Soldering Data Classification with a Deep Clustering Approach: Case Study of an Academic-Industrial Cooperation
Modern industries still commonly use traditional methods to visually inspect products, even though automation has many advantages over the skills of human labour. The automation of redundant tasks is one of the greatest successes of Artificial Intelligence (AI). It employs human annotation and finds...
Saved in:
Published in | Applied sciences Vol. 12; no. 14; p. 6927 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Modern industries still commonly use traditional methods to visually inspect products, even though automation has many advantages over the skills of human labour. The automation of redundant tasks is one of the greatest successes of Artificial Intelligence (AI). It employs human annotation and finds possible relationships between features within a particular dataset. However, until recently, this has always been the responsibility of AI specialists with a specific type of knowledge that is not available to the industrial domain experts. We documented the joint research of AI and domain experts as a case study on processing a soldering-related industrial dataset. Our image classification approach relies on the latent space representations of neural networks already trained on other databases. We perform dimensionality reduction of the representations of the new data and cluster the outputs in the lower dimension. This method requires little to no knowledge of the underlying architecture of neural networks by the domain experts, meaning it is easily manageable by them, supporting generalization to other use cases that can be investigated in future work. We also suggest a misclassification detecting method. We were able to achieve near-perfect test accuracy with minimal annotation work. |
---|---|
AbstractList | Modern industries still commonly use traditional methods to visually inspect products, even though automation has many advantages over the skills of human labour. The automation of redundant tasks is one of the greatest successes of Artificial Intelligence (AI). It employs human annotation and finds possible relationships between features within a particular dataset. However, until recently, this has always been the responsibility of AI specialists with a specific type of knowledge that is not available to the industrial domain experts. We documented the joint research of AI and domain experts as a case study on processing a soldering-related industrial dataset. Our image classification approach relies on the latent space representations of neural networks already trained on other databases. We perform dimensionality reduction of the representations of the new data and cluster the outputs in the lower dimension. This method requires little to no knowledge of the underlying architecture of neural networks by the domain experts, meaning it is easily manageable by them, supporting generalization to other use cases that can be investigated in future work. We also suggest a misclassification detecting method. We were able to achieve near-perfect test accuracy with minimal annotation work. |
Author | Lőrincz, András Faragó, Kinga Bettina Hevesi, Bence Forgács, Szabolcs Skaf, Joul |
Author_xml | – sequence: 1 givenname: Kinga Bettina orcidid: 0000-0002-2402-7123 surname: Faragó fullname: Faragó, Kinga Bettina – sequence: 2 givenname: Joul orcidid: 0000-0002-1876-6587 surname: Skaf fullname: Skaf, Joul – sequence: 3 givenname: Szabolcs orcidid: 0000-0003-1437-1526 surname: Forgács fullname: Forgács, Szabolcs – sequence: 4 givenname: Bence orcidid: 0000-0002-6202-1785 surname: Hevesi fullname: Hevesi, Bence – sequence: 5 givenname: András orcidid: 0000-0002-1280-3447 surname: Lőrincz fullname: Lőrincz, András |
BookMark | eNptkU1rHDEMhoeSQNMkp_4BQ49lUn_M2DO9LZM2WQj0kPZsZFtOvEzGU9tLyb-vu9tAKNVFQnr08gq9a06WuGDTvGf0SoiRfoJ1ZZx1cuTqTXPGqZKt6Jg6eVW_bS5z3tEaIxMDo2dNvI-zwxSWB3INBcg0Q87BBwslxIX8CuWRALlGXOton8sR3axrimAfP5MJMpL7snfPJHoCC9lYcPgUbLtdXOVTgJlMMa6YDooXzamHOePl33ze_Pj65ft02959u9lOm7vWCtmVFjntvO-98xwF7dCYatlz6aToFJO-lzgq6RiTyliDYJlEMwyKMwW9p16cN9ujrouw02sKT5CedYSgD42YHjSkEuyMmvdeuUGhgW7oqDOAziMfeuONc5yyqvXhqFWP_rnHXPQu7tNS7WsuRzGKGmOl2JGyKeac0GsbyuHmkiDMmlH950361Zvqzsd_dl6c_o_-Dcp4lkI |
CitedBy_id | crossref_primary_10_3390_jimaging10100255 |
Cites_doi | 10.1088/1742-5468/2008/10/P10008 10.1016/j.cirp.2016.04.072 10.1109/CVPR.2016.90 10.1109/CVPR.2017.243 10.1145/331499.331504 10.1609/aaai.v31i1.11231 10.21105/joss.00861 10.1109/CVPR.2017.195 10.3390/ICEM18-05387 10.1109/CVPR42600.2020.00672 10.1109/ACCESS.2020.3029127 10.1145/3377325.3377538 10.1016/j.aei.2019.101004 10.1145/1143844.1143865 10.1109/5.726791 10.1145/3366423.3380214 10.1073/pnas.122653799 10.1109/CVPR.2018.00907 10.1145/3377325.3377501 10.1145/3411764.3445306 10.1016/0377-0427(87)90125-7 10.1109/ACCESS.2018.2855437 10.1109/CVPR.2009.5206848 10.1109/EDPC48408.2019.9011820 10.1007/s00170-017-0882-0 10.1002/widm.1249 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
DOI | 10.3390/app12146927 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_25f7d87eba4840dbaedfe285bfbdd201 10_3390_app12146927 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c364t-e204ff5fdf2e304ebb009f26d634716f56e976d1167bcbeac16eb887217a5f0f3 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:32:02 EDT 2025 Mon Jun 30 11:21:20 EDT 2025 Tue Jul 01 00:41:26 EDT 2025 Thu Apr 24 22:56:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-e204ff5fdf2e304ebb009f26d634716f56e976d1167bcbeac16eb887217a5f0f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2402-7123 0000-0002-1280-3447 0000-0002-1876-6587 0000-0003-1437-1526 0000-0002-6202-1785 |
OpenAccessLink | https://doaj.org/article/25f7d87eba4840dbaedfe285bfbdd201 |
PQID | 2693933339 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_25f7d87eba4840dbaedfe285bfbdd201 proquest_journals_2693933339 crossref_citationtrail_10_3390_app12146927 crossref_primary_10_3390_app12146927 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Blondel (ref_33) 2008; 2008 Sagi (ref_35) 2018; 8 ref_36 ref_12 ref_34 ref_11 ref_10 Mousavi (ref_4) 2020; 8 Hartigan (ref_13) 1979; 28 LeCun (ref_27) 1998; 86 ref_19 Weimer (ref_6) 2016; 65 ref_18 ref_17 ref_16 ref_15 ref_37 Wang (ref_9) 2018; 94 Dai (ref_8) 2020; 43 Min (ref_26) 2018; 6 ref_25 ref_24 ref_23 ref_22 ref_21 ref_20 ref_1 ref_3 ref_2 Girvan (ref_32) 2002; 99 ref_29 ref_28 Jain (ref_14) 1999; 31 Hinton (ref_30) 2008; 9 Rousseeuw (ref_31) 1987; 20 ref_5 ref_7 |
References_xml | – ident: ref_28 – volume: 2008 start-page: P10008 year: 2008 ident: ref_33 article-title: Fast unfolding of communities in large networks publication-title: J. Stat. Mech. Theory Exp. doi: 10.1088/1742-5468/2008/10/P10008 – volume: 65 start-page: 417 year: 2016 ident: ref_6 article-title: Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection publication-title: CIRP Ann. doi: 10.1016/j.cirp.2016.04.072 – volume: 28 start-page: 100 year: 1979 ident: ref_13 article-title: Algorithm AS 136: A k-means clustering algorithm publication-title: J. R. Stat. Soc. Ser. (Appl. Stat.) – ident: ref_29 doi: 10.1109/CVPR.2016.90 – ident: ref_34 – volume: 9 start-page: 2579 year: 2008 ident: ref_30 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref_17 doi: 10.1109/CVPR.2017.243 – volume: 31 start-page: 264 year: 1999 ident: ref_14 article-title: Data clustering: A review publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/331499.331504 – ident: ref_16 – ident: ref_19 doi: 10.1609/aaai.v31i1.11231 – ident: ref_24 doi: 10.21105/joss.00861 – ident: ref_20 doi: 10.1109/CVPR.2017.195 – ident: ref_7 doi: 10.3390/ICEM18-05387 – ident: ref_37 – ident: ref_12 doi: 10.1109/CVPR42600.2020.00672 – ident: ref_21 – volume: 8 start-page: 183192 year: 2020 ident: ref_4 article-title: A review and analysis of automatic optical inspection and quality monitoring methods in electronics industry publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3029127 – ident: ref_2 doi: 10.1145/3377325.3377538 – volume: 43 start-page: 101004 year: 2020 ident: ref_8 article-title: Soldering defect detection in automatic optical inspection publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2019.101004 – ident: ref_15 doi: 10.1145/1143844.1143865 – volume: 86 start-page: 2278 year: 1998 ident: ref_27 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – ident: ref_23 doi: 10.1145/3366423.3380214 – ident: ref_25 – volume: 99 start-page: 7821 year: 2002 ident: ref_32 article-title: Community structure in social and biological networks publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.122653799 – ident: ref_18 doi: 10.1109/CVPR.2018.00907 – ident: ref_3 doi: 10.1145/3377325.3377501 – ident: ref_10 – ident: ref_1 doi: 10.1145/3411764.3445306 – volume: 20 start-page: 53 year: 1987 ident: ref_31 article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(87)90125-7 – volume: 6 start-page: 39501 year: 2018 ident: ref_26 article-title: A survey of clustering with deep learning: From the perspective of network architecture publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2855437 – ident: ref_36 – ident: ref_11 doi: 10.1109/CVPR.2009.5206848 – ident: ref_5 doi: 10.1109/EDPC48408.2019.9011820 – volume: 94 start-page: 3465 year: 2018 ident: ref_9 article-title: A fast and robust convolutional neural network-based defect detection model in product quality control publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-0882-0 – ident: ref_22 – volume: 8 start-page: e1249 year: 2018 ident: ref_35 article-title: Ensemble learning: A survey publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1249 |
SSID | ssj0000913810 |
Score | 2.2311184 |
Snippet | Modern industries still commonly use traditional methods to visually inspect products, even though automation has many advantages over the skills of human... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 6927 |
SubjectTerms | Artificial intelligence Automation Classification Datasets deep clustering Deep learning Defects Efficiency image classification industrial data Knowledge Machine learning Manufacturing Neural networks pre-trained models Quality control Software Subject specialists visual inspection |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZauLQHBLRVl0flAwdAsurYjjfmgmABoUogVIrELbJjDxe0WdjlwL9nJvEuK7XqNZ7kkPE8Pf4-xvbA2yJq70QYmkYYJ6WowGrhtIHC6xB64Pmra3t5Z37dl_e54TbNY5Vzn9g56tg21CP_qazTWHxr7Y4nT4JYo-h0NVNofGSr6IIrLL5WT8-vb34vuiyEelkVsr-Yh-9KOhcuiMzaEY_MUijqEPv_cshdlLlYZ2s5PeQnvT432Ic03mSfl0ADN9lGNscp38-Y0QdfWHvbEt02CvAzP_O847qkKaDux3PqtnLPz1Ka4NILgSOQ6EkGFD_iIwxmnGYKX3kL3I_5fG5evHN78FHbTlK_Y76yu4vzP6NLkbkURKOtmYmkpAEoIYJKWpoU0NwcKButxvBkobQJE5NIpzKhCeiNC5sCOiCsWHwJEvQ3tjJux-k747FUYJR03kIyMRnnG_xmUN57pyorB-xw_lvrJgONE9_FY40FB-mgXtLBgO0thCc9vsa_xU5JPwsRAsXuHrTPD3W2sVqVMIzVMAVvsGyNwacISVVlgBAjJjoDtjPXbp0tdVq_76ut_y9vs0-Krj50o7o7bGX2_JJ2MSGZhR95170BJtbiiw priority: 102 providerName: ProQuest |
Title | Soldering Data Classification with a Deep Clustering Approach: Case Study of an Academic-Industrial Cooperation |
URI | https://www.proquest.com/docview/2693933339 https://doaj.org/article/25f7d87eba4840dbaedfe285bfbdd201 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1RuLSHio9WXQorHzgAUtTEdrwxN1hYEBIIQZG4RXbsOaHNil0O_fedSbIQCSQu5JiMkmhmPOOxx-8B7KEzWVDOJn6kq0TbNE0KNCqxSmPmlPct8PzVtbm415cP-UOP6ot7wlp44FZxf2SOo1CMoneaapHgXQwYZZF79CHI9uQW5bxeMdXEYJsxdFV7IE9RXc_7wRmTWFvmj-mloAap_00gbrLLZB2-d9NCcdz-zgasxOkmfOuBBW7CRjcM52K_w4o-2IL6rmaabRIQp27hRMNxyd0_jcIFr7IKJ05jnNGjZwZFYNHjDkj8SIwpiQnuJfwnahRuKpb98skrp4cY1_Ustp7yA-4nZ3_HF0nHoZBUyuhFEmWqEXMMKKNKdfQ0zCxKE4yitGQwN5EmJIF3Y3zlKQpnJnoKPFSpuBxTVD9hdVpP4y8QIZeoSdfOYNQhausqeqeXzjkrC5MO4HCp1rLqAMaZ5-KxpEKDbVD2bDCAvRfhWYur8b7YCdvnRYTBsJsb5CJl5yLlRy4ygJ2ldctuhM5Laayyii67_Rnf-A1fJR-MaBp5d2B18fQcd2m6svBD-FJMzoewdnJ2fXM7bPz0P0zM7gY |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcigcEG1BBAr4UKSCZLFre511JYRK0pA-L7RSb1t7bXNB2dCkQv1T_MbO7CONBOqt1_XIWnleHnv8fQDb0erUS2u466uSK5MkPI9aciNVTK10rgGePznV43N1eJFdrMDf7i0MtVV2MbEO1L4q6Yz8s9BGYvEtpfk6_c2JNYpuVzsKjcYsjsLNHyzZZl8OhqjfD0KM9s8GY96yCvBSajXnQSQqxiz6KALW8sGh4ZkotNcSA7WOmQ6Yoj3dT7jSYVxKdXDoirh3t1lMosR5H8FjhX9CHpWPvi_OdAhjM0-T5hkgjid0C50SdbYh1pqlxFfzA_wT_uucNnoOz9rNKNtrrGcdVsJkA54uQRRuwHrr_DO20yJUf9yE6kdF5N4owIZ2blnNrEk9R7WaGZ3tMsuGIUxx6JqgGEh0r4Uv32UDTJ2MOhhvWBWZnbCuS5_fMYmwQVVNQ2OfL-D8Qdb4JaxOqkl4BcxnIiqRGKtjUD4oY0uc0wlrrRG5TnrwqVvWomxhzYld41eB5Q3poFjSQQ-2F8LTBs3j_2LfSD8LEYLgrj9UVz-L1qMLkcW-z_vBWYVFsnc2-BhEnrnovMdtVQ-2Ou0WbVyYFXdW_Pr-4fewNj47OS6OD06P3sATQY8u6ibhLVidX12Ht7gVmrt3tf0xuHxog78Faq4eqg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3faxQxEB7qFUQfxFbFs1XzUEGFpbtJNrcRRNq7Hq3Vo6iFvq3JJvFFbq-9K9J_rX9dZ3az1wPFt75uhrBkJvMjmXwfwE4wKnPC6MQOZJVInaZJEZRItJAhM8LaFnj-60QdnsrPZ_nZGlx3b2GorbLziY2jdnVFZ-S7XGmBxbcQejfEtoiT0fjT7DwhBim6ae3oNFoTOfZXf7B8m388GqGu33A-PvgxPEwiw0BSCSUXieepDCEPLnCPdb23aIQ6cOWUQKetQq48hmtHdxW2suijMuUtbkvM400e0iBw3nuwPsCqKO3B-v7B5OTb8oSHEDeLLG0fBeJ_p3QnnRGRtiYOm5Uw2LAF_BUMmgg3fgyPYmrK9lpb2oA1P92EhyuAhZuwEV3BnL2NeNXvnkD9vSaqbxRgI7MwrOHZpA6kRumMTnqZYSPvZzh0ScAMJLoXwcw_sCEGUkb9jFesDsxMWdezn9zyirBhXc98a61P4fROVvkZ9Kb11D8H5nIeJE-1UcFL56U2Fc5puTFG80KlfXjfLWtZRZBz4tr4XWKxQzooV3TQh52l8KzF9vi32D7pZylCgNzNh_riVxn3d8nzMHDFwFsjsWR21ngXPC9yG6xzmGT1YbvTbhm9xLy8tekX_x9-DffR2MsvR5PjLXjA6QVG0zG8Db3FxaV_iXnRwr6KBsjg513b_A0_aSQ8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soldering+Data+Classification+with+a+Deep+Clustering+Approach%3A+Case+Study+of+an+Academic-Industrial+Cooperation&rft.jtitle=Applied+sciences&rft.au=Kinga+Bettina+Farag%C3%B3&rft.au=Joul+Skaf&rft.au=Szabolcs+Forg%C3%A1cs&rft.au=Bence+Hevesi&rft.date=2022-07-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=14&rft.spage=6927&rft_id=info:doi/10.3390%2Fapp12146927&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_25f7d87eba4840dbaedfe285bfbdd201 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |