Contributing towards Representative PM Data Coverage by Utilizing Artificial Neural Networks

Atmospheric aerosol particles have a significant impact on both the climatic conditions and human health, especially in densely populated urban areas, where the particle concentrations in several cases can be extremely threatening (increased anthropogenic emissions). Most large cities located in hig...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 11; no. 18; p. 8431
Main Authors Tzanis, Chris G., Alimissis, Anastasios
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2021
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app11188431

Cover

Abstract Atmospheric aerosol particles have a significant impact on both the climatic conditions and human health, especially in densely populated urban areas, where the particle concentrations in several cases can be extremely threatening (increased anthropogenic emissions). Most large cities located in high-income countries have stations responsible for measuring particulate matter and various other parameters, collectively forming an operating monitoring network, which is essential for the purposes of environmental control. In the city of Athens, which is characterized by high population density and accumulates a large number of economic activities, the currently operating monitoring network is responsible, among others, for PM10 and PM2.5 measurements. The need for satisfactory data availability though can be supported by using machine learning methods, such as artificial neural networks. The methodology presented in this study uses a neural network model to provide spatiotemporal estimations of PM10 and PM2.5 concentrations by utilizing the existing PM data in combination with other climatic parameters that affect them. The overall performance of the predictive neural network models’ scheme is enhanced when meteorological parameters (wind speed and temperature) are included in the training process, lowering the error values of the predicted versus the observed time series’ concentrations. Furthermore, this work includes the calculation of the contribution of each predictor, in order to provide a clearer understanding of the relationship between the model’s output and input. The results of this procedure showcase that all PM input stations’ concentrations have an important impact on the estimations. Considering the meteorological variables, the results for PM2.5 seem to be affected more than those for PM10, although when examining PM10 and PM2.5 individually, the wind speed and temperature contribution is on a similar level with the corresponding contribution of the available PM concentrations of the neighbouring stations.
AbstractList Atmospheric aerosol particles have a significant impact on both the climatic conditions and human health, especially in densely populated urban areas, where the particle concentrations in several cases can be extremely threatening (increased anthropogenic emissions). Most large cities located in high-income countries have stations responsible for measuring particulate matter and various other parameters, collectively forming an operating monitoring network, which is essential for the purposes of environmental control. In the city of Athens, which is characterized by high population density and accumulates a large number of economic activities, the currently operating monitoring network is responsible, among others, for PM10 and PM2.5 measurements. The need for satisfactory data availability though can be supported by using machine learning methods, such as artificial neural networks. The methodology presented in this study uses a neural network model to provide spatiotemporal estimations of PM10 and PM2.5 concentrations by utilizing the existing PM data in combination with other climatic parameters that affect them. The overall performance of the predictive neural network models’ scheme is enhanced when meteorological parameters (wind speed and temperature) are included in the training process, lowering the error values of the predicted versus the observed time series’ concentrations. Furthermore, this work includes the calculation of the contribution of each predictor, in order to provide a clearer understanding of the relationship between the model’s output and input. The results of this procedure showcase that all PM input stations’ concentrations have an important impact on the estimations. Considering the meteorological variables, the results for PM2.5 seem to be affected more than those for PM10, although when examining PM10 and PM2.5 individually, the wind speed and temperature contribution is on a similar level with the corresponding contribution of the available PM concentrations of the neighbouring stations.
Author Tzanis, Chris G.
Alimissis, Anastasios
Author_xml – sequence: 1
  givenname: Chris G.
  orcidid: 0000-0002-7345-2900
  surname: Tzanis
  fullname: Tzanis, Chris G.
– sequence: 2
  givenname: Anastasios
  surname: Alimissis
  fullname: Alimissis, Anastasios
BookMark eNptUV1LHEEQHIJCjPHJP7Dgo1ycntmbj0e5xEQwiYi-CUPvbO8x57qzzswp5tdnz1OQkH6ppqmqLro_sZ0hDsTYIfAvUlp-guMIAMbUEj6wPcG1mska9M67_iM7yHnFp7IgDfA9druIQ0mhWZcwLKsSnzC1ubqiMVGmoWAJj1Rd_qy-YsFqER8p4ZKq5rm6KaEPfzai01RCF3zAvvpF6_QC5Smmu_yZ7XbYZzp4xX12c_btevFjdvH7-_ni9GLmparLjISVpBr0WIsOjdFctK31hDUBVwgtlw3Zlmsg6zurLXgwfN6B0kJYhXKfnW9924grN6Zwj-nZRQzuZRDT0uEU0vfkJs-mm09bOIq6qw3KVkDDtfBK20bWk9fR1mtM8WFNubhVXKdhiu_EXCupjZJmYsGW5VPMOVHnfNgca3NMDL0D7jY_ce9-MmmO_9G8Jf0f-y8x3Y8w
CitedBy_id crossref_primary_10_1016_j_jenvman_2024_122093
crossref_primary_10_1016_j_scitotenv_2023_162590
crossref_primary_10_3390_rs14030751
Cites_doi 10.5194/acp-13-1377-2013
10.1016/j.scitotenv.2013.01.077
10.1100/tsw.2007.52
10.1016/j.atmosenv.2017.01.004
10.1002/ep.11937
10.1016/j.atmosenv.2005.01.050
10.1002/we.1620
10.1007/s11869-019-00739-z
10.5194/acp-14-6953-2014
10.1016/j.jaci.2011.11.021
10.1016/j.atmosenv.2010.12.011
10.1016/j.atmosenv.2007.07.003
10.1016/j.apgeochem.2014.07.002
10.2478/s11600-007-0020-8
10.1016/j.jhydrol.2012.10.019
10.3390/atmos11070722
10.1080/01431160701767575
10.1016/j.scitotenv.2016.05.217
10.1007/s00038-015-0690-y
10.1016/j.envint.2014.10.005
10.1016/j.scitotenv.2018.02.096
10.1002/ep.10455
10.1016/j.envpol.2011.12.018
10.1016/j.atmosres.2017.09.006
10.1016/j.atmosenv.2018.07.058
10.1186/1476-069X-12-43
10.1002/ep.11617
10.1016/j.atmosenv.2014.02.059
10.1007/s40572-017-0168-6
10.1007/s00477-018-01644-0
10.1021/es049352m
10.1007/s10661-019-7901-6
10.2174/1875040001104010021
10.1016/j.atmosenv.2010.08.011
10.3390/s21051770
10.1289/ehp.0800108
10.1016/j.ins.2020.08.003
10.3390/s21041235
10.1016/j.ijepes.2015.02.006
10.1016/j.engappai.2011.07.006
10.1016/j.scitotenv.2013.05.062
10.1016/j.jenvman.2015.12.012
10.1016/j.envpol.2016.07.042
10.1016/j.scitotenv.2012.06.011
10.1002/ep.11731
10.1007/s11869-020-00925-4
10.1016/j.envint.2006.03.012
10.1016/j.envpol.2018.11.080
10.1016/0893-6080(89)90020-8
10.1007/s13181-011-0203-1
10.1016/j.scitotenv.2019.02.291
10.1016/j.atmosres.2019.104623
10.1016/j.envint.2015.11.007
10.1007/s11356-016-6565-9
10.3390/atmos12040499
10.1016/j.annepidem.2009.01.018
10.1007/s13762-012-0150-7
10.1016/j.envint.2016.01.013
10.3389/fendo.2018.00680
10.1093/aje/kwr425
10.3390/rs12244142
10.3390/atmos11070686
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app11188431
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_a4ebf5fa80a24f48a3d21b072c679b34
10_3390_app11188431
GeographicLocations Greece
GeographicLocations_xml – name: Greece
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c364t-e293e6baca42fa88702dd9cea4e106a1d03be9d071e9cf9791c1805f1672296a3
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:25:51 EDT 2025
Mon Jun 30 07:30:37 EDT 2025
Thu Apr 24 23:06:07 EDT 2025
Tue Jul 01 00:51:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-e293e6baca42fa88702dd9cea4e106a1d03be9d071e9cf9791c1805f1672296a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7345-2900
OpenAccessLink https://doaj.org/article/a4ebf5fa80a24f48a3d21b072c679b34
PQID 2576378638
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_a4ebf5fa80a24f48a3d21b072c679b34
proquest_journals_2576378638
crossref_citationtrail_10_3390_app11188431
crossref_primary_10_3390_app11188431
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Proietti (ref_14) 2016; 218
Fernando (ref_39) 2012; 163
Chen (ref_25) 2012; 175
Hamanaka (ref_22) 2018; 9
Suh (ref_29) 2003; 1
Kim (ref_24) 2015; 74
ref_57
ref_12
Kulluk (ref_56) 2012; 25
Tzanis (ref_21) 2008; 29
Chattopadhyay (ref_58) 2007; 55
Akkala (ref_32) 2010; 29
Tzanis (ref_38) 2019; 246
ref_59
Taghvaee (ref_53) 2018; 628–629
Amanollahi (ref_18) 2013; 10
Turias (ref_65) 2019; 33
Piotrowski (ref_60) 2013; 476
Fallahi (ref_61) 2018; 199
Akay (ref_43) 2014; 17
Janssen (ref_31) 2013; 463–464
Curtis (ref_11) 2016; 32
Garson (ref_50) 1991; 6
ref_67
Zanobetti (ref_30) 2009; 117
Corizzo (ref_41) 2021; 546
Paoletti (ref_17) 2007; 7
Turias (ref_68) 2019; 191
ref_28
Alimissis (ref_63) 2018; 191
Gupta (ref_48) 2009; 114
Orru (ref_6) 2017; 4
Yerrabolu (ref_35) 2012; 32
Argyropoulos (ref_54) 2016; 568
Rahimpour (ref_62) 2021; 14
Anderson (ref_7) 2015; 60
Varotsos (ref_8) 2014; 89
Akkala (ref_33) 2011; 4
Gurjar (ref_4) 2010; 44
Varotsos (ref_20) 2014; 14
Barca (ref_15) 2014; 48
Mavrakou (ref_51) 2012; 433
Adams (ref_64) 2016; 168
Locosselli (ref_13) 2019; 666
Urda (ref_66) 2021; 4
Tzanis (ref_52) 2019; 230
Willers (ref_5) 2016; 89–90
Li (ref_46) 2017; 152
Fang (ref_9) 2013; 13
Gummadi (ref_36) 2014; 34
Vega (ref_16) 2011; 45
Beelen (ref_23) 2016; 87
Pascal (ref_10) 2013; 449
Bessa (ref_42) 2015; 72
Akkala (ref_34) 2012; 32
Anderson (ref_19) 2012; 8
Chellali (ref_47) 2016; 23
Hoek (ref_1) 2013; 12
Hornik (ref_55) 1989; 2
ref_45
Laumbach (ref_26) 2012; 129
ref_44
Mirzaei (ref_37) 2019; 12
Liu (ref_49) 2005; 39
ref_3
Dockery (ref_27) 2009; 19
Hooyberghs (ref_40) 2005; 39
Cairncross (ref_2) 2007; 41
References_xml – volume: 13
  start-page: 1377
  year: 2013
  ident: ref_9
  article-title: Air pollution and associated human mortality: The role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present
  publication-title: Atmos. Chem. Phys. Discuss.
  doi: 10.5194/acp-13-1377-2013
– volume: 449
  start-page: 390
  year: 2013
  ident: ref_10
  article-title: Assessing the public health impacts of urban air pollution in 25 European cities: Results of the Aphekom project
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.01.077
– volume: 7
  start-page: 1
  year: 2007
  ident: ref_17
  article-title: Impacts of Air Pollution and Climate Change on Forest Ecosystems—Emerging Research Needs
  publication-title: Sci. World J.
  doi: 10.1100/tsw.2007.52
– volume: 152
  start-page: 477
  year: 2017
  ident: ref_46
  article-title: Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China: Methods and assessment
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2017.01.004
– volume: 34
  start-page: 169
  year: 2014
  ident: ref_36
  article-title: Interpolation techniques for modeling and estimating indoor radon concentrations in Ohio: Comparative study
  publication-title: Environ. Prog. Sustain. Energy
  doi: 10.1002/ep.11937
– volume: 39
  start-page: 3279
  year: 2005
  ident: ref_40
  article-title: A neural network forecast for daily average PM10 concentrations in Belgium
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2005.01.050
– volume: 17
  start-page: 1093
  year: 2014
  ident: ref_43
  article-title: Experimental investigation of the root flow in a horizontal axis wind turbine
  publication-title: Wind. Energy
  doi: 10.1002/we.1620
– volume: 12
  start-page: 1215
  year: 2019
  ident: ref_37
  article-title: Evaluation of linear, nonlinear, and hybrid models for predicting PM2.5 based on a GTWR model and MODIS AOD data
  publication-title: Air Qual. Atmos. Health
  doi: 10.1007/s11869-019-00739-z
– volume: 14
  start-page: 6953
  year: 2014
  ident: ref_20
  article-title: New spectral functions of the near-ground albedo derived from aircraft diffraction spectrometer observations
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-14-6953-2014
– volume: 129
  start-page: 3
  year: 2012
  ident: ref_26
  article-title: Respiratory health effects of air pollution: Update on biomass smoke and traffic pollution
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2011.11.021
– volume: 45
  start-page: 1242
  year: 2011
  ident: ref_16
  article-title: City scale assessment model for air pollution effects on the cultural heritage
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2010.12.011
– volume: 41
  start-page: 8442
  year: 2007
  ident: ref_2
  article-title: A novel air pollution index based on the relative risk of daily mortality associated with short-term exposure to common air pollutants
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2007.07.003
– volume: 48
  start-page: 122
  year: 2014
  ident: ref_15
  article-title: Impact of air pollution in deterioration of carbonate building materials in Italian urban environments
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2014.07.002
– volume: 55
  start-page: 369
  year: 2007
  ident: ref_58
  article-title: Feed forward Artificial Neural Network model to predict the average summer-monsoon rainfall in India
  publication-title: Acta Geophys.
  doi: 10.2478/s11600-007-0020-8
– volume: 476
  start-page: 97
  year: 2013
  ident: ref_60
  article-title: A comparison of methods to avoid overfitting in neural networks training in the case of catchment runoff modelling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.10.019
– volume: 114
  start-page: 1
  year: 2009
  ident: ref_48
  article-title: Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: A neural network approach
  publication-title: J. Geophys. Res. Space Phys.
– ident: ref_28
  doi: 10.3390/atmos11070722
– volume: 29
  start-page: 2507
  year: 2008
  ident: ref_21
  article-title: Tropospheric aerosol forcing of climate: A case study for the greater area of Greece
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701767575
– volume: 568
  start-page: 124
  year: 2016
  ident: ref_54
  article-title: Source apportionment of the redox activity of urban quasi-ultrafine particles (PM0.49) in Thessaloniki following the increased biomass burning due to the economic crisis in Greece
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.05.217
– volume: 60
  start-page: 619
  year: 2015
  ident: ref_7
  article-title: Quantifying the health impacts of ambient air pollutants: Recommendations of a WHO/Europe project
  publication-title: Int. J. Public Health
  doi: 10.1007/s00038-015-0690-y
– volume: 74
  start-page: 136
  year: 2015
  ident: ref_24
  article-title: A review on the human health impact of airborne particulate matter
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2014.10.005
– volume: 628–629
  start-page: 672
  year: 2018
  ident: ref_53
  article-title: Source apportionment of ambient PM2.5 in two locations in central Tehran using the Positive Matrix Factorization (PMF) model
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.02.096
– volume: 29
  start-page: 134
  year: 2010
  ident: ref_32
  article-title: Interpolation techniques and associated software for environmental data
  publication-title: Environ. Prog. Sustain. Energy
  doi: 10.1002/ep.10455
– volume: 163
  start-page: 62
  year: 2012
  ident: ref_39
  article-title: Forecasting PM10 in metropolitan areas: Efficacy of neural networks
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.12.018
– volume: 199
  start-page: 93
  year: 2018
  ident: ref_61
  article-title: Estimating solar radiation using NOAA/AVHRR and ground measurement data
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2017.09.006
– volume: 191
  start-page: 205
  year: 2018
  ident: ref_63
  article-title: Spatial estimation of urban air pollution with the use of artificial neural network models
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2018.07.058
– volume: 12
  start-page: 43
  year: 2013
  ident: ref_1
  article-title: Long-term air pollution exposure and cardio-respiratory mortality: A review
  publication-title: Environ. Health
  doi: 10.1186/1476-069X-12-43
– volume: 32
  start-page: 355
  year: 2012
  ident: ref_34
  article-title: Knowledge-based neural network approaches for modeling and estimating radon concentrations
  publication-title: Environ. Prog. Sustain. Energy
  doi: 10.1002/ep.11617
– volume: 89
  start-page: 721
  year: 2014
  ident: ref_8
  article-title: Signature of tropospheric ozone and nitrogen dioxide from space: A case study for Athens, Greece
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2014.02.059
– volume: 4
  start-page: 504
  year: 2017
  ident: ref_6
  article-title: The Interplay of Climate Change and Air Pollution on Health
  publication-title: Curr. Environ. Health Rep.
  doi: 10.1007/s40572-017-0168-6
– volume: 33
  start-page: 801
  year: 2019
  ident: ref_65
  article-title: Spatial and meteorological relevance in NO2 estimations: A case study in the Bay of Algeciras (Spain)
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-018-01644-0
– volume: 39
  start-page: 3269
  year: 2005
  ident: ref_49
  article-title: Estimating Ground-Level PM2.5in the Eastern United States Using Satellite Remote Sensing
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es049352m
– volume: 191
  start-page: 727
  year: 2019
  ident: ref_68
  article-title: An artificial neural network ensemble approach to generate air pollution maps
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-019-7901-6
– volume: 4
  start-page: 21
  year: 2011
  ident: ref_33
  article-title: Development of an ANN interpolation scheme for estimating missing radon concentrations in Ohio
  publication-title: Open Environ. Biol. Monit. J.
  doi: 10.2174/1875040001104010021
– volume: 44
  start-page: 4606
  year: 2010
  ident: ref_4
  article-title: Human health risks in megacities due to air pollution
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2010.08.011
– ident: ref_67
  doi: 10.3390/s21051770
– ident: ref_3
– volume: 117
  start-page: 898
  year: 2009
  ident: ref_30
  article-title: The Effect of Fine and Coarse Particulate Air Pollution on Mortality: A National Analysis
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.0800108
– volume: 546
  start-page: 701
  year: 2021
  ident: ref_41
  article-title: Multi-aspect renewable energy forecasting
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.08.003
– ident: ref_45
  doi: 10.3390/s21041235
– volume: 72
  start-page: 16
  year: 2015
  ident: ref_42
  article-title: Probabilistic solar power forecasting in smart grids using distributed information
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.02.006
– volume: 25
  start-page: 11
  year: 2012
  ident: ref_56
  article-title: Training neural networks with harmony search algorithms for classification problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2011.07.006
– volume: 1
  start-page: 221
  year: 2003
  ident: ref_29
  article-title: Particulate matter
  publication-title: Expo. Assess. Occup. Environ. Epidemiol.
– volume: 463–464
  start-page: 20
  year: 2013
  ident: ref_31
  article-title: Short-term effects of PM2.5, PM10 and PM2.5–10 on daily mortality in the Netherlands
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.05.062
– volume: 168
  start-page: 133
  year: 2016
  ident: ref_64
  article-title: Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2015.12.012
– volume: 218
  start-page: 586
  year: 2016
  ident: ref_14
  article-title: Impacts of air pollution on cultural heritage corrosion at European level: What has been achieved and what are the future scenarios
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.07.042
– volume: 433
  start-page: 31
  year: 2012
  ident: ref_51
  article-title: The impact of sea breeze under different synoptic patterns on air pollution within Athens basin
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.06.011
– volume: 6
  start-page: 47
  year: 1991
  ident: ref_50
  article-title: Interpreting neural-network connection weights
  publication-title: AI Expert
– volume: 32
  start-page: 1223
  year: 2012
  ident: ref_35
  article-title: Correction Model-Based ANN Modeling Approach for the Estimation of Radon Concentrations in Ohio
  publication-title: Environ. Prog. Sustain. Energy
  doi: 10.1002/ep.11731
– volume: 14
  start-page: 191
  year: 2021
  ident: ref_62
  article-title: Air quality data series estimation based on machine learning approaches for urban environments
  publication-title: Air Qual. Atmos. Health
  doi: 10.1007/s11869-020-00925-4
– volume: 32
  start-page: 815
  year: 2016
  ident: ref_11
  article-title: Adverse health effects of outdoor air pollutants
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2006.03.012
– volume: 246
  start-page: 89
  year: 2019
  ident: ref_38
  article-title: Applying linear and nonlinear models for the estimation of particulate matter variability
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.11.080
– volume: 2
  start-page: 359
  year: 1989
  ident: ref_55
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– volume: 8
  start-page: 166
  year: 2012
  ident: ref_19
  article-title: Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health
  publication-title: J. Med. Toxicol.
  doi: 10.1007/s13181-011-0203-1
– volume: 666
  start-page: 652
  year: 2019
  ident: ref_13
  article-title: The role of air pollution and climate on the growth of urban trees
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.291
– volume: 230
  start-page: 104623
  year: 2019
  ident: ref_52
  article-title: Recent climate trends over Greece
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2019.104623
– volume: 87
  start-page: 66
  year: 2016
  ident: ref_23
  article-title: Particulate matter air pollution components and risk for lung cancer
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2015.11.007
– volume: 23
  start-page: 14008
  year: 2016
  ident: ref_47
  article-title: Artificial neural network models for prediction of daily fine particulate matter concentrations in Algiers
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-016-6565-9
– ident: ref_59
  doi: 10.3390/atmos12040499
– volume: 19
  start-page: 257
  year: 2009
  ident: ref_27
  article-title: Health Effects of Particulate Air Pollution
  publication-title: Ann. Epidemiol.
  doi: 10.1016/j.annepidem.2009.01.018
– volume: 4
  start-page: 1
  year: 2021
  ident: ref_66
  article-title: A comparison of ranking filter methods applied to the estimation of NO2 concentrations in the Bay of Algeciras (Spain)
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 10
  start-page: 1245
  year: 2013
  ident: ref_18
  article-title: Development of the models to estimate particulate matter from thermal infrared band of Landsat Enhanced Thematic Mapper
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-012-0150-7
– volume: 89–90
  start-page: 102
  year: 2016
  ident: ref_5
  article-title: High resolution exposure modelling of heat and air pollution and the impact on mortality
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2016.01.013
– volume: 9
  start-page: 680
  year: 2018
  ident: ref_22
  article-title: Particulate Matter Air Pollution: Effects on the Cardiovascular System
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2018.00680
– volume: 175
  start-page: 1173
  year: 2012
  ident: ref_25
  article-title: Association of Particulate Air Pollution with Daily Mortality: The China Air Pollution and Health Effects Study
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kwr425
– ident: ref_57
– ident: ref_44
  doi: 10.3390/rs12244142
– ident: ref_12
  doi: 10.3390/atmos11070686
SSID ssj0000913810
Score 2.2279172
Snippet Atmospheric aerosol particles have a significant impact on both the climatic conditions and human health, especially in densely populated urban areas, where...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 8431
SubjectTerms Air pollution
artificial neural networks
Cities
Climate change
climatic parameters
Cultural heritage
feed-forward networks
Ground stations
machine learning
Methods
Mortality
Neural networks
Observatories
particulate matter
Pollutants
spatiotemporal predictions
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEA9WX9oHqbalZ7XkwYdWWLr5uHw8lFKtIgUPEQ98KCyTjxVB7tTbFtq_vpNs9rRUfFrYTViSzPxmJpn8hpBdVoPyY-uqoJXEAEXHyqCbX_HWAzoMLJhM4noyUcdT-f1ifLFCJsNdmJRWOWBiBuow92mP_FNyjIU2KC5fbm6rVDUqna4OJTSglFYInzPF2DOyhpBsUO7X9g8np2fLXZfEgmlY3V_UExjvp3NiVHdjpGD_mKbM4P8fQGerc_SSrBd3kX7t13eDrMTZJnnxgERwk2wU9VzQD4VD-uMr8iOxTvW1rGaXtMu5sQt6ltNe-9tGvyI9PaHfoAN6kNI4EVeo-02n3dX11Z_UKf2zp5egicEjP3LK-OI1mR4dnh8cV6WQQuWFkl0V0aZH5cCD5C0grNQ8BOsjyIgRIbBQCxdtQG8jWt9abZlnph63TGnOrQLxhqzO5rP4ltCohTIONCiwEky0FgESfJRo5BAaxIjsDXPY-MIynopdXDcYbaQJbx5M-IjsLhvf9OQajzfbT4uxbJIYsfOL-d1lUxSswbG4doyjq4HLVhoQgTNXa-6Vtk7IEdkelrIparpo7oVq6-nP78hznpJZcnLZNlnt7n7GHfRGOve-iNhfKrrgCw
  priority: 102
  providerName: ProQuest
Title Contributing towards Representative PM Data Coverage by Utilizing Artificial Neural Networks
URI https://www.proquest.com/docview/2576378638
https://doaj.org/article/a4ebf5fa80a24f48a3d21b072c679b34
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEC6iucSD-MSNuvTBQxIYMv3YfhzVuJGAIuKCh8BQ3dMjgqySHQX99Vb3jLKSgJecBoZqeqiuJ_P1VwB7vEQdRs4XtdGKGhQTC0tlfiGagFQw8NpmEteTU308Ub8uR5dzo74SJqyjB-4U9x1V9M2oQVuiUI2yKGvBfWlE0MZ5mZlAS1fONVM5BjueqKu6C3mS-vr0P5jc2lol-ZsUlJn6_wrEObuMV2C5LwvZfvc5q_AhTtdgaY4scA1WezecsS89V_TXdfid2KW6mVXTK9ZmDOyMnWd4a3er6CGysxP2A1tkhwmuSfGD-Uc2aa9vrp_SorRnRyPBElNHfmRo-GwDJuOji8Pjoh-YUASpVVtEyt1RewyoBGmMXFHUtQuRdEidH_K6lD66mqqK6ELjjOOB23LUcG2EcBrlJixOb6dxC1g0UluPBjU6hTY6R4EQQ1SUzCgEyAF8e9FhFXo28TTU4qairiIpvJpT-AD2XoXvOhKNf4sdpMN4FUnM1_kF2UPV20P1nj0MYOflKKveHWdV6qqksRRrPv-PPbbhk0jQlgw124HF9s993KXapPVDWLDjn0P4eHB0enY-zEb5DNdl5MA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4oLaAWCjFhyIBUkT8WMc-VKhPbWl3VVVdqQek1HGcqlK1W5oAKj-O38bYcbZFIG49RUqcRLbH38zYM98ArNPUSDvQRVJmUqCDkrlEoZmfsMoaNBhoqQKJ62gshxPx-XRwugC_ulwYH1bZYWIA6nJm_R75R28Y80yhuHy6-pr4qlH-dLUroWFiaYVyI1CMxcSOA3fzA124emN_B-f7LWN7uyfbwyRWGUgsl6JJHCo8JwtjjWCVwTWXsrLU1hnh0F0ytEx54XSJqthpW-lMU0tVOqiozBjT0nD87gNYFD7DtQeLW7vjo-P5Lo9n3VQ0bRMDOdepP5dGeFFKcPqHKgwVA_5SCEHL7S3Bk2ieks1WnpZhwU1X4PEd0sIVWI5wUJN3kbP6_VP44lmu2tpZ03PShFjcmhyHMNs2u-m7I0cjsmMaQ7Z92CjiGCluyKS5uLz46V_y_2zpLIhnDAmXEKJeP4PJvQzpc-hNZ1P3AojLuFSFyYw0WhjltEZANtYJVKoIRbwPH7oxzG1kNffFNS5z9G78gOd3BrwP6_PGVy2Zx7-bbfnJmDfxDNzhxuz6PI8LOse-FNUAe5caJiqhDC8ZLdKMWZnpgos-rHZTmUdYqPNbIX75_8dv4OHwZHSYH-6PD17BI-YDaUJg2yr0mutv7jVaQk2xFsWNwNl9S_hvd1wdLQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3faxQxEB7qFcQ-iK2KV6vmoYIKS3eTXH48lGJ7PVprj6N40AdhzWazpVDuandV6p_oX9VJNntWFN_6tLCb3SWTyTeTZOYbgM0sNcIOdJGUUnBcoEiXKHTzE1pZgw5DVqpA4no8FgdT_uF0cLoEv7pcGB9W2WFiAOpybv0e-ZZ3jJlUqC5bVQyLmAxHO5dfE19Byp-0duU0TCyzUG4HurGY5HHkrn_gcq7ePhzi2L-mdLT_ae8giRUHEssEbxKHxs-JwljDaWVw_qW0LLV1hjtcOpmsTFnhdIlm2Wlbaakzm6l0UGVCUqqFYfjde7As0UryHizv7o8nJ4sdH8_AqbK0TRJkTKf-jBqhRinOsj_MYqge8JdxCBZv9AgeRleVvG91axWW3GwNVm4RGK7BaoSGmryJ_NVvH8Nnz3jV1tGanZEmxOXW5CSE3LaZTt8dmRyToWkM2fMhpIhppLgm0-b84vynf8n_s6W2IJ49JFxCuHr9BKZ3ItKn0JvNZ-4ZECeZUIWRRhjNjXJaIzgb6zgaWIQl1od3nQxzGxnOfaGNixxXOl7g-S2B92Fz0fiyJfb4d7NdPxiLJp6NO9yYX53lcXLn2JeiGmDvUkN5xZVhJc2KVFIrpC4Y78NGN5R5hIg6_63Q6_9__Aruo6bnHw_HR8_hAfUxNSHGbQN6zdU39wKdoqZ4GbWNwJe7VvAbXYohWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contributing+towards+Representative+PM+Data+Coverage+by+Utilizing+Artificial+Neural+Networks&rft.jtitle=Applied+sciences&rft.au=Tzanis%2C+Chris+G.&rft.au=Alimissis%2C+Anastasios&rft.date=2021-09-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=11&rft.issue=18&rft.spage=8431&rft_id=info:doi/10.3390%2Fapp11188431&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app11188431
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon