan (b0200) 2019; 145
Yu, Tan (b0060) 2013; 139
Qian, Weng, Li (b0080) 2019; 145
Qian, Geng, Liang, Fu, Yu (b0205) 2022; 251
Kang, Tan (b0230) 2017; 143
Su, Tian, Song (b0055) 2009; 106
Hallquist (b0255) 2007
Wang, Yang, Nyunn, Azim (b0160) 2020; 32
Department of Defense (DoD). Unified facilities criteria (UFC): design of structures to resist progressive collapse. Washington (DC), United States, 2005.
Yi, He, Xiao, Kunnath (b0050) 2008; 105
Nimse, Joshi, Patel (b0130) 2015
Qian, Li, Ma (b0225) 2015; 141
General Services Administration (GSA). Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects. Washington (DC), United States, 2003.
Xiao, Kunnath, Li, Zhao, Lew, Bao (b0090) 2015; 112
Diao, Li, Guan, Lu, Gilbert (b0115) 2020; 109
Lu, Lin, Li, Li (b0100) 2018; 168
Lu, Lin, Li, Guan, Ren, Zhou (b0065) 2017; 149
Elsanadedy, Almusallam, Al-Salloum, Abbas (b0170) 2017; 142
Omika, Fukuzawa, Koshika, Morikawa, Fukuda (b0015) 2005; 131
Sasani (b0085) 2008; 30
Pearson, Delatte, Asce, Assistant (b0005) 2005; 19
Feng, Wu, Lu (b0150) 2018; 32
Lu (10.1016/j.engstruct.2023.116174_b0020) 2021; 15
Lew (10.1016/j.engstruct.2023.116174_b0180) 2017; 62
Almusallam (10.1016/j.engstruct.2023.116174_b0165) 2018; 22
Liu (10.1016/j.engstruct.2023.116174_b0250) 2022; 256
10.1016/j.engstruct.2023.116174_b0240
Kang (10.1016/j.engstruct.2023.116174_b0140) 2015; 98
10.1016/j.engstruct.2023.116174_b0040
Pham (10.1016/j.engstruct.2023.116174_b0120) 2017; 149
Bao (10.1016/j.engstruct.2023.116174_b0185) 2017; 62
Qian (10.1016/j.engstruct.2023.116174_b0080) 2019; 145
10.1016/j.engstruct.2023.116174_b0245
Yu (10.1016/j.engstruct.2023.116174_b0070) 2020; 225
Feng (10.1016/j.engstruct.2023.116174_b0150) 2018; 32
Diao (10.1016/j.engstruct.2023.116174_b0115) 2020; 109
Qian (10.1016/j.engstruct.2023.116174_b0125) 2021; 33
Wang (10.1016/j.engstruct.2023.116174_b0160) 2020; 32
Qian (10.1016/j.engstruct.2023.116174_b0155) 2019; 116
Sasani (10.1016/j.engstruct.2023.116174_b0085) 2008; 30
Zhou (10.1016/j.engstruct.2023.116174_b0175) 2019; 200
Li (10.1016/j.engstruct.2023.116174_b0110) 2014; 111
Kang (10.1016/j.engstruct.2023.116174_b0135) 2015; 93
10.1016/j.engstruct.2023.116174_b0215
10.1016/j.engstruct.2023.116174_b0210
Qian (10.1016/j.engstruct.2023.116174_b0205) 2022; 251
Hallquist (10.1016/j.engstruct.2023.116174_b0255) 2007
Qian (10.1016/j.engstruct.2023.116174_b0225) 2015; 141
Omika (10.1016/j.engstruct.2023.116174_b0015) 2005; 131
Kang (10.1016/j.engstruct.2023.116174_b0105) 2020; 206
Lu (10.1016/j.engstruct.2023.116174_b0100) 2018; 168
Issa (10.1016/j.engstruct.2023.116174_b0235) 2000; 22
Pearson (10.1016/j.engstruct.2023.116174_b0005) 2005; 19
10.1016/j.engstruct.2023.116174_b0025
Yu (10.1016/j.engstruct.2023.116174_b0060) 2013; 139
Kazemi-Moghaddam (10.1016/j.engstruct.2023.116174_b0010) 2015; 89
Elsanadedy (10.1016/j.engstruct.2023.116174_b0170) 2017; 142
Qian (10.1016/j.engstruct.2023.116174_b0145) 2021; 147
Qian (10.1016/j.engstruct.2023.116174_b0195) 2020; 146
Yi (10.1016/j.engstruct.2023.116174_b0050) 2008; 105
Yu (10.1016/j.engstruct.2023.116174_b0045) 2013; 55
Kang (10.1016/j.engstruct.2023.116174_b0230) 2017; 143
Xiao (10.1016/j.engstruct.2023.116174_b0090) 2015; 112
Yu (10.1016/j.engstruct.2023.116174_b0260) 2018; 159
10.1016/j.engstruct.2023.116174_b0030
Rabbat (10.1016/j.engstruct.2023.116174_b0265) 1985; 111
Pham (10.1016/j.engstruct.2023.116174_b0200) 2019; 145
Nimse (10.1016/j.engstruct.2023.116174_b0130) 2015
Qian (10.1016/j.engstruct.2023.116174_b0190) 2019; 198
Su (10.1016/j.engstruct.2023.116174_b0055) 2009; 106
10.1016/j.engstruct.2023.116174_b0035
Lu (10.1016/j.engstruct.2023.116174_b0065) 2017; 149
Kang (10.1016/j.engstruct.2023.116174_b0095) 2017; 141
Abrams (10.1016/j.engstruct.2023.116174_b0220) 1987; 84
Shan (10.1016/j.engstruct.2023.116174_b0075) 2016; 111
References_xml – reference: CEB-FIP Model Code. Design of concrete structures. F ́ede ́ration Internationaledu Be ́ton fib/International Federation for Structural Concrete; 2010.
– volume: 200
  year: 2019
  ident: b0175
  article-title: Static load test on progressive collapse resistance of fully assembled precast concrete frame structure
  publication-title: Eng Struct
– volume: 256
  year: 2022
  ident: b0250
  article-title: Experimental and numerical investigation of the progressive collapse of precast reinforced concrete frame substructures with wet connections
  publication-title: Eng Struct
– volume: 225
  year: 2020
  ident: b0070
  article-title: Effect of boundary conditions on progressive collapse resistance of RC beam-slab assemblies under edge column removal scenario
  publication-title: Eng Struct
– volume: 84
  start-page: 502
  year: 1987
  end-page: 512
  ident: b0220
  article-title: Scale relations for reinforced concrete beam–column joints
  publication-title: ACI Struct J
– volume: 143
  start-page: 04017090
  year: 2017
  ident: b0230
  article-title: Progressive collapse resistance of precast concrete frames with discontinuous reinforcement in the joint
  publication-title: J Struct Eng
– volume: 142
  start-page: 552
  year: 2017
  end-page: 571
  ident: b0170
  article-title: Investigation of precast RC beam-column assemblies under column-loss scenario
  publication-title: Constr Build Mater
– volume: 149
  start-page: 2
  year: 2017
  end-page: 20
  ident: b0120
  article-title: Numerical investigations on static and dynamic responses of reinforced concrete sub-assemblages under progressive collapse
  publication-title: Eng Struct
– volume: 30
  start-page: 2478
  year: 2008
  end-page: 2491
  ident: b0085
  article-title: Response of a reinforced concrete infilled-frame structure to removal of two adjacent columns
  publication-title: Eng Struct
– volume: 106
  start-page: 600
  year: 2009
  end-page: 607
  ident: b0055
  article-title: Progressive collapse resistance of axially-restrained frame beams
  publication-title: ACI Struct J
– volume: 198
  year: 2019
  ident: b0190
  article-title: Progressive collapse resistance of precast concrete beam-column sub-assemblages with high-performance dry connections
  publication-title: Eng Struct
– volume: 19
  start-page: 172
  year: 2005
  end-page: 177
  ident: b0005
  article-title: Ronan point apartment tower collapse and its effect on building codes
  publication-title: J Perform Constr Facil
– reference: EN 1991-1-7, Actions on structures, Part 1-7: General actions - accidental actions, European Committee for Standardization, Brussels, Belgium, 2006.
– volume: 98
  start-page: 186
  year: 2015
  end-page: 200
  ident: b0140
  article-title: Progressive collapse resistance of precast beam–column sub-assemblages with engineered cementitious composites
  publication-title: Eng Struct
– volume: 111
  start-page: 1225
  year: 2014
  end-page: 1234
  ident: b0110
  article-title: Progressive collapse resistance demand of RC frames under catenary mechanism
  publication-title: ACI Struct J
– reference: Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD). Code for design of concrete structures. GB 50010-2010. Beijing, China; 2010.
– volume: 15
  start-page: 1097
  year: 2021
  end-page: 1110
  ident: b0020
  article-title: A preliminary analysis and discussion of the condominium building collapse in surfside, Florida, US, June 24, 2021
  publication-title: Front Struct Civ Eng
– volume: 105
  start-page: 433
  year: 2008
  end-page: 439
  ident: b0050
  article-title: Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures
  publication-title: ACI Struct J
– volume: 145
  start-page: 04018235
  year: 2019
  ident: b0200
  article-title: Static and dynamic responses of reinforced concrete structures under sudden column removal scenario subjected to distributed loading
  publication-title: J Struct Eng
– volume: 62
  start-page: 35
  year: 2017
  end-page: 52
  ident: b0180
  article-title: Performance of precast concrete moment frames subjected to column removal: part 1, experimental study
  publication-title: PCI J
– volume: 168
  start-page: 721
  year: 2018
  end-page: 735
  ident: b0100
  article-title: New analytical calculation models for compressive arch action in reinforced concrete structures
  publication-title: Eng Struct
– volume: 89
  start-page: 162
  year: 2015
  end-page: 171
  ident: b0010
  article-title: Progressive collapse evaluation of Murrah Federal Building following sudden loss of column G20
  publication-title: Eng Struct
– reference: Department of Defense (DoD). Unified facilities criteria (UFC): design of structures to resist progressive collapse. Washington (DC), United States, 2005.
– volume: 147
  start-page: 04021107
  year: 2021
  ident: b0145
  article-title: Progressive collapse resistance of emulative precast concrete frames with various reinforcing details
  publication-title: J Struct Eng
– volume: 131
  start-page: 6
  year: 2005
  end-page: 15
  ident: b0015
  article-title: Structural responses of world trade center under aircraft attacks
  publication-title: J Struct Eng
– volume: 33
  year: 2021
  ident: b0125
  article-title: Numerical evaluation of the reliability of using single-story substructures to study progressive collapse behaviour of multi-story RC frames
  publication-title: J of Build Eng
– reference: General Services Administration (GSA). Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects. Washington (DC), United States, 2003.
– volume: 22
  start-page: 103
  year: 2000
  end-page: 115
  ident: b0235
  article-title: Specimen and aggregate size effect on concrete compressive strength
  publication-title: Cem, Concr, Aggregates ASTM
– year: 2007
  ident: b0255
  article-title: LS-DYNA keyword user’s manual version 971
– start-page: 1101
  year: 2015
  end-page: 1117
  ident: b0130
  article-title: Experimental study on precast beam column connections constructed using RC corbel and steel billet under progressive collapse scenario
  publication-title: Structures Congress 2015
– volume: 32
  year: 2020
  ident: b0160
  article-title: Effect of concrete infill walls on the progressive collapse performance of precast concrete framed substructures
  publication-title: J of Build Eng
– reference: Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD). Code for seismic design of building. GB 50011-2010. Beijing, China; 2010.
– volume: 149
  start-page: 91
  year: 2017
  end-page: 103
  ident: b0065
  article-title: Experimental investigation of RC beam-slab substructures against progressive collapse subject to an edge-column-removal scenario
  publication-title: Eng Struct
– volume: 32
  start-page: 04018027
  year: 2018
  ident: b0150
  article-title: Numerical investigation on the progressive collapse behavior of precast reinforced concrete frame subassemblages
  publication-title: J Perform Constr Facil
– volume: 109
  year: 2020
  ident: b0115
  article-title: Influence of horizontal restraints on the behaviour of vertical disproportionate collapse of RC moment frames
  publication-title: Eng Fail Anal
– volume: 145
  start-page: 04018248
  year: 2019
  ident: b0080
  article-title: Improving behavior of reinforced concrete frames to resist progressive collapse through steel bracings
  publication-title: J Struct Eng
– volume: 251
  year: 2022
  ident: b0205
  article-title: Effects of loading regimes on the structural behavior of RC beam-column sub-assemblages against disproportionate collapse
  publication-title: Eng Struct
– volume: 139
  start-page: 233
  year: 2013
  end-page: 250
  ident: b0060
  article-title: Structural behavior of RC beam-column subassemblages under a middle column removal scenario
  publication-title: J Struct Eng
– volume: 111
  start-page: 80
  year: 2016
  end-page: 92
  ident: b0075
  article-title: Experimental study on the progressive collapse performance of RC frames with infill walls
  publication-title: Eng Struct
– volume: 206
  year: 2020
  ident: b0105
  article-title: Analytical study on one-way reinforced concrete beam-slab sub-structures under compressive arch action and catenary action
  publication-title: Eng Struct
– volume: 116
  start-page: 171
  year: 2019
  end-page: 182
  ident: b0155
  article-title: Investigation into resilience of precast concrete floors against progressive collapse
  publication-title: ACI Struct J
– volume: 111
  start-page: 505
  year: 1985
  end-page: 515
  ident: b0265
  article-title: Friction coefficient of steel on concrete or grout
  publication-title: J Struct Eng
– reference: Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD). Code for design of steel structures. GB50017-2017. Beijing, China: 2017.
– volume: 62
  start-page: 53
  year: 2017
  end-page: 74
  ident: b0185
  article-title: Performance of precast concrete moment frames subjected to column removal: part 2, computational analysis
  publication-title: PCI J
– volume: 141
  start-page: 04014107
  year: 2015
  ident: b0225
  article-title: Load-carrying mechanism to resist progressive collapse of RC buildings
  publication-title: J Struct Eng
– reference: Approved document A, The building regulation, A3: Disproportional collapse, UK HM Government, London, UK, 2010.
– volume: 141
  start-page: 373
  year: 2017
  end-page: 385
  ident: b0095
  article-title: Analytical study on reinforced concrete frames subject to compressive arch action
  publication-title: Eng Struct
– volume: 22
  start-page: 3995
  year: 2018
  end-page: 4010
  ident: b0165
  article-title: Experimental investigation on vulnerability of precast RC beam-column joints to progressive collapse
  publication-title: KSCE J Civ Eng
– volume: 93
  start-page: 85
  year: 2015
  end-page: 96
  ident: b0135
  article-title: Behaviour of precast concrete beam–column sub-assemblages subject to column removal
  publication-title: Eng Struct
– volume: 55
  start-page: 90
  year: 2013
  end-page: 106
  ident: b0045
  article-title: Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages
  publication-title: Eng Struct
– volume: 112
  start-page: 429
  year: 2015
  end-page: 438
  ident: b0090
  article-title: Collapse test of three-story half-scale reinforced concrete frame building
  publication-title: ACI Struct J
– volume: 146
  start-page: 04020170
  year: 2020
  ident: b0195
  article-title: Experimental and numerical investigation on progressive collapse resistance of post-tensioned precast concrete beam-column subassemblages
  publication-title: J Struct Eng
– volume: 159
  start-page: 14
  year: 2018
  end-page: 27
  ident: b0260
  article-title: Numerical study of progressive collapse resistance of RC beam-slab substructures under perimeter column removal scenarios
  publication-title: Eng Struct
– volume: 105
  start-page: 433
  issue: 3
  year: 2008
  ident: 10.1016/j.engstruct.2023.116174_b0050
  article-title: Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures
  publication-title: ACI Struct J
– volume: 145
  start-page: 04018248
  year: 2019
  ident: 10.1016/j.engstruct.2023.116174_b0080
  article-title: Improving behavior of reinforced concrete frames to resist progressive collapse through steel bracings
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0002263
– volume: 32
  year: 2020
  ident: 10.1016/j.engstruct.2023.116174_b0160
  article-title: Effect of concrete infill walls on the progressive collapse performance of precast concrete framed substructures
  publication-title: J of Build Eng
– volume: 139
  start-page: 233
  year: 2013
  ident: 10.1016/j.engstruct.2023.116174_b0060
  article-title: Structural behavior of RC beam-column subassemblages under a middle column removal scenario
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0000658
– volume: 32
  start-page: 04018027
  year: 2018
  ident: 10.1016/j.engstruct.2023.116174_b0150
  article-title: Numerical investigation on the progressive collapse behavior of precast reinforced concrete frame subassemblages
  publication-title: J Perform Constr Facil
  doi: 10.1061/(ASCE)CF.1943-5509.0001179
– volume: 19
  start-page: 172
  year: 2005
  ident: 10.1016/j.engstruct.2023.116174_b0005
  article-title: Ronan point apartment tower collapse and its effect on building codes
  publication-title: J Perform Constr Facil
  doi: 10.1061/(ASCE)0887-3828(2005)19:2(172)
– volume: 55
  start-page: 90
  year: 2013
  ident: 10.1016/j.engstruct.2023.116174_b0045
  article-title: Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2011.08.040
– volume: 200
  year: 2019
  ident: 10.1016/j.engstruct.2023.116174_b0175
  article-title: Static load test on progressive collapse resistance of fully assembled precast concrete frame structure
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.109719
– volume: 93
  start-page: 85
  year: 2015
  ident: 10.1016/j.engstruct.2023.116174_b0135
  article-title: Behaviour of precast concrete beam–column sub-assemblages subject to column removal
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2015.03.027
– volume: 149
  start-page: 91
  year: 2017
  ident: 10.1016/j.engstruct.2023.116174_b0065
  article-title: Experimental investigation of RC beam-slab substructures against progressive collapse subject to an edge-column-removal scenario
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2016.07.039
– volume: 141
  start-page: 373
  year: 2017
  ident: 10.1016/j.engstruct.2023.116174_b0095
  article-title: Analytical study on reinforced concrete frames subject to compressive arch action
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2017.03.039
– volume: 22
  start-page: 3995
  year: 2018
  ident: 10.1016/j.engstruct.2023.116174_b0165
  article-title: Experimental investigation on vulnerability of precast RC beam-column joints to progressive collapse
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-018-1518-0
– volume: 251
  year: 2022
  ident: 10.1016/j.engstruct.2023.116174_b0205
  article-title: Effects of loading regimes on the structural behavior of RC beam-column sub-assemblages against disproportionate collapse
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2021.113470
– ident: 10.1016/j.engstruct.2023.116174_b0040
– volume: 142
  start-page: 552
  year: 2017
  ident: 10.1016/j.engstruct.2023.116174_b0170
  article-title: Investigation of precast RC beam-column assemblies under column-loss scenario
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2017.03.120
– ident: 10.1016/j.engstruct.2023.116174_b0030
– start-page: 1101
  year: 2015
  ident: 10.1016/j.engstruct.2023.116174_b0130
  article-title: Experimental study on precast beam column connections constructed using RC corbel and steel billet under progressive collapse scenario
– year: 2007
  ident: 10.1016/j.engstruct.2023.116174_b0255
– ident: 10.1016/j.engstruct.2023.116174_b0210
– volume: 84
  start-page: 502
  year: 1987
  ident: 10.1016/j.engstruct.2023.116174_b0220
  article-title: Scale relations for reinforced concrete beam–column joints
  publication-title: ACI Struct J
– volume: 112
  start-page: 429
  issue: 4
  year: 2015
  ident: 10.1016/j.engstruct.2023.116174_b0090
  article-title: Collapse test of three-story half-scale reinforced concrete frame building
  publication-title: ACI Struct J
– volume: 116
  start-page: 171
  issue: 2
  year: 2019
  ident: 10.1016/j.engstruct.2023.116174_b0155
  article-title: Investigation into resilience of precast concrete floors against progressive collapse
  publication-title: ACI Struct J
– volume: 33
  year: 2021
  ident: 10.1016/j.engstruct.2023.116174_b0125
  article-title: Numerical evaluation of the reliability of using single-story substructures to study progressive collapse behaviour of multi-story RC frames
  publication-title: J of Build Eng
– ident: 10.1016/j.engstruct.2023.116174_b0245
– volume: 109
  year: 2020
  ident: 10.1016/j.engstruct.2023.116174_b0115
  article-title: Influence of horizontal restraints on the behaviour of vertical disproportionate collapse of RC moment frames
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2019.104324
– volume: 143
  start-page: 04017090
  year: 2017
  ident: 10.1016/j.engstruct.2023.116174_b0230
  article-title: Progressive collapse resistance of precast concrete frames with discontinuous reinforcement in the joint
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0001828
– volume: 62
  start-page: 53
  year: 2017
  ident: 10.1016/j.engstruct.2023.116174_b0185
  article-title: Performance of precast concrete moment frames subjected to column removal: part 2, computational analysis
  publication-title: PCI J
  doi: 10.15554/pcij62.5-01
– volume: 15
  start-page: 1097
  year: 2021
  ident: 10.1016/j.engstruct.2023.116174_b0020
  article-title: A preliminary analysis and discussion of the condominium building collapse in surfside, Florida, US, June 24, 2021
  publication-title: Front Struct Civ Eng
  doi: 10.1007/s11709-021-0766-0
– volume: 149
  start-page: 2
  year: 2017
  ident: 10.1016/j.engstruct.2023.116174_b0120
  article-title: Numerical investigations on static and dynamic responses of reinforced concrete sub-assemblages under progressive collapse
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2016.07.042
– ident: 10.1016/j.engstruct.2023.116174_b0035
– volume: 225
  year: 2020
  ident: 10.1016/j.engstruct.2023.116174_b0070
  article-title: Effect of boundary conditions on progressive collapse resistance of RC beam-slab assemblies under edge column removal scenario
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2020.111272
– volume: 111
  start-page: 80
  year: 2016
  ident: 10.1016/j.engstruct.2023.116174_b0075
  article-title: Experimental study on the progressive collapse performance of RC frames with infill walls
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2015.12.010
– volume: 131
  start-page: 6
  issue: 1
  year: 2005
  ident: 10.1016/j.engstruct.2023.116174_b0015
  article-title: Structural responses of world trade center under aircraft attacks
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(2005)131:1(6)
– volume: 168
  start-page: 721
  year: 2018
  ident: 10.1016/j.engstruct.2023.116174_b0100
  article-title: New analytical calculation models for compressive arch action in reinforced concrete structures
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2018.04.097
– volume: 141
  start-page: 04014107
  year: 2015
  ident: 10.1016/j.engstruct.2023.116174_b0225
  article-title: Load-carrying mechanism to resist progressive collapse of RC buildings
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0001046
– volume: 159
  start-page: 14
  year: 2018
  ident: 10.1016/j.engstruct.2023.116174_b0260
  article-title: Numerical study of progressive collapse resistance of RC beam-slab substructures under perimeter column removal scenarios
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2017.12.038
– volume: 89
  start-page: 162
  year: 2015
  ident: 10.1016/j.engstruct.2023.116174_b0010
  article-title: Progressive collapse evaluation of Murrah Federal Building following sudden loss of column G20
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2015.02.003
– volume: 146
  start-page: 04020170
  year: 2020
  ident: 10.1016/j.engstruct.2023.116174_b0195
  article-title: Experimental and numerical investigation on progressive collapse resistance of post-tensioned precast concrete beam-column subassemblages
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0002714
– volume: 111
  start-page: 1225
  issue: 5
  year: 2014
  ident: 10.1016/j.engstruct.2023.116174_b0110
  article-title: Progressive collapse resistance demand of RC frames under catenary mechanism
  publication-title: ACI Struct J
– ident: 10.1016/j.engstruct.2023.116174_b0215
– ident: 10.1016/j.engstruct.2023.116174_b0240
– volume: 147
  start-page: 04021107
  year: 2021
  ident: 10.1016/j.engstruct.2023.116174_b0145
  article-title: Progressive collapse resistance of emulative precast concrete frames with various reinforcing details
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0003065
– volume: 206
  year: 2020
  ident: 10.1016/j.engstruct.2023.116174_b0105
  article-title: Analytical study on one-way reinforced concrete beam-slab sub-structures under compressive arch action and catenary action
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.110032
– volume: 198
  year: 2019
  ident: 10.1016/j.engstruct.2023.116174_b0190
  article-title: Progressive collapse resistance of precast concrete beam-column sub-assemblages with high-performance dry connections
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.109552
– volume: 106
  start-page: 600
  issue: 5
  year: 2009
  ident: 10.1016/j.engstruct.2023.116174_b0055
  article-title: Progressive collapse resistance of axially-restrained frame beams
  publication-title: ACI Struct J
– volume: 98
  start-page: 186
  year: 2015
  ident: 10.1016/j.engstruct.2023.116174_b0140
  article-title: Progressive collapse resistance of precast beam–column sub-assemblages with engineered cementitious composites
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2015.04.034
– volume: 22
  start-page: 103
  year: 2000
  ident: 10.1016/j.engstruct.2023.116174_b0235
  article-title: Specimen and aggregate size effect on concrete compressive strength
  publication-title: Cem, Concr, Aggregates ASTM
  doi: 10.1520/CCA10470J
– volume: 256
  year: 2022
  ident: 10.1016/j.engstruct.2023.116174_b0250
  article-title: Experimental and numerical investigation of the progressive collapse of precast reinforced concrete frame substructures with wet connections
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2022.114010
– volume: 145
  start-page: 04018235
  year: 2019
  ident: 10.1016/j.engstruct.2023.116174_b0200
  article-title: Static and dynamic responses of reinforced concrete structures under sudden column removal scenario subjected to distributed loading
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0002214
– volume: 62
  start-page: 35
  year: 2017
  ident: 10.1016/j.engstruct.2023.116174_b0180
  article-title: Performance of precast concrete moment frames subjected to column removal: part 1, experimental study
  publication-title: PCI J
  doi: 10.15554/pcij62.5-02
– ident: 10.1016/j.engstruct.2023.116174_b0025
– volume: 111
  start-page: 505
  year: 1985
  ident: 10.1016/j.engstruct.2023.116174_b0265
  article-title: Friction coefficient of steel on concrete or grout
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(1985)111:3(505)
– volume: 30
  start-page: 2478
  year: 2008
  ident: 10.1016/j.engstruct.2023.116174_b0085
  article-title: Response of a reinforced concrete infilled-frame structure to removal of two adjacent columns
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2008.01.019
SSID ssj0002880
Score 2.5158148
Snippet •Conduct tests on PC beam-column assemblies with dry connections.•Establish high-fidelity 3D numerical models of PC beam-column assemblies.•Investigate...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 116174
SubjectTerms Experimental and numerical analyses
PC frame with dry connections
Progressive collapse
Resistance calculation procedure
Resistance contribution analysis
Title Progressive collapse analysis of precast reinforced concrete beam-column assemblies with different dry connections
URI https://dx.doi.org/10.1016/j.engstruct.2023.116174
Volume 287
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfOKz7MHrtmmym4e3UixVsQha6C3sbiZS0bS0QfDib3cmj9qC4MFbEmYgOzvMfCzffsPYVZKqQCvwhBNGUiC-lSJKXSkQTGB7ABP4Cd13fhj5w7G8m6hJg_XruzBEq6xqf1nTi2pdfelU0ezMp9POU0FRdCPs3zQbLyTZbSkDyvL21w_Nww2L6WlkLMh6g-MF2Usp09qmKeJYPrCfy9871FrXGeyx3Qou8l75R_usAdkB21kTETxki0eiWBGb9QN4sa3zJXBdiY3wWcrnuEK9zPkCCplUXDPaZQgXc-AG9LuwVKIyjjga3g2C0iWn41leD0_JebL4JJes4G1lyyM2Htw894eimqQgrOfLXECIvUqniA4MIg6ENJ4LSRBYacEmAS4atKMRWBmQGp-8CLzQRKGXdh3t-4ggjlkzm2Vwwji44Kk0MMpBKKZ0VztpYAk2KWtNatUp8-voxbaSGadpF29xzSd7jVdhjynscRn2U-asHOel0sbfLtf19sQbSRNjP_jL-ew_zudsm97okLerLlgTDeAS0UluWkX6tdhW7_Z-OPoGG77oPg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60PagH8Ylv9-B1bZpk8_BWitJqWwQVvIXdzUQUjaUNgv_emTyKguDBW0h2IDu7zPexfPsNwFmaqVAr9KQTxb4kfuvLOHN9SWSC4AFNGKR833k8CQYP_vWjelyCfnMXhmWVde2vanpZres3nTqbnenzc-eulCi6MeE398aLgmVoszuVakG7N7wZTBYF2Y3KBmo8XnLAD5kX5k-VU-s5NxKnCkKQ7v8OUt-A52oD1mvGKHrVT23CEuZbsPbNR3AbZressmJB6weKcmWncxS69hsR75mY0iT1vBAzLJ1Sado0LifGWKAwqN-k5SqVC6LS-GaIl84Fn9CKpn9KIdLZJ4fkpXQrn-_Aw9XlfX8g62YK0nqBX0iMCK50RgTBEOkgVuO5mIah9S3aNKRJo3Y0cSuDvqYnL0YvMnHkZV1HBwGRiF1o5e857oFAFz2VhUY5xMaU7monCy0zJ2Wtyazah6DJXmJrp3FuePGaNJKyl2SR9oTTnlRp3wdnETitzDb-Drlolif5sW8SgoS_gg_-E3wKK4P78SgZDSc3h7DKX_jMt6uOoEWD8ZjISmFO6s34BQvI6u8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progressive+collapse+analysis+of+precast+reinforced+concrete+beam-column+assemblies+with+different+dry+connections&rft.jtitle=Engineering+structures&rft.au=Zhao%2C+Zidong&rft.au=Cheng%2C+Xiaowei&rft.au=Li%2C+Yi&rft.au=Diao%2C+Mengzhu&rft.date=2023-07-15&rft.issn=0141-0296&rft.volume=287&rft.spage=116174&rft_id=info:doi/10.1016%2Fj.engstruct.2023.116174&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engstruct_2023_116174
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon