Contributing towards Representative PM Data Coverage by Utilizing Artificial Neural Networks
Atmospheric aerosol particles have a significant impact on both the climatic conditions and human health, especially in densely populated urban areas, where the particle concentrations in several cases can be extremely threatening (increased anthropogenic emissions). Most large cities located in hig...
Saved in:
Published in | Applied sciences Vol. 11; no. 18; p. 8431 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-3417 2076-3417 |
DOI | 10.3390/app11188431 |
Cover
Abstract | Atmospheric aerosol particles have a significant impact on both the climatic conditions and human health, especially in densely populated urban areas, where the particle concentrations in several cases can be extremely threatening (increased anthropogenic emissions). Most large cities located in high-income countries have stations responsible for measuring particulate matter and various other parameters, collectively forming an operating monitoring network, which is essential for the purposes of environmental control. In the city of Athens, which is characterized by high population density and accumulates a large number of economic activities, the currently operating monitoring network is responsible, among others, for PM10 and PM2.5 measurements. The need for satisfactory data availability though can be supported by using machine learning methods, such as artificial neural networks. The methodology presented in this study uses a neural network model to provide spatiotemporal estimations of PM10 and PM2.5 concentrations by utilizing the existing PM data in combination with other climatic parameters that affect them. The overall performance of the predictive neural network models’ scheme is enhanced when meteorological parameters (wind speed and temperature) are included in the training process, lowering the error values of the predicted versus the observed time series’ concentrations. Furthermore, this work includes the calculation of the contribution of each predictor, in order to provide a clearer understanding of the relationship between the model’s output and input. The results of this procedure showcase that all PM input stations’ concentrations have an important impact on the estimations. Considering the meteorological variables, the results for PM2.5 seem to be affected more than those for PM10, although when examining PM10 and PM2.5 individually, the wind speed and temperature contribution is on a similar level with the corresponding contribution of the available PM concentrations of the neighbouring stations. |
---|---|
AbstractList | Atmospheric aerosol particles have a significant impact on both the climatic conditions and human health, especially in densely populated urban areas, where the particle concentrations in several cases can be extremely threatening (increased anthropogenic emissions). Most large cities located in high-income countries have stations responsible for measuring particulate matter and various other parameters, collectively forming an operating monitoring network, which is essential for the purposes of environmental control. In the city of Athens, which is characterized by high population density and accumulates a large number of economic activities, the currently operating monitoring network is responsible, among others, for PM10 and PM2.5 measurements. The need for satisfactory data availability though can be supported by using machine learning methods, such as artificial neural networks. The methodology presented in this study uses a neural network model to provide spatiotemporal estimations of PM10 and PM2.5 concentrations by utilizing the existing PM data in combination with other climatic parameters that affect them. The overall performance of the predictive neural network models’ scheme is enhanced when meteorological parameters (wind speed and temperature) are included in the training process, lowering the error values of the predicted versus the observed time series’ concentrations. Furthermore, this work includes the calculation of the contribution of each predictor, in order to provide a clearer understanding of the relationship between the model’s output and input. The results of this procedure showcase that all PM input stations’ concentrations have an important impact on the estimations. Considering the meteorological variables, the results for PM2.5 seem to be affected more than those for PM10, although when examining PM10 and PM2.5 individually, the wind speed and temperature contribution is on a similar level with the corresponding contribution of the available PM concentrations of the neighbouring stations. |
Author | Tzanis, Chris G. Alimissis, Anastasios |
Author_xml | – sequence: 1 givenname: Chris G. orcidid: 0000-0002-7345-2900 surname: Tzanis fullname: Tzanis, Chris G. – sequence: 2 givenname: Anastasios surname: Alimissis fullname: Alimissis, Anastasios |
BookMark | eNptUV1LHEEQHIJCjPHJP7Dgo1ycntmbj0e5xEQwiYi-CUPvbO8x57qzzswp5tdnz1OQkH6ppqmqLro_sZ0hDsTYIfAvUlp-guMIAMbUEj6wPcG1mska9M67_iM7yHnFp7IgDfA9druIQ0mhWZcwLKsSnzC1ubqiMVGmoWAJj1Rd_qy-YsFqER8p4ZKq5rm6KaEPfzai01RCF3zAvvpF6_QC5Smmu_yZ7XbYZzp4xX12c_btevFjdvH7-_ni9GLmparLjISVpBr0WIsOjdFctK31hDUBVwgtlw3Zlmsg6zurLXgwfN6B0kJYhXKfnW9924grN6Zwj-nZRQzuZRDT0uEU0vfkJs-mm09bOIq6qw3KVkDDtfBK20bWk9fR1mtM8WFNubhVXKdhiu_EXCupjZJmYsGW5VPMOVHnfNgca3NMDL0D7jY_ce9-MmmO_9G8Jf0f-y8x3Y8w |
CitedBy_id | crossref_primary_10_1016_j_jenvman_2024_122093 crossref_primary_10_1016_j_scitotenv_2023_162590 crossref_primary_10_3390_rs14030751 |
Cites_doi | 10.5194/acp-13-1377-2013 10.1016/j.scitotenv.2013.01.077 10.1100/tsw.2007.52 10.1016/j.atmosenv.2017.01.004 10.1002/ep.11937 10.1016/j.atmosenv.2005.01.050 10.1002/we.1620 10.1007/s11869-019-00739-z 10.5194/acp-14-6953-2014 10.1016/j.jaci.2011.11.021 10.1016/j.atmosenv.2010.12.011 10.1016/j.atmosenv.2007.07.003 10.1016/j.apgeochem.2014.07.002 10.2478/s11600-007-0020-8 10.1016/j.jhydrol.2012.10.019 10.3390/atmos11070722 10.1080/01431160701767575 10.1016/j.scitotenv.2016.05.217 10.1007/s00038-015-0690-y 10.1016/j.envint.2014.10.005 10.1016/j.scitotenv.2018.02.096 10.1002/ep.10455 10.1016/j.envpol.2011.12.018 10.1016/j.atmosres.2017.09.006 10.1016/j.atmosenv.2018.07.058 10.1186/1476-069X-12-43 10.1002/ep.11617 10.1016/j.atmosenv.2014.02.059 10.1007/s40572-017-0168-6 10.1007/s00477-018-01644-0 10.1021/es049352m 10.1007/s10661-019-7901-6 10.2174/1875040001104010021 10.1016/j.atmosenv.2010.08.011 10.3390/s21051770 10.1289/ehp.0800108 10.1016/j.ins.2020.08.003 10.3390/s21041235 10.1016/j.ijepes.2015.02.006 10.1016/j.engappai.2011.07.006 10.1016/j.scitotenv.2013.05.062 10.1016/j.jenvman.2015.12.012 10.1016/j.envpol.2016.07.042 10.1016/j.scitotenv.2012.06.011 10.1002/ep.11731 10.1007/s11869-020-00925-4 10.1016/j.envint.2006.03.012 10.1016/j.envpol.2018.11.080 10.1016/0893-6080(89)90020-8 10.1007/s13181-011-0203-1 10.1016/j.scitotenv.2019.02.291 10.1016/j.atmosres.2019.104623 10.1016/j.envint.2015.11.007 10.1007/s11356-016-6565-9 10.3390/atmos12040499 10.1016/j.annepidem.2009.01.018 10.1007/s13762-012-0150-7 10.1016/j.envint.2016.01.013 10.3389/fendo.2018.00680 10.1093/aje/kwr425 10.3390/rs12244142 10.3390/atmos11070686 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app11188431 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_a4ebf5fa80a24f48a3d21b072c679b34 10_3390_app11188431 |
GeographicLocations | Greece |
GeographicLocations_xml | – name: Greece |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c364t-e293e6baca42fa88702dd9cea4e106a1d03be9d071e9cf9791c1805f1672296a3 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:25:51 EDT 2025 Mon Jun 30 07:30:37 EDT 2025 Thu Apr 24 23:06:07 EDT 2025 Tue Jul 01 00:51:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-e293e6baca42fa88702dd9cea4e106a1d03be9d071e9cf9791c1805f1672296a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7345-2900 |
OpenAccessLink | https://doaj.org/article/a4ebf5fa80a24f48a3d21b072c679b34 |
PQID | 2576378638 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a4ebf5fa80a24f48a3d21b072c679b34 proquest_journals_2576378638 crossref_citationtrail_10_3390_app11188431 crossref_primary_10_3390_app11188431 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Proietti (ref_14) 2016; 218 Fernando (ref_39) 2012; 163 Chen (ref_25) 2012; 175 Hamanaka (ref_22) 2018; 9 Suh (ref_29) 2003; 1 Kim (ref_24) 2015; 74 ref_57 ref_12 Kulluk (ref_56) 2012; 25 Tzanis (ref_21) 2008; 29 Chattopadhyay (ref_58) 2007; 55 Akkala (ref_32) 2010; 29 Tzanis (ref_38) 2019; 246 ref_59 Taghvaee (ref_53) 2018; 628–629 Amanollahi (ref_18) 2013; 10 Turias (ref_65) 2019; 33 Piotrowski (ref_60) 2013; 476 Fallahi (ref_61) 2018; 199 Akay (ref_43) 2014; 17 Janssen (ref_31) 2013; 463–464 Curtis (ref_11) 2016; 32 Garson (ref_50) 1991; 6 ref_67 Zanobetti (ref_30) 2009; 117 Corizzo (ref_41) 2021; 546 Paoletti (ref_17) 2007; 7 Turias (ref_68) 2019; 191 ref_28 Alimissis (ref_63) 2018; 191 Gupta (ref_48) 2009; 114 Orru (ref_6) 2017; 4 Yerrabolu (ref_35) 2012; 32 Argyropoulos (ref_54) 2016; 568 Rahimpour (ref_62) 2021; 14 Anderson (ref_7) 2015; 60 Varotsos (ref_8) 2014; 89 Akkala (ref_33) 2011; 4 Gurjar (ref_4) 2010; 44 Varotsos (ref_20) 2014; 14 Barca (ref_15) 2014; 48 Mavrakou (ref_51) 2012; 433 Adams (ref_64) 2016; 168 Locosselli (ref_13) 2019; 666 Urda (ref_66) 2021; 4 Tzanis (ref_52) 2019; 230 Willers (ref_5) 2016; 89–90 Li (ref_46) 2017; 152 Fang (ref_9) 2013; 13 Gummadi (ref_36) 2014; 34 Vega (ref_16) 2011; 45 Beelen (ref_23) 2016; 87 Pascal (ref_10) 2013; 449 Bessa (ref_42) 2015; 72 Akkala (ref_34) 2012; 32 Anderson (ref_19) 2012; 8 Chellali (ref_47) 2016; 23 Hoek (ref_1) 2013; 12 Hornik (ref_55) 1989; 2 ref_45 Laumbach (ref_26) 2012; 129 ref_44 Mirzaei (ref_37) 2019; 12 Liu (ref_49) 2005; 39 ref_3 Dockery (ref_27) 2009; 19 Hooyberghs (ref_40) 2005; 39 Cairncross (ref_2) 2007; 41 |
References_xml | – volume: 13 start-page: 1377 year: 2013 ident: ref_9 article-title: Air pollution and associated human mortality: The role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present publication-title: Atmos. Chem. Phys. Discuss. doi: 10.5194/acp-13-1377-2013 – volume: 449 start-page: 390 year: 2013 ident: ref_10 article-title: Assessing the public health impacts of urban air pollution in 25 European cities: Results of the Aphekom project publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.01.077 – volume: 7 start-page: 1 year: 2007 ident: ref_17 article-title: Impacts of Air Pollution and Climate Change on Forest Ecosystems—Emerging Research Needs publication-title: Sci. World J. doi: 10.1100/tsw.2007.52 – volume: 152 start-page: 477 year: 2017 ident: ref_46 article-title: Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China: Methods and assessment publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2017.01.004 – volume: 34 start-page: 169 year: 2014 ident: ref_36 article-title: Interpolation techniques for modeling and estimating indoor radon concentrations in Ohio: Comparative study publication-title: Environ. Prog. Sustain. Energy doi: 10.1002/ep.11937 – volume: 39 start-page: 3279 year: 2005 ident: ref_40 article-title: A neural network forecast for daily average PM10 concentrations in Belgium publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2005.01.050 – volume: 17 start-page: 1093 year: 2014 ident: ref_43 article-title: Experimental investigation of the root flow in a horizontal axis wind turbine publication-title: Wind. Energy doi: 10.1002/we.1620 – volume: 12 start-page: 1215 year: 2019 ident: ref_37 article-title: Evaluation of linear, nonlinear, and hybrid models for predicting PM2.5 based on a GTWR model and MODIS AOD data publication-title: Air Qual. Atmos. Health doi: 10.1007/s11869-019-00739-z – volume: 14 start-page: 6953 year: 2014 ident: ref_20 article-title: New spectral functions of the near-ground albedo derived from aircraft diffraction spectrometer observations publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-14-6953-2014 – volume: 129 start-page: 3 year: 2012 ident: ref_26 article-title: Respiratory health effects of air pollution: Update on biomass smoke and traffic pollution publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2011.11.021 – volume: 45 start-page: 1242 year: 2011 ident: ref_16 article-title: City scale assessment model for air pollution effects on the cultural heritage publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2010.12.011 – volume: 41 start-page: 8442 year: 2007 ident: ref_2 article-title: A novel air pollution index based on the relative risk of daily mortality associated with short-term exposure to common air pollutants publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2007.07.003 – volume: 48 start-page: 122 year: 2014 ident: ref_15 article-title: Impact of air pollution in deterioration of carbonate building materials in Italian urban environments publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2014.07.002 – volume: 55 start-page: 369 year: 2007 ident: ref_58 article-title: Feed forward Artificial Neural Network model to predict the average summer-monsoon rainfall in India publication-title: Acta Geophys. doi: 10.2478/s11600-007-0020-8 – volume: 476 start-page: 97 year: 2013 ident: ref_60 article-title: A comparison of methods to avoid overfitting in neural networks training in the case of catchment runoff modelling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.10.019 – volume: 114 start-page: 1 year: 2009 ident: ref_48 article-title: Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: A neural network approach publication-title: J. Geophys. Res. Space Phys. – ident: ref_28 doi: 10.3390/atmos11070722 – volume: 29 start-page: 2507 year: 2008 ident: ref_21 article-title: Tropospheric aerosol forcing of climate: A case study for the greater area of Greece publication-title: Int. J. Remote Sens. doi: 10.1080/01431160701767575 – volume: 568 start-page: 124 year: 2016 ident: ref_54 article-title: Source apportionment of the redox activity of urban quasi-ultrafine particles (PM0.49) in Thessaloniki following the increased biomass burning due to the economic crisis in Greece publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.05.217 – volume: 60 start-page: 619 year: 2015 ident: ref_7 article-title: Quantifying the health impacts of ambient air pollutants: Recommendations of a WHO/Europe project publication-title: Int. J. Public Health doi: 10.1007/s00038-015-0690-y – volume: 74 start-page: 136 year: 2015 ident: ref_24 article-title: A review on the human health impact of airborne particulate matter publication-title: Environ. Int. doi: 10.1016/j.envint.2014.10.005 – volume: 628–629 start-page: 672 year: 2018 ident: ref_53 article-title: Source apportionment of ambient PM2.5 in two locations in central Tehran using the Positive Matrix Factorization (PMF) model publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.02.096 – volume: 29 start-page: 134 year: 2010 ident: ref_32 article-title: Interpolation techniques and associated software for environmental data publication-title: Environ. Prog. Sustain. Energy doi: 10.1002/ep.10455 – volume: 163 start-page: 62 year: 2012 ident: ref_39 article-title: Forecasting PM10 in metropolitan areas: Efficacy of neural networks publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.12.018 – volume: 199 start-page: 93 year: 2018 ident: ref_61 article-title: Estimating solar radiation using NOAA/AVHRR and ground measurement data publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2017.09.006 – volume: 191 start-page: 205 year: 2018 ident: ref_63 article-title: Spatial estimation of urban air pollution with the use of artificial neural network models publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2018.07.058 – volume: 12 start-page: 43 year: 2013 ident: ref_1 article-title: Long-term air pollution exposure and cardio-respiratory mortality: A review publication-title: Environ. Health doi: 10.1186/1476-069X-12-43 – volume: 32 start-page: 355 year: 2012 ident: ref_34 article-title: Knowledge-based neural network approaches for modeling and estimating radon concentrations publication-title: Environ. Prog. Sustain. Energy doi: 10.1002/ep.11617 – volume: 89 start-page: 721 year: 2014 ident: ref_8 article-title: Signature of tropospheric ozone and nitrogen dioxide from space: A case study for Athens, Greece publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2014.02.059 – volume: 4 start-page: 504 year: 2017 ident: ref_6 article-title: The Interplay of Climate Change and Air Pollution on Health publication-title: Curr. Environ. Health Rep. doi: 10.1007/s40572-017-0168-6 – volume: 33 start-page: 801 year: 2019 ident: ref_65 article-title: Spatial and meteorological relevance in NO2 estimations: A case study in the Bay of Algeciras (Spain) publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-018-01644-0 – volume: 39 start-page: 3269 year: 2005 ident: ref_49 article-title: Estimating Ground-Level PM2.5in the Eastern United States Using Satellite Remote Sensing publication-title: Environ. Sci. Technol. doi: 10.1021/es049352m – volume: 191 start-page: 727 year: 2019 ident: ref_68 article-title: An artificial neural network ensemble approach to generate air pollution maps publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-019-7901-6 – volume: 4 start-page: 21 year: 2011 ident: ref_33 article-title: Development of an ANN interpolation scheme for estimating missing radon concentrations in Ohio publication-title: Open Environ. Biol. Monit. J. doi: 10.2174/1875040001104010021 – volume: 44 start-page: 4606 year: 2010 ident: ref_4 article-title: Human health risks in megacities due to air pollution publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2010.08.011 – ident: ref_67 doi: 10.3390/s21051770 – ident: ref_3 – volume: 117 start-page: 898 year: 2009 ident: ref_30 article-title: The Effect of Fine and Coarse Particulate Air Pollution on Mortality: A National Analysis publication-title: Environ. Health Perspect. doi: 10.1289/ehp.0800108 – volume: 546 start-page: 701 year: 2021 ident: ref_41 article-title: Multi-aspect renewable energy forecasting publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.08.003 – ident: ref_45 doi: 10.3390/s21041235 – volume: 72 start-page: 16 year: 2015 ident: ref_42 article-title: Probabilistic solar power forecasting in smart grids using distributed information publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2015.02.006 – volume: 25 start-page: 11 year: 2012 ident: ref_56 article-title: Training neural networks with harmony search algorithms for classification problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2011.07.006 – volume: 1 start-page: 221 year: 2003 ident: ref_29 article-title: Particulate matter publication-title: Expo. Assess. Occup. Environ. Epidemiol. – volume: 463–464 start-page: 20 year: 2013 ident: ref_31 article-title: Short-term effects of PM2.5, PM10 and PM2.5–10 on daily mortality in the Netherlands publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.05.062 – volume: 168 start-page: 133 year: 2016 ident: ref_64 article-title: Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2015.12.012 – volume: 218 start-page: 586 year: 2016 ident: ref_14 article-title: Impacts of air pollution on cultural heritage corrosion at European level: What has been achieved and what are the future scenarios publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.07.042 – volume: 433 start-page: 31 year: 2012 ident: ref_51 article-title: The impact of sea breeze under different synoptic patterns on air pollution within Athens basin publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.06.011 – volume: 6 start-page: 47 year: 1991 ident: ref_50 article-title: Interpreting neural-network connection weights publication-title: AI Expert – volume: 32 start-page: 1223 year: 2012 ident: ref_35 article-title: Correction Model-Based ANN Modeling Approach for the Estimation of Radon Concentrations in Ohio publication-title: Environ. Prog. Sustain. Energy doi: 10.1002/ep.11731 – volume: 14 start-page: 191 year: 2021 ident: ref_62 article-title: Air quality data series estimation based on machine learning approaches for urban environments publication-title: Air Qual. Atmos. Health doi: 10.1007/s11869-020-00925-4 – volume: 32 start-page: 815 year: 2016 ident: ref_11 article-title: Adverse health effects of outdoor air pollutants publication-title: Environ. Int. doi: 10.1016/j.envint.2006.03.012 – volume: 246 start-page: 89 year: 2019 ident: ref_38 article-title: Applying linear and nonlinear models for the estimation of particulate matter variability publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.11.080 – volume: 2 start-page: 359 year: 1989 ident: ref_55 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90020-8 – volume: 8 start-page: 166 year: 2012 ident: ref_19 article-title: Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health publication-title: J. Med. Toxicol. doi: 10.1007/s13181-011-0203-1 – volume: 666 start-page: 652 year: 2019 ident: ref_13 article-title: The role of air pollution and climate on the growth of urban trees publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.291 – volume: 230 start-page: 104623 year: 2019 ident: ref_52 article-title: Recent climate trends over Greece publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2019.104623 – volume: 87 start-page: 66 year: 2016 ident: ref_23 article-title: Particulate matter air pollution components and risk for lung cancer publication-title: Environ. Int. doi: 10.1016/j.envint.2015.11.007 – volume: 23 start-page: 14008 year: 2016 ident: ref_47 article-title: Artificial neural network models for prediction of daily fine particulate matter concentrations in Algiers publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-6565-9 – ident: ref_59 doi: 10.3390/atmos12040499 – volume: 19 start-page: 257 year: 2009 ident: ref_27 article-title: Health Effects of Particulate Air Pollution publication-title: Ann. Epidemiol. doi: 10.1016/j.annepidem.2009.01.018 – volume: 4 start-page: 1 year: 2021 ident: ref_66 article-title: A comparison of ranking filter methods applied to the estimation of NO2 concentrations in the Bay of Algeciras (Spain) publication-title: Stoch. Environ. Res. Risk Assess. – volume: 10 start-page: 1245 year: 2013 ident: ref_18 article-title: Development of the models to estimate particulate matter from thermal infrared band of Landsat Enhanced Thematic Mapper publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-012-0150-7 – volume: 89–90 start-page: 102 year: 2016 ident: ref_5 article-title: High resolution exposure modelling of heat and air pollution and the impact on mortality publication-title: Environ. Int. doi: 10.1016/j.envint.2016.01.013 – volume: 9 start-page: 680 year: 2018 ident: ref_22 article-title: Particulate Matter Air Pollution: Effects on the Cardiovascular System publication-title: Front. Endocrinol. doi: 10.3389/fendo.2018.00680 – volume: 175 start-page: 1173 year: 2012 ident: ref_25 article-title: Association of Particulate Air Pollution with Daily Mortality: The China Air Pollution and Health Effects Study publication-title: Am. J. Epidemiol. doi: 10.1093/aje/kwr425 – ident: ref_57 – ident: ref_44 doi: 10.3390/rs12244142 – ident: ref_12 doi: 10.3390/atmos11070686 |
SSID | ssj0000913810 |
Score | 2.2279172 |
Snippet | Atmospheric aerosol particles have a significant impact on both the climatic conditions and human health, especially in densely populated urban areas, where... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 8431 |
SubjectTerms | Air pollution artificial neural networks Cities Climate change climatic parameters Cultural heritage feed-forward networks Ground stations machine learning Methods Mortality Neural networks Observatories particulate matter Pollutants spatiotemporal predictions |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEA9WX9oHqbalZ7XkwYdWWLr5uHw8lFKtIgUPEQ98KCyTjxVB7tTbFtq_vpNs9rRUfFrYTViSzPxmJpn8hpBdVoPyY-uqoJXEAEXHyqCbX_HWAzoMLJhM4noyUcdT-f1ifLFCJsNdmJRWOWBiBuow92mP_FNyjIU2KC5fbm6rVDUqna4OJTSglFYInzPF2DOyhpBsUO7X9g8np2fLXZfEgmlY3V_UExjvp3NiVHdjpGD_mKbM4P8fQGerc_SSrBd3kX7t13eDrMTZJnnxgERwk2wU9VzQD4VD-uMr8iOxTvW1rGaXtMu5sQt6ltNe-9tGvyI9PaHfoAN6kNI4EVeo-02n3dX11Z_UKf2zp5egicEjP3LK-OI1mR4dnh8cV6WQQuWFkl0V0aZH5cCD5C0grNQ8BOsjyIgRIbBQCxdtQG8jWt9abZlnph63TGnOrQLxhqzO5rP4ltCohTIONCiwEky0FgESfJRo5BAaxIjsDXPY-MIynopdXDcYbaQJbx5M-IjsLhvf9OQajzfbT4uxbJIYsfOL-d1lUxSswbG4doyjq4HLVhoQgTNXa-6Vtk7IEdkelrIparpo7oVq6-nP78hznpJZcnLZNlnt7n7GHfRGOve-iNhfKrrgCw priority: 102 providerName: ProQuest |
Title | Contributing towards Representative PM Data Coverage by Utilizing Artificial Neural Networks |
URI | https://www.proquest.com/docview/2576378638 https://doaj.org/article/a4ebf5fa80a24f48a3d21b072c679b34 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEC6iucSD-MSNuvTBQxIYMv3YfhzVuJGAIuKCh8BQ3dMjgqySHQX99Vb3jLKSgJecBoZqeqiuJ_P1VwB7vEQdRs4XtdGKGhQTC0tlfiGagFQw8NpmEteTU308Ub8uR5dzo74SJqyjB-4U9x1V9M2oQVuiUI2yKGvBfWlE0MZ5mZlAS1fONVM5BjueqKu6C3mS-vr0P5jc2lol-ZsUlJn6_wrEObuMV2C5LwvZfvc5q_AhTtdgaY4scA1WezecsS89V_TXdfid2KW6mVXTK9ZmDOyMnWd4a3er6CGysxP2A1tkhwmuSfGD-Uc2aa9vrp_SorRnRyPBElNHfmRo-GwDJuOji8Pjoh-YUASpVVtEyt1RewyoBGmMXFHUtQuRdEidH_K6lD66mqqK6ELjjOOB23LUcG2EcBrlJixOb6dxC1g0UluPBjU6hTY6R4EQQ1SUzCgEyAF8e9FhFXo28TTU4qairiIpvJpT-AD2XoXvOhKNf4sdpMN4FUnM1_kF2UPV20P1nj0MYOflKKveHWdV6qqksRRrPv-PPbbhk0jQlgw124HF9s993KXapPVDWLDjn0P4eHB0enY-zEb5DNdl5MA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4oLaAWCjFhyIBUkT8WMc-VKhPbWl3VVVdqQek1HGcqlK1W5oAKj-O38bYcbZFIG49RUqcRLbH38zYM98ArNPUSDvQRVJmUqCDkrlEoZmfsMoaNBhoqQKJ62gshxPx-XRwugC_ulwYH1bZYWIA6nJm_R75R28Y80yhuHy6-pr4qlH-dLUroWFiaYVyI1CMxcSOA3fzA124emN_B-f7LWN7uyfbwyRWGUgsl6JJHCo8JwtjjWCVwTWXsrLU1hnh0F0ytEx54XSJqthpW-lMU0tVOqiozBjT0nD87gNYFD7DtQeLW7vjo-P5Lo9n3VQ0bRMDOdepP5dGeFFKcPqHKgwVA_5SCEHL7S3Bk2ieks1WnpZhwU1X4PEd0sIVWI5wUJN3kbP6_VP44lmu2tpZ03PShFjcmhyHMNs2u-m7I0cjsmMaQ7Z92CjiGCluyKS5uLz46V_y_2zpLIhnDAmXEKJeP4PJvQzpc-hNZ1P3AojLuFSFyYw0WhjltEZANtYJVKoIRbwPH7oxzG1kNffFNS5z9G78gOd3BrwP6_PGVy2Zx7-bbfnJmDfxDNzhxuz6PI8LOse-FNUAe5caJiqhDC8ZLdKMWZnpgos-rHZTmUdYqPNbIX75_8dv4OHwZHSYH-6PD17BI-YDaUJg2yr0mutv7jVaQk2xFsWNwNl9S_hvd1wdLQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3faxQxEB7qFcQ-iK2KV6vmoYIKS3eTXH48lGJ7PVprj6N40AdhzWazpVDuandV6p_oX9VJNntWFN_6tLCb3SWTyTeTZOYbgM0sNcIOdJGUUnBcoEiXKHTzE1pZgw5DVqpA4no8FgdT_uF0cLoEv7pcGB9W2WFiAOpybv0e-ZZ3jJlUqC5bVQyLmAxHO5dfE19Byp-0duU0TCyzUG4HurGY5HHkrn_gcq7ePhzi2L-mdLT_ae8giRUHEssEbxKHxs-JwljDaWVw_qW0LLV1hjtcOpmsTFnhdIlm2Wlbaakzm6l0UGVCUqqFYfjde7As0UryHizv7o8nJ4sdH8_AqbK0TRJkTKf-jBqhRinOsj_MYqge8JdxCBZv9AgeRleVvG91axWW3GwNVm4RGK7BaoSGmryJ_NVvH8Nnz3jV1tGanZEmxOXW5CSE3LaZTt8dmRyToWkM2fMhpIhppLgm0-b84vynf8n_s6W2IJ49JFxCuHr9BKZ3ItKn0JvNZ-4ZECeZUIWRRhjNjXJaIzgb6zgaWIQl1od3nQxzGxnOfaGNixxXOl7g-S2B92Fz0fiyJfb4d7NdPxiLJp6NO9yYX53lcXLn2JeiGmDvUkN5xZVhJc2KVFIrpC4Y78NGN5R5hIg6_63Q6_9__Aruo6bnHw_HR8_hAfUxNSHGbQN6zdU39wKdoqZ4GbWNwJe7VvAbXYohWQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contributing+towards+Representative+PM+Data+Coverage+by+Utilizing+Artificial+Neural+Networks&rft.jtitle=Applied+sciences&rft.au=Tzanis%2C+Chris+G.&rft.au=Alimissis%2C+Anastasios&rft.date=2021-09-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=11&rft.issue=18&rft.spage=8431&rft_id=info:doi/10.3390%2Fapp11188431&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app11188431 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |