Soldering Data Classification with a Deep Clustering Approach: Case Study of an Academic-Industrial Cooperation

Modern industries still commonly use traditional methods to visually inspect products, even though automation has many advantages over the skills of human labour. The automation of redundant tasks is one of the greatest successes of Artificial Intelligence (AI). It employs human annotation and finds...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 12; no. 14; p. 6927
Main Authors Faragó, Kinga Bettina, Skaf, Joul, Forgács, Szabolcs, Hevesi, Bence, Lőrincz, András
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modern industries still commonly use traditional methods to visually inspect products, even though automation has many advantages over the skills of human labour. The automation of redundant tasks is one of the greatest successes of Artificial Intelligence (AI). It employs human annotation and finds possible relationships between features within a particular dataset. However, until recently, this has always been the responsibility of AI specialists with a specific type of knowledge that is not available to the industrial domain experts. We documented the joint research of AI and domain experts as a case study on processing a soldering-related industrial dataset. Our image classification approach relies on the latent space representations of neural networks already trained on other databases. We perform dimensionality reduction of the representations of the new data and cluster the outputs in the lower dimension. This method requires little to no knowledge of the underlying architecture of neural networks by the domain experts, meaning it is easily manageable by them, supporting generalization to other use cases that can be investigated in future work. We also suggest a misclassification detecting method. We were able to achieve near-perfect test accuracy with minimal annotation work.
AbstractList Modern industries still commonly use traditional methods to visually inspect products, even though automation has many advantages over the skills of human labour. The automation of redundant tasks is one of the greatest successes of Artificial Intelligence (AI). It employs human annotation and finds possible relationships between features within a particular dataset. However, until recently, this has always been the responsibility of AI specialists with a specific type of knowledge that is not available to the industrial domain experts. We documented the joint research of AI and domain experts as a case study on processing a soldering-related industrial dataset. Our image classification approach relies on the latent space representations of neural networks already trained on other databases. We perform dimensionality reduction of the representations of the new data and cluster the outputs in the lower dimension. This method requires little to no knowledge of the underlying architecture of neural networks by the domain experts, meaning it is easily manageable by them, supporting generalization to other use cases that can be investigated in future work. We also suggest a misclassification detecting method. We were able to achieve near-perfect test accuracy with minimal annotation work.
Author Lőrincz, András
Faragó, Kinga Bettina
Hevesi, Bence
Forgács, Szabolcs
Skaf, Joul
Author_xml – sequence: 1
  givenname: Kinga Bettina
  orcidid: 0000-0002-2402-7123
  surname: Faragó
  fullname: Faragó, Kinga Bettina
– sequence: 2
  givenname: Joul
  orcidid: 0000-0002-1876-6587
  surname: Skaf
  fullname: Skaf, Joul
– sequence: 3
  givenname: Szabolcs
  orcidid: 0000-0003-1437-1526
  surname: Forgács
  fullname: Forgács, Szabolcs
– sequence: 4
  givenname: Bence
  orcidid: 0000-0002-6202-1785
  surname: Hevesi
  fullname: Hevesi, Bence
– sequence: 5
  givenname: András
  orcidid: 0000-0002-1280-3447
  surname: Lőrincz
  fullname: Lőrincz, András
BookMark eNptkU1rHDEMhoeSQNMkp_4BQ49lUn_M2DO9LZM2WQj0kPZsZFtOvEzGU9tLyb-vu9tAKNVFQnr08gq9a06WuGDTvGf0SoiRfoJ1ZZx1cuTqTXPGqZKt6Jg6eVW_bS5z3tEaIxMDo2dNvI-zwxSWB3INBcg0Q87BBwslxIX8CuWRALlGXOton8sR3axrimAfP5MJMpL7snfPJHoCC9lYcPgUbLtdXOVTgJlMMa6YDooXzamHOePl33ze_Pj65ft02959u9lOm7vWCtmVFjntvO-98xwF7dCYatlz6aToFJO-lzgq6RiTyliDYJlEMwyKMwW9p16cN9ujrouw02sKT5CedYSgD42YHjSkEuyMmvdeuUGhgW7oqDOAziMfeuONc5yyqvXhqFWP_rnHXPQu7tNS7WsuRzGKGmOl2JGyKeac0GsbyuHmkiDMmlH950361Zvqzsd_dl6c_o_-Dcp4lkI
CitedBy_id crossref_primary_10_3390_jimaging10100255
Cites_doi 10.1088/1742-5468/2008/10/P10008
10.1016/j.cirp.2016.04.072
10.1109/CVPR.2016.90
10.1109/CVPR.2017.243
10.1145/331499.331504
10.1609/aaai.v31i1.11231
10.21105/joss.00861
10.1109/CVPR.2017.195
10.3390/ICEM18-05387
10.1109/CVPR42600.2020.00672
10.1109/ACCESS.2020.3029127
10.1145/3377325.3377538
10.1016/j.aei.2019.101004
10.1145/1143844.1143865
10.1109/5.726791
10.1145/3366423.3380214
10.1073/pnas.122653799
10.1109/CVPR.2018.00907
10.1145/3377325.3377501
10.1145/3411764.3445306
10.1016/0377-0427(87)90125-7
10.1109/ACCESS.2018.2855437
10.1109/CVPR.2009.5206848
10.1109/EDPC48408.2019.9011820
10.1007/s00170-017-0882-0
10.1002/widm.1249
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app12146927
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_25f7d87eba4840dbaedfe285bfbdd201
10_3390_app12146927
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c364t-e204ff5fdf2e304ebb009f26d634716f56e976d1167bcbeac16eb887217a5f0f3
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:32:02 EDT 2025
Mon Jun 30 11:21:20 EDT 2025
Tue Jul 01 00:41:26 EDT 2025
Thu Apr 24 22:56:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-e204ff5fdf2e304ebb009f26d634716f56e976d1167bcbeac16eb887217a5f0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2402-7123
0000-0002-1280-3447
0000-0002-1876-6587
0000-0003-1437-1526
0000-0002-6202-1785
OpenAccessLink https://doaj.org/article/25f7d87eba4840dbaedfe285bfbdd201
PQID 2693933339
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_25f7d87eba4840dbaedfe285bfbdd201
proquest_journals_2693933339
crossref_citationtrail_10_3390_app12146927
crossref_primary_10_3390_app12146927
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Blondel (ref_33) 2008; 2008
Sagi (ref_35) 2018; 8
ref_36
ref_12
ref_34
ref_11
ref_10
Mousavi (ref_4) 2020; 8
Hartigan (ref_13) 1979; 28
LeCun (ref_27) 1998; 86
ref_19
Weimer (ref_6) 2016; 65
ref_18
ref_17
ref_16
ref_15
ref_37
Wang (ref_9) 2018; 94
Dai (ref_8) 2020; 43
Min (ref_26) 2018; 6
ref_25
ref_24
ref_23
ref_22
ref_21
ref_20
ref_1
ref_3
ref_2
Girvan (ref_32) 2002; 99
ref_29
ref_28
Jain (ref_14) 1999; 31
Hinton (ref_30) 2008; 9
Rousseeuw (ref_31) 1987; 20
ref_5
ref_7
References_xml – ident: ref_28
– volume: 2008
  start-page: P10008
  year: 2008
  ident: ref_33
  article-title: Fast unfolding of communities in large networks
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2008/10/P10008
– volume: 65
  start-page: 417
  year: 2016
  ident: ref_6
  article-title: Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2016.04.072
– volume: 28
  start-page: 100
  year: 1979
  ident: ref_13
  article-title: Algorithm AS 136: A k-means clustering algorithm
  publication-title: J. R. Stat. Soc. Ser. (Appl. Stat.)
– ident: ref_29
  doi: 10.1109/CVPR.2016.90
– ident: ref_34
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref_30
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref_17
  doi: 10.1109/CVPR.2017.243
– volume: 31
  start-page: 264
  year: 1999
  ident: ref_14
  article-title: Data clustering: A review
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/331499.331504
– ident: ref_16
– ident: ref_19
  doi: 10.1609/aaai.v31i1.11231
– ident: ref_24
  doi: 10.21105/joss.00861
– ident: ref_20
  doi: 10.1109/CVPR.2017.195
– ident: ref_7
  doi: 10.3390/ICEM18-05387
– ident: ref_37
– ident: ref_12
  doi: 10.1109/CVPR42600.2020.00672
– ident: ref_21
– volume: 8
  start-page: 183192
  year: 2020
  ident: ref_4
  article-title: A review and analysis of automatic optical inspection and quality monitoring methods in electronics industry
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3029127
– ident: ref_2
  doi: 10.1145/3377325.3377538
– volume: 43
  start-page: 101004
  year: 2020
  ident: ref_8
  article-title: Soldering defect detection in automatic optical inspection
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2019.101004
– ident: ref_15
  doi: 10.1145/1143844.1143865
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_27
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: ref_23
  doi: 10.1145/3366423.3380214
– ident: ref_25
– volume: 99
  start-page: 7821
  year: 2002
  ident: ref_32
  article-title: Community structure in social and biological networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.122653799
– ident: ref_18
  doi: 10.1109/CVPR.2018.00907
– ident: ref_3
  doi: 10.1145/3377325.3377501
– ident: ref_10
– ident: ref_1
  doi: 10.1145/3411764.3445306
– volume: 20
  start-page: 53
  year: 1987
  ident: ref_31
  article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
– volume: 6
  start-page: 39501
  year: 2018
  ident: ref_26
  article-title: A survey of clustering with deep learning: From the perspective of network architecture
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2855437
– ident: ref_36
– ident: ref_11
  doi: 10.1109/CVPR.2009.5206848
– ident: ref_5
  doi: 10.1109/EDPC48408.2019.9011820
– volume: 94
  start-page: 3465
  year: 2018
  ident: ref_9
  article-title: A fast and robust convolutional neural network-based defect detection model in product quality control
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-0882-0
– ident: ref_22
– volume: 8
  start-page: e1249
  year: 2018
  ident: ref_35
  article-title: Ensemble learning: A survey
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1249
SSID ssj0000913810
Score 2.2311184
Snippet Modern industries still commonly use traditional methods to visually inspect products, even though automation has many advantages over the skills of human...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 6927
SubjectTerms Artificial intelligence
Automation
Classification
Datasets
deep clustering
Deep learning
Defects
Efficiency
image classification
industrial data
Knowledge
Machine learning
Manufacturing
Neural networks
pre-trained models
Quality control
Software
Subject specialists
visual inspection
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZauLQHBLRVl0flAwdAsurYjjfmgmABoUogVIrELbJjDxe0WdjlwL9nJvEuK7XqNZ7kkPE8Pf4-xvbA2yJq70QYmkYYJ6WowGrhtIHC6xB64Pmra3t5Z37dl_e54TbNY5Vzn9g56tg21CP_qazTWHxr7Y4nT4JYo-h0NVNofGSr6IIrLL5WT8-vb34vuiyEelkVsr-Yh-9KOhcuiMzaEY_MUijqEPv_cshdlLlYZ2s5PeQnvT432Ic03mSfl0ADN9lGNscp38-Y0QdfWHvbEt02CvAzP_O847qkKaDux3PqtnLPz1Ka4NILgSOQ6EkGFD_iIwxmnGYKX3kL3I_5fG5evHN78FHbTlK_Y76yu4vzP6NLkbkURKOtmYmkpAEoIYJKWpoU0NwcKButxvBkobQJE5NIpzKhCeiNC5sCOiCsWHwJEvQ3tjJux-k747FUYJR03kIyMRnnG_xmUN57pyorB-xw_lvrJgONE9_FY40FB-mgXtLBgO0thCc9vsa_xU5JPwsRAsXuHrTPD3W2sVqVMIzVMAVvsGyNwacISVVlgBAjJjoDtjPXbp0tdVq_76ut_y9vs0-Krj50o7o7bGX2_JJ2MSGZhR95170BJtbiiw
  priority: 102
  providerName: ProQuest
Title Soldering Data Classification with a Deep Clustering Approach: Case Study of an Academic-Industrial Cooperation
URI https://www.proquest.com/docview/2693933339
https://doaj.org/article/25f7d87eba4840dbaedfe285bfbdd201
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1RuLSHio9WXQorHzgAUtTEdrwxN1hYEBIIQZG4RXbsOaHNil0O_fedSbIQCSQu5JiMkmhmPOOxx-8B7KEzWVDOJn6kq0TbNE0KNCqxSmPmlPct8PzVtbm415cP-UOP6ot7wlp44FZxf2SOo1CMoneaapHgXQwYZZF79CHI9uQW5bxeMdXEYJsxdFV7IE9RXc_7wRmTWFvmj-mloAap_00gbrLLZB2-d9NCcdz-zgasxOkmfOuBBW7CRjcM52K_w4o-2IL6rmaabRIQp27hRMNxyd0_jcIFr7IKJ05jnNGjZwZFYNHjDkj8SIwpiQnuJfwnahRuKpb98skrp4cY1_Ustp7yA-4nZ3_HF0nHoZBUyuhFEmWqEXMMKKNKdfQ0zCxKE4yitGQwN5EmJIF3Y3zlKQpnJnoKPFSpuBxTVD9hdVpP4y8QIZeoSdfOYNQhausqeqeXzjkrC5MO4HCp1rLqAMaZ5-KxpEKDbVD2bDCAvRfhWYur8b7YCdvnRYTBsJsb5CJl5yLlRy4ygJ2ldctuhM5Laayyii67_Rnf-A1fJR-MaBp5d2B18fQcd2m6svBD-FJMzoewdnJ2fXM7bPz0P0zM7gY
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcigcEG1BBAr4UKSCZLFre511JYRK0pA-L7RSb1t7bXNB2dCkQv1T_MbO7CONBOqt1_XIWnleHnv8fQDb0erUS2u466uSK5MkPI9aciNVTK10rgGePznV43N1eJFdrMDf7i0MtVV2MbEO1L4q6Yz8s9BGYvEtpfk6_c2JNYpuVzsKjcYsjsLNHyzZZl8OhqjfD0KM9s8GY96yCvBSajXnQSQqxiz6KALW8sGh4ZkotNcSA7WOmQ6Yoj3dT7jSYVxKdXDoirh3t1lMosR5H8FjhX9CHpWPvi_OdAhjM0-T5hkgjid0C50SdbYh1pqlxFfzA_wT_uucNnoOz9rNKNtrrGcdVsJkA54uQRRuwHrr_DO20yJUf9yE6kdF5N4owIZ2blnNrEk9R7WaGZ3tMsuGIUxx6JqgGEh0r4Uv32UDTJ2MOhhvWBWZnbCuS5_fMYmwQVVNQ2OfL-D8Qdb4JaxOqkl4BcxnIiqRGKtjUD4oY0uc0wlrrRG5TnrwqVvWomxhzYld41eB5Q3poFjSQQ-2F8LTBs3j_2LfSD8LEYLgrj9UVz-L1qMLkcW-z_vBWYVFsnc2-BhEnrnovMdtVQ-2Ou0WbVyYFXdW_Pr-4fewNj47OS6OD06P3sATQY8u6ibhLVidX12Ht7gVmrt3tf0xuHxog78Faq4eqg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3faxQxEB7qFUQfxFbFs1XzUEGFpbtJNrcRRNq7Hq3Vo6iFvq3JJvFFbq-9K9J_rX9dZ3az1wPFt75uhrBkJvMjmXwfwE4wKnPC6MQOZJVInaZJEZRItJAhM8LaFnj-60QdnsrPZ_nZGlx3b2GorbLziY2jdnVFZ-S7XGmBxbcQejfEtoiT0fjT7DwhBim6ae3oNFoTOfZXf7B8m388GqGu33A-PvgxPEwiw0BSCSUXieepDCEPLnCPdb23aIQ6cOWUQKetQq48hmtHdxW2suijMuUtbkvM400e0iBw3nuwPsCqKO3B-v7B5OTb8oSHEDeLLG0fBeJ_p3QnnRGRtiYOm5Uw2LAF_BUMmgg3fgyPYmrK9lpb2oA1P92EhyuAhZuwEV3BnL2NeNXvnkD9vSaqbxRgI7MwrOHZpA6kRumMTnqZYSPvZzh0ScAMJLoXwcw_sCEGUkb9jFesDsxMWdezn9zyirBhXc98a61P4fROVvkZ9Kb11D8H5nIeJE-1UcFL56U2Fc5puTFG80KlfXjfLWtZRZBz4tr4XWKxQzooV3TQh52l8KzF9vi32D7pZylCgNzNh_riVxn3d8nzMHDFwFsjsWR21ngXPC9yG6xzmGT1YbvTbhm9xLy8tekX_x9-DffR2MsvR5PjLXjA6QVG0zG8Db3FxaV_iXnRwr6KBsjg513b_A0_aSQ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soldering+Data+Classification+with+a+Deep+Clustering+Approach%3A+Case+Study+of+an+Academic-Industrial+Cooperation&rft.jtitle=Applied+sciences&rft.au=Kinga+Bettina+Farag%C3%B3&rft.au=Joul+Skaf&rft.au=Szabolcs+Forg%C3%A1cs&rft.au=Bence+Hevesi&rft.date=2022-07-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=14&rft.spage=6927&rft_id=info:doi/10.3390%2Fapp12146927&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_25f7d87eba4840dbaedfe285bfbdd201
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon