On the Evolution of Different Types of Green Water Events—Part II: Applicability of a Convolution Approach
Recent research related to the evolution of different types of green water events, generated in wave flume experiments, has shown that some events, such as plunging-dam-break (PDB) and hammer-fist (HF) types, can present multiple-valued water surface elevations during formation at the bow of the str...
Saved in:
Published in | Water (Basel) Vol. 14; no. 4; p. 510 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2073-4441 2073-4441 |
DOI | 10.3390/w14040510 |
Cover
Loading…
Abstract | Recent research related to the evolution of different types of green water events, generated in wave flume experiments, has shown that some events, such as plunging-dam-break (PDB) and hammer-fist (HF) types, can present multiple-valued water surface elevations during formation at the bow of the structure. However, the applicability of analytical models to capture the evolution (i.e., the spatio-temporal variation of water elevations) of these events has not been tested thoroughly. This could be useful when estimating green water loads in the preliminary design stage of marine structures. The present work extends the research by Fontes et al. (On the evolution of different types of green water events, Water, 13, 1148, 2021) to examine the applicability of an analytical convolution approach to represent the variation in time of single-valued water elevations of different types of green water events generated by incident wave trains, particularly PDB and HF types. Detailed experimental measurements using high-speed video in wave flume experiments were used to verify the applicability of the model for single and consecutive green water events of type PDB and HF. The present work is a tentative attempt to compare an analytical approach for HF evolution. Results were also compared with the classic analytical dam-break approach. It was found that the convolution model allows the variation of water elevations in time to be captured better in comparison with the dam-break approach. The convolution model described the trend of water elevations well, particularly at the bow of the structure. The model captured the peak times well in single and consecutive events with multiple-valued water surfaces. Results suggest that this conservative and simplified approach could be a useful engineering tool, if improved and extended, to include the evolution of green water events in time domain simulations. This could be useful in the design stages of marine structures subject to green water events. |
---|---|
AbstractList | Recent research related to the evolution of different types of green water events, generated in wave flume experiments, has shown that some events, such as plunging-dam-break (PDB) and hammer-fist (HF) types, can present multiple-valued water surface elevations during formation at the bow of the structure. However, the applicability of analytical models to capture the evolution (i.e., the spatio-temporal variation of water elevations) of these events has not been tested thoroughly. This could be useful when estimating green water loads in the preliminary design stage of marine structures. The present work extends the research by Fontes et al. (On the evolution of different types of green water events, Water, 13, 1148, 2021) to examine the applicability of an analytical convolution approach to represent the variation in time of single-valued water elevations of different types of green water events generated by incident wave trains, particularly PDB and HF types. Detailed experimental measurements using high-speed video in wave flume experiments were used to verify the applicability of the model for single and consecutive green water events of type PDB and HF. The present work is a tentative attempt to compare an analytical approach for HF evolution. Results were also compared with the classic analytical dam-break approach. It was found that the convolution model allows the variation of water elevations in time to be captured better in comparison with the dam-break approach. The convolution model described the trend of water elevations well, particularly at the bow of the structure. The model captured the peak times well in single and consecutive events with multiple-valued water surfaces. Results suggest that this conservative and simplified approach could be a useful engineering tool, if improved and extended, to include the evolution of green water events in time domain simulations. This could be useful in the design stages of marine structures subject to green water events. |
Audience | Academic |
Author | Silva, Rodolfo Mendoza, Edgar Torres, Lizeth Hernández, Irving D. Fontes, Jassiel V. H. González-Olvera, Marcos A. |
Author_xml | – sequence: 1 givenname: Jassiel V. H. orcidid: 0000-0003-0789-154X surname: Fontes fullname: Fontes, Jassiel V. H. – sequence: 2 givenname: Edgar orcidid: 0000-0002-1991-4721 surname: Mendoza fullname: Mendoza, Edgar – sequence: 3 givenname: Rodolfo orcidid: 0000-0003-0064-9558 surname: Silva fullname: Silva, Rodolfo – sequence: 4 givenname: Irving D. orcidid: 0000-0001-5523-8399 surname: Hernández fullname: Hernández, Irving D. – sequence: 5 givenname: Marcos A. orcidid: 0000-0001-8174-4391 surname: González-Olvera fullname: González-Olvera, Marcos A. – sequence: 6 givenname: Lizeth orcidid: 0000-0002-4937-4586 surname: Torres fullname: Torres, Lizeth |
BookMark | eNptkctKQzEQhoMoeF34BgE3uqjmds5J3ZV6Kwi6UFwe0pyJRtKkJqnSnQ_hE_ok5lAREZNFhplv_hnyb6N1HzwgtE_JMedDcvJGBRGkomQNbTHS8IEQgq7_ijfRXkrPpBwxlLIiW8jdeJyfAJ-_BrfINngcDD6zxkAEn_Hdcg6pT11GAI8fVIZY2FJKn-8ftypmPJmc4tF87qxWU-tsXva4wuPgfyRLOQaln3bRhlEuwd73u4PuL87vxleD65vLyXh0PdC8FnkAoqKmYdRIAaYDwbuyuhRTXivdEWZoZ5hmooGprpVQ0jTSKKKl4pJXU635Djpc6ZaxLwtIuZ3ZpME55SEsUsvqpqoawikt6MEf9Dksoi_bFYpzRgSvSaGOV9SjctBab0KOSpfbwczqYoKxJT9qhpzVktW97NGqQceQUgTTzqOdqbhsKWl7r9ofrwp78ofVNqv-48oQ6_7p-AInaJdj |
CitedBy_id | crossref_primary_10_1007_s40430_023_04611_1 crossref_primary_10_1007_s40430_022_03718_1 |
Cites_doi | 10.3390/w13091148 10.1016/j.marstruc.2018.12.004 10.1016/j.oceaneng.2020.107517 10.1016/j.oceaneng.2015.04.085 10.2534/jjasnaoe1968.1976.140_16 10.1016/j.apor.2018.11.005 10.1115/1.4040050 10.1016/j.marstruc.2019.05.003 10.1016/j.oceaneng.2019.106649 10.1016/j.chaos.2020.110538 10.1016/j.advwatres.2007.08.004 10.5957/jsr.2003.47.4.327 10.1007/s00348-018-2554-8 10.1115/1.4049121 10.1016/j.oceaneng.2015.05.009 10.1016/j.apor.2018.10.022 10.1016/j.oceaneng.2016.11.008 10.1017/S0022112004002691 10.1016/j.jfluidstructs.2012.04.005 10.1088/0957-0233/16/10/009 10.1016/j.oceaneng.2016.04.026 10.1017/S0022112098001918 10.1016/j.oceaneng.2018.03.063 10.1016/j.marstruc.2020.102816 10.1016/j.oceaneng.2020.107658 10.1115/OMAE2018-77184 10.1016/j.oceaneng.2020.107533 10.1016/j.jfluidstructs.2012.05.009 10.2534/jjasnaoe1968.2000.59 10.1016/j.jhydrol.2012.02.035 10.4043/7698-MS 10.3390/w13152063 10.1016/j.oceaneng.2018.10.061 10.1002/(SICI)1099-1085(199609)10:9<1209::AID-HYP380>3.0.CO;2-2 10.1017/S002211200700568X 10.1016/j.apor.2007.10.002 10.1016/S1001-6058(09)60199-2 10.2534/jjasnaoe1968.2002.181 10.1007/s40868-015-0003-6 10.1016/j.apor.2019.01.006 10.1016/S0029-8018(97)10005-1 10.3390/jmse8050327 10.5957/jsr.2009.53.1.7 10.2534/jjasnaoe1968.1997.182_177 10.1007/s40430-020-02702-x |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 |
DOI | 10.3390/w14040510 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2073-4441 |
ExternalDocumentID | A793268261 10_3390_w14040510 |
GeographicLocations | Brazil |
GeographicLocations_xml | – name: Brazil |
GroupedDBID | 2XV 5VS 7XC 8CJ 8FE 8FH A8Z AADQD AAFWJ AAHBH AAYXX ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION D1J E3Z ECGQY EDH GX1 IAO ITC KQ8 MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7S9 ESTFP L.6 PUEGO |
ID | FETCH-LOGICAL-c364t-e451f721f84efde43d44184b36acd02f1df2c247ebc6a4a8f78fa0c8a3835bcc3 |
IEDL.DBID | BENPR |
ISSN | 2073-4441 |
IngestDate | Fri Sep 05 14:21:18 EDT 2025 Mon Jun 30 07:27:56 EDT 2025 Tue Jun 10 21:09:13 EDT 2025 Tue Jul 01 00:23:37 EDT 2025 Thu Apr 24 23:08:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-e451f721f84efde43d44184b36acd02f1df2c247ebc6a4a8f78fa0c8a3835bcc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0789-154X 0000-0003-0064-9558 0000-0001-8174-4391 0000-0001-5523-8399 0000-0002-1991-4721 0000-0002-4937-4586 |
OpenAccessLink | https://www.proquest.com/docview/2633204360?pq-origsite=%requestingapplication% |
PQID | 2633204360 |
PQPubID | 2032318 |
ParticipantIDs | proquest_miscellaneous_2675570311 proquest_journals_2633204360 gale_infotracacademiconefile_A793268261 crossref_primary_10_3390_w14040510 crossref_citationtrail_10_3390_w14040510 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Water (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Yan (ref_1) 2019; 66 Degiuli (ref_3) 2020; 209 Greco (ref_21) 2005; 525 Moussa (ref_44) 1996; 10 Song (ref_55) 2015; 104 ref_12 ref_11 Silva (ref_56) 2020; 219 ref_54 Goda (ref_31) 1976; 1976 ref_19 ref_18 ref_17 Ryu (ref_53) 2007; 29 Rosetti (ref_4) 2019; 65 ref_15 Greco (ref_7) 2012; 33 Chuang (ref_9) 2018; 59 Nakagawa (ref_38) 1969; 19 Stansby (ref_39) 1998; 374 Barcellona (ref_8) 2003; 47 Silva (ref_5) 2017; 140 Vitola (ref_29) 2019; 82 Lee (ref_2) 2020; 195 Greco (ref_20) 2007; 581 Gatin (ref_13) 2019; 171 ref_24 Zhang (ref_30) 2019; 84 Ogawa (ref_33) 2002; 2002 Ogawa (ref_35) 1997; 1997 ref_26 Hamoudi (ref_10) 1998; 25 Silva (ref_22) 2020; 74 Greco (ref_6) 2012; 33 Vitola (ref_36) 2019; 82 Vitola (ref_50) 2018; 157 ref_37 Silva (ref_42) 2020; 42 Vitola (ref_57) 2015; 10 Torres (ref_40) 2020; 214 Kocaman (ref_51) 2012; 432 Ogawa (ref_34) 2000; 2000 Torres (ref_41) 2021; 143 Khojasteh (ref_16) 2020; 209 ref_46 ref_45 Vitola (ref_23) 2018; 140 ref_43 Gottardi (ref_47) 2008; 31 Marsh (ref_28) 2010; 22 Hu (ref_32) 2015; 104 ref_49 ref_48 Mendoza (ref_25) 2020; 143 Zhu (ref_14) 2009; 53 Kawamura (ref_27) 2016; 120 Ryu (ref_52) 2005; 16 |
References_xml | – ident: ref_19 doi: 10.3390/w13091148 – volume: 65 start-page: 154 year: 2019 ident: ref_4 article-title: CFD and Experimental Assessment of Green Water Events on an FPSO Hull Section in Beam Waves publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2018.12.004 – volume: 209 start-page: 107517 year: 2020 ident: ref_16 article-title: Numerical Analysis of Shipping Water Impacting a Step Structure publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107517 – volume: 104 start-page: 40 year: 2015 ident: ref_55 article-title: Surface Velocity and Impact Pressure of Green Water Flow on a Fixed Model Structure in a Large Wave Basin publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2015.04.085 – volume: 1976 start-page: 16 year: 1976 ident: ref_31 article-title: A Study of Shipping Water Pressure on Deck by Two-Dimensional Ship Model Tests publication-title: J. Soc. Nav. Archit. Jpn. doi: 10.2534/jjasnaoe1968.1976.140_16 – volume: 82 start-page: 415 year: 2019 ident: ref_36 article-title: Analytical Convolution Model for Shipping Water Evolution on a Fixed Structure publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2018.11.005 – volume: 140 start-page: 051101 year: 2018 ident: ref_23 article-title: On the Generation of Isolated Green Water Events Using Wet Dam-Break publication-title: J. Offshore Mech. Arct. Eng. doi: 10.1115/1.4040050 – volume: 66 start-page: 272 year: 2019 ident: ref_1 article-title: An Experimental and Numerical Study of Plunging Wave Impact on a Box-Shape Structure publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2019.05.003 – volume: 195 start-page: 106649 year: 2020 ident: ref_2 article-title: Experimental Study on Flow Kinematics and Pressure Distribution of Green Water on a Rectangular Structure publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.106649 – volume: 143 start-page: 110538 year: 2021 ident: ref_41 article-title: Time Fractional Diffusion Equation for Shipping Water Events Simulation publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110538 – volume: 31 start-page: 173 year: 2008 ident: ref_47 article-title: An Accurate Time Integration Method for Simplified Overland Flow Models publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2007.08.004 – volume: 47 start-page: 327 year: 2003 ident: ref_8 article-title: An Experimental Investigation on Bow Water Shipping publication-title: J. Ship Res. doi: 10.5957/jsr.2003.47.4.327 – volume: 59 start-page: 100 year: 2018 ident: ref_9 article-title: Kinematics and Dynamics of Green Water on a Fixed Platform in a Large Wave Basin in Focusing Wave and Random Wave Conditions publication-title: Exp. Fluids doi: 10.1007/s00348-018-2554-8 – ident: ref_49 doi: 10.1115/1.4049121 – volume: 104 start-page: 77 year: 2015 ident: ref_32 article-title: A Combined Wave-Dam-Breaking Model for Rogue Wave Overtopping publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2015.05.009 – ident: ref_48 – volume: 82 start-page: 63 year: 2019 ident: ref_29 article-title: Assessing Shipping Water Vertical Loads on a Fixed Structure by Convolution Model and Wet Dam-Break Tests publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2018.10.022 – volume: 140 start-page: 434 year: 2017 ident: ref_5 article-title: Green Water Loads on FPSOs Exposed to Beam and Quartering Seas, Part II: CFD Simulations publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2016.11.008 – volume: 525 start-page: 309 year: 2005 ident: ref_21 article-title: Shipping of Water on a Two-Dimensional Structure publication-title: J. Fluid Mech. doi: 10.1017/S0022112004002691 – volume: 33 start-page: 127 year: 2012 ident: ref_6 article-title: 3-D Seakeeping Analysis with Water on Deck and Slamming. Part 1: Numerical Solver publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2012.04.005 – ident: ref_17 – ident: ref_45 – volume: 16 start-page: 1945 year: 2005 ident: ref_52 article-title: Use of Bubble Image Velocimetry for Measurement of Plunging Wave Impinging on Structure and Associated Greenwater publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/16/10/009 – volume: 120 start-page: 220 year: 2016 ident: ref_27 article-title: SPH Simulation of Ship Behaviour in Severe Water-Shipping Situations publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2016.04.026 – volume: 374 start-page: 407 year: 1998 ident: ref_39 article-title: The Initial Stages of Dam-Break Flow publication-title: J. Fluid Mech. doi: 10.1017/S0022112098001918 – volume: 157 start-page: 325 year: 2018 ident: ref_50 article-title: Water Elevation Measurements Using Binary Image Analysis for 2D Hydrodynamic Experiments publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.03.063 – volume: 74 start-page: 102816 year: 2020 ident: ref_22 article-title: Violent Water-Structure Interaction: Overtopping Features and Vertical Loads on a Fixed Structure Due to Broken Incident Flows publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2020.102816 – volume: 214 start-page: 107658 year: 2020 ident: ref_40 article-title: Identification of the Advection-Diffusion Equation for Predicting Green Water Propagation publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107658 – ident: ref_54 doi: 10.1115/OMAE2018-77184 – volume: 209 start-page: 107533 year: 2020 ident: ref_3 article-title: Lagrangian Finite-Difference Method for Predicting Green Water Loadings publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107533 – ident: ref_24 – volume: 33 start-page: 148 year: 2012 ident: ref_7 article-title: 3-D Seakeeping Analysis with Water on Deck and Slamming. Part 2: Experiments and Physical Investigation publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2012.05.009 – volume: 2000 start-page: 59 year: 2000 ident: ref_34 article-title: A Prediction Method for Horizontal Impact Pressure on Deck Structures Due to Shipping Water publication-title: J. Soc. Nav. Archit. Jpn. doi: 10.2534/jjasnaoe1968.2000.59 – volume: 432 start-page: 145 year: 2012 ident: ref_51 article-title: The Effect of Lateral Channel Contraction on Dam Break Flows: Laboratory Experiment publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.02.035 – ident: ref_37 – ident: ref_11 doi: 10.4043/7698-MS – ident: ref_18 – ident: ref_26 doi: 10.3390/w13152063 – volume: 171 start-page: 554 year: 2019 ident: ref_13 article-title: Green Sea Loads in Irregular Waves with Finite Volume Method publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.10.061 – volume: 10 start-page: 1209 year: 1996 ident: ref_44 article-title: Analytical Hayami Solution for the Diffusive Wave Flood Routing Problem with Lateral Inflow publication-title: Hydrol. Process. doi: 10.1002/(SICI)1099-1085(199609)10:9<1209::AID-HYP380>3.0.CO;2-2 – volume: 581 start-page: 371 year: 2007 ident: ref_20 article-title: Shipping of Water on a Two-Dimensional Structure. Part 2 publication-title: J. Fluid Mech. doi: 10.1017/S002211200700568X – volume: 29 start-page: 128 year: 2007 ident: ref_53 article-title: Application of Dam-Break Flow to Green Water Prediction publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2007.10.002 – volume: 219 start-page: 108392 year: 2020 ident: ref_56 article-title: Green Water Loads Using the Wet Dam-Break Method and SPH publication-title: Ocean Eng. – volume: 22 start-page: 231 year: 2010 ident: ref_28 article-title: SPH Simulation of Green Water and Ship Flooding Scenarios publication-title: J. Hydrodyn. doi: 10.1016/S1001-6058(09)60199-2 – volume: 2002 start-page: 181 year: 2002 ident: ref_33 article-title: Effect of Ship Type on Green Water Load publication-title: J. Soc. Nav. Archit. Jpn. doi: 10.2534/jjasnaoe1968.2002.181 – ident: ref_46 – ident: ref_12 – volume: 10 start-page: 38 year: 2015 ident: ref_57 article-title: An Alternative for Estimating Shipping Water Height Distribution Due to Green Water on a Ship without Forward Speed publication-title: Mar. Syst. Ocean Technol. doi: 10.1007/s40868-015-0003-6 – volume: 84 start-page: 74 year: 2019 ident: ref_30 article-title: Eliciting Features of 2D Greenwater Overtopping of a Fixed Box Using Modified Dam Break Models publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2019.01.006 – volume: 25 start-page: 715 year: 1998 ident: ref_10 article-title: Significant Load and Green Water on Deck of Offshore Units/Vessels publication-title: Ocean Eng. doi: 10.1016/S0029-8018(97)10005-1 – ident: ref_15 doi: 10.3390/jmse8050327 – ident: ref_43 – volume: 53 start-page: 7 year: 2009 ident: ref_14 article-title: Numerical Research on FPSOs with Green Water Occurrence publication-title: J. Ship Res. doi: 10.5957/jsr.2009.53.1.7 – volume: 143 start-page: 041203 year: 2020 ident: ref_25 article-title: A Detailed Description of Flow-Deck Interaction in Consecutive Green Water Events publication-title: J. Offshore Mech. Arct. Eng. – volume: 1997 start-page: 177 year: 1997 ident: ref_35 article-title: Experimental Study on Shipping Water Volume and Its Load on Deck publication-title: J. Soc. Nav. Archit. Jpn. doi: 10.2534/jjasnaoe1968.1997.182_177 – volume: 19 start-page: 1 year: 1969 ident: ref_38 article-title: Generation and Development of a Hydraulic Bore Due to the Breaking of a Dam (1) publication-title: Bull. Disaster Prev. Res. Inst. – volume: 42 start-page: 623 year: 2020 ident: ref_42 article-title: A Simplified and Open-Source Approach for Multiple-Valued Water Surface Measurements in 2D Hydrodynamic Experiments publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-020-02702-x |
SSID | ssj0000498850 |
Score | 2.2375526 |
Snippet | Recent research related to the evolution of different types of green water events, generated in wave flume experiments, has shown that some events, such as... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 510 |
SubjectTerms | analytical methods Brazil Dams Experiments Flow velocity hydraulic flumes Partial differential equations Propagation Shear stress temporal variation water |
Title | On the Evolution of Different Types of Green Water Events—Part II: Applicability of a Convolution Approach |
URI | https://www.proquest.com/docview/2633204360 https://www.proquest.com/docview/2675570311 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxMxEB3R9EIPiEJRA6UyFRK9rLrr9douF5SWlKSHUiEqclt5_XGKdtMkpeqNH9Ff2F_CzMZZQKq4JiNrZc-M37PHbwDec9xGlFQyqbjiieDKJceeV0kanBZaZFQbRtUWF3J0Jc4nxSQeuC1iWeU6J7aJ2jWWzsiPuMxzescp00-z64S6RtHtamyhsQGbmIJ10YPNk-HF5bfulAXxr9ZFupIUypHfH92Sngx54j8b0ePpuN1jzp7DswgO2WC1mtvwxNcvYOsvycCXMP1aM8RsbPgz-gxrAvscu5wsGdHKBf3U1tOwH4gk52hL1RIPv-4v0U_YePyRDVbX1m1h7B2ZG3ba1N2Qgyg0vgNXZ8Pvp6MkdkxIbC7FMvGiyAJyuqCFD86L3CHa0aLKpbEu5SFzgVsulK-sNMLooHQwqdUGeWpRWZu_gl7d1H4XWGpx98aAli4n3loYkx6rSgXrEMEgp-vD4Xr6ShvlxKmrxbREWkEzXXYz3YeDznS20tB4zOgDrUFJcYXjWBOfB-DXkEJVOVCENJEMZX3YWy9TGQNuUf5xjz686_7GUKH7D1P75oZsVCs4lmWv_z_EG3jK6ZVDW5y9B73l_Ma_ReyxrPajg-3DxpdJ9hvnftqR |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V9gAcEL9ioYBBILhETRzHziJVaGm32qVlqVAreguOf05VUrpbqt54CJ6jD9Un6UziBJAqbr0mo1Fkz4y_iWe-AXjN8RhRUsmo5IpHgisbDR0vo9jbXOQiodowqraYycm--HSQHSzBedcLQ2WVXUxsArWtDf0jX-MyTamPU8Yfjn5ENDWKble7ERqtWWy7s1NM2ebr003c3zecb433NiZRmCoQmVSKReRElnjMe3wunLdOpBYRQS7KVGpjY-4T67nhQrnSSC107lXudWxyjblcVhqTot4bsIIwY4hetPJxPNv92v_VQbyd51ncUhil6TBeOyX-GrL8fw6-q8N_c6Zt3YU7AYyyUWs992DJVffh9l8UhQ_g8EvFECOy8c9go6z2bDNMVVkwSmPn9Kip32HfELkeoyxVZ1z8-r2Ldsmm0_ds1F6TN4W4ZySu2UZd9SpHgdj8Iexfy1o-guWqrtxjYLFBtIABRNqU8uRM63ioSuWNRcSEOeQA3nXLV5hAX05TNA4LTGNopYt-pQfwqhc9ajk7rhJ6S3tQkB-jHqNDOwJ-DTFiFSNFyBaTr2QAq902FcHB58UfcxzAy_41uibdt-jK1SckoxqCsyR58n8VL-DmZO_zTrEznW0_hVucOiyawvBVWF4cn7hniHsW5fNgbAy-X7d9XwLFZxg4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYTgUJU_sbQFg0BwiTZxnNhbCaGlu6suRcsKUdFb6jj2qUpKd0vVGw_B0_A4fRJmEieAVHHrNRmNInvG80088w3AS45hRKYyDXIueSC4LIKh5XkQukIJJSKqDaNqi3m6fyg-HCVHa_Cr7YWhssr2TKwP6qIy9I98wNM4pj7ONBw4XxaxGE_fnX4LaIIU3bS24zQaEzmwlxeYvi3fzsa41684n06-7O0HfsJAYOJUrAIrkshhDuSUsK6wIi4QHSiRx6k2RchdVDhuuJA2N6kWWjmpnA6N0pjXJbkxMeq9BesSo6Lqwfr7yXzxufvDg9hbqSRs6IzieBgOLojLhrzgnyB4fSio49t0EzY8MGWjxpLuwZot78Pdv-gKH8DJp5IhXmST795eWeXY2E9YWTFKaZf0qK7lYV8RxZ6hLFVqXP34uUAbZbPZLhs1V-Z1Ue4liWu2V5WdypEnOX8Ihzeylo-gV1alfQwsNIgc8DBJi5hy5kTrcChz6UyB6AnzyT68aZcvM57KnCZqnGSY0tBKZ91K9-FFJ3ra8HdcJ_Sa9iAjn0Y9RvvWBPwaYsfKRpJQLiZiUR-2223KvLMvsz-m2Yfn3Wt0U7p70aWtzklG1mRnUfTk_yqewW206-zjbH6wBXc4NVvUNeLb0FudndsdhECr_Km3NQbHN23evwFdZhxk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Evolution+of+Different+Types+of+Green+Water+Events%E2%80%94Part+II%3A+Applicability+of+a+Convolution+Approach&rft.jtitle=Water+%28Basel%29&rft.au=Fontes%2C+Jassiel+V.+H.&rft.au=Mendoza%2C+Edgar&rft.au=Silva%2C+Rodolfo&rft.au=Hern%C3%A1ndez%2C+Irving+D.&rft.date=2022-02-01&rft.issn=2073-4441&rft.eissn=2073-4441&rft.volume=14&rft.issue=4&rft.spage=510&rft_id=info:doi/10.3390%2Fw14040510&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_w14040510 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon |