Attribute-oriented cognitive concept learning strategy: a multi-level method

Recently, formal concept analysis has become a potential direction of cognitive computing, which can describe the processes of cognitive concept learning. We establish a concept hierarchy structure based on the existing cognitive concept learning methods. However, none of these methods could obtain...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of machine learning and cybernetics Vol. 10; no. 9; pp. 2421 - 2437
Main Authors Fan, Bingjiao, Tsang, Eric C. C., Xu, Weihua, Chen, Degang, Li, Wentao
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1868-8071
1868-808X
DOI10.1007/s13042-018-0879-5

Cover

Abstract Recently, formal concept analysis has become a potential direction of cognitive computing, which can describe the processes of cognitive concept learning. We establish a concept hierarchy structure based on the existing cognitive concept learning methods. However, none of these methods could obtain the following results: get the concept, recognize objects and distinguish between two different objects. In this paper, our focus is to construct an attribute-oriented multi-level cognitive concept learning method so as to improve and enhance the ability of cognitive concept learning. Firstly, the view point of human cognition is discussed from the multi-level approach, and then the mechanism of attribute-oriented cognitive concept learning is investigated. Through some defined special attributes, we propose a corresponding structure of attribute-oriented multi-level cognitive concept learning from an interdisciplinary viewpoint. It is a combination of philosophy and psychology of human cognition. Moreover, to make the presented attribute-oriented multi-level method easier to understand and apply in practice, an algorithm of cognitive concept learning is established. Furthermore, a case study about how to recognize the real-world animals is studied to use the proposed method and theory. Finally, in order to solve conceptual cognition problems, we perform an experimental evaluation on five data sets downloaded from the University of California-Irvine (UCI) databases. And then we provide a comparative analysis with the existing g r a n u l a r c o m p u t i n g a p p r o a c h t o t w o - w a y l e a r n i n g [ 44 ] and the three - w a y c o g n i t i v e c o n c e p t l e a r n i n g v i a m u l t i - granularity [ 9 ]. We obtain more number of concepts than t h e t w o - w a y l e a r n i n g a n d t h e t h r e e - w a y c o g n i t i v e c o n c e p t l e a r n i n g a p p r o a c h e s , which shows the feasibility and effectiveness of our attribute-oriented multi-level cognitive learning method.
AbstractList Recently, formal concept analysis has become a potential direction of cognitive computing, which can describe the processes of cognitive concept learning. We establish a concept hierarchy structure based on the existing cognitive concept learning methods. However, none of these methods could obtain the following results: get the concept, recognize objects and distinguish between two different objects. In this paper, our focus is to construct an attribute-oriented multi-level cognitive concept learning method so as to improve and enhance the ability of cognitive concept learning. Firstly, the view point of human cognition is discussed from the multi-level approach, and then the mechanism of attribute-oriented cognitive concept learning is investigated. Through some defined special attributes, we propose a corresponding structure of attribute-oriented multi-level cognitive concept learning from an interdisciplinary viewpoint. It is a combination of philosophy and psychology of human cognition. Moreover, to make the presented attribute-oriented multi-level method easier to understand and apply in practice, an algorithm of cognitive concept learning is established. Furthermore, a case study about how to recognize the real-world animals is studied to use the proposed method and theory. Finally, in order to solve conceptual cognition problems, we perform an experimental evaluation on five data sets downloaded from the University of California-Irvine (UCI) databases. And then we provide a comparative analysis with the existing granularcomputingapproachtotwo-waylearning [44] and the three-waycognitiveconceptlearningviamulti-granularity [9]. We obtain more number of concepts than thetwo-waylearningandthethree-waycognitiveconceptlearningapproaches, which shows the feasibility and effectiveness of our attribute-oriented multi-level cognitive learning method.
Recently, formal concept analysis has become a potential direction of cognitive computing, which can describe the processes of cognitive concept learning. We establish a concept hierarchy structure based on the existing cognitive concept learning methods. However, none of these methods could obtain the following results: get the concept, recognize objects and distinguish between two different objects. In this paper, our focus is to construct an attribute-oriented multi-level cognitive concept learning method so as to improve and enhance the ability of cognitive concept learning. Firstly, the view point of human cognition is discussed from the multi-level approach, and then the mechanism of attribute-oriented cognitive concept learning is investigated. Through some defined special attributes, we propose a corresponding structure of attribute-oriented multi-level cognitive concept learning from an interdisciplinary viewpoint. It is a combination of philosophy and psychology of human cognition. Moreover, to make the presented attribute-oriented multi-level method easier to understand and apply in practice, an algorithm of cognitive concept learning is established. Furthermore, a case study about how to recognize the real-world animals is studied to use the proposed method and theory. Finally, in order to solve conceptual cognition problems, we perform an experimental evaluation on five data sets downloaded from the University of California-Irvine (UCI) databases. And then we provide a comparative analysis with the existing g r a n u l a r c o m p u t i n g a p p r o a c h t o t w o - w a y l e a r n i n g [ 44 ] and the three - w a y c o g n i t i v e c o n c e p t l e a r n i n g v i a m u l t i - granularity [ 9 ]. We obtain more number of concepts than t h e t w o - w a y l e a r n i n g a n d t h e t h r e e - w a y c o g n i t i v e c o n c e p t l e a r n i n g a p p r o a c h e s , which shows the feasibility and effectiveness of our attribute-oriented multi-level cognitive learning method.
Author Li, Wentao
Chen, Degang
Xu, Weihua
Tsang, Eric C. C.
Fan, Bingjiao
Author_xml – sequence: 1
  givenname: Bingjiao
  surname: Fan
  fullname: Fan, Bingjiao
  organization: Faculty of Information Technology, Macau University of Science and Technology
– sequence: 2
  givenname: Eric C. C.
  surname: Tsang
  fullname: Tsang, Eric C. C.
  email: cctsang@must.edu.mo
  organization: Faculty of Information Technology, Macau University of Science and Technology
– sequence: 3
  givenname: Weihua
  surname: Xu
  fullname: Xu, Weihua
  organization: School of Mathematics and Statistics, Southwest University
– sequence: 4
  givenname: Degang
  surname: Chen
  fullname: Chen, Degang
  organization: Department of Mathematics and Physics, North China Electric Power University
– sequence: 5
  givenname: Wentao
  surname: Li
  fullname: Li, Wentao
  organization: Department of Mathematics, Harbin Institute of Technology
BookMark eNp9kE1LAzEQhoNUsNb-AG8LnqP52N0k3krxCwpeevAWstnsmrJNapIW-u9NWVEQdC4zh_eZmfe9BBPnnQHgGqNbjBC7i5iikkCEOUScCVidgSnmNYcc8bfJ98zwBZjHuEG5akQpIlOwWqQUbLNPBvpgjUumLbTvnU32YPLktNmlYjAqOOv6IqagkumP94UqtvshWTiYgxmKrUnvvr0C550aopl_9RlYPz6sl89w9fr0slysoKZ1mWDbVrSiSAuqOdeYKMYYQYo2gjakEyXWzBCNmSBVXXWlopzXui47lCFEGjoDN-PaXfAfexOT3Ph9cPmiJAKLknKR3c0AG1U6-BiD6aS2SSXrXfZgB4mRPIUnx_BkDk-ewpNVJvEvchfsVoXjvwwZmZi1rjfh56e_oU84NIJt
CitedBy_id crossref_primary_10_1002_pra2_243
crossref_primary_10_1016_j_knosys_2024_112618
crossref_primary_10_1109_TNNLS_2023_3333537
crossref_primary_10_1007_s00500_022_07524_8
crossref_primary_10_1007_s10489_024_05583_y
crossref_primary_10_1016_j_knosys_2021_106898
crossref_primary_10_1109_TCYB_2020_2980794
crossref_primary_10_1007_s13042_018_0893_7
crossref_primary_10_1016_j_asoc_2024_112363
crossref_primary_10_1007_s13042_019_01040_2
crossref_primary_10_1016_j_ijar_2022_01_007
crossref_primary_10_1016_j_knosys_2020_105859
crossref_primary_10_1016_j_inffus_2024_102426
crossref_primary_10_1016_j_ins_2024_120366
crossref_primary_10_1016_j_ins_2024_121698
crossref_primary_10_1007_s12559_022_09999_x
crossref_primary_10_1016_j_jclepro_2022_131364
crossref_primary_10_1016_j_ins_2022_03_029
crossref_primary_10_3233_JIFS_200218
crossref_primary_10_1016_j_ijar_2024_109327
crossref_primary_10_1016_j_ipm_2023_103365
crossref_primary_10_1016_j_ins_2023_119818
crossref_primary_10_1016_j_cogsys_2024_101258
crossref_primary_10_1007_s12559_021_09930_w
crossref_primary_10_1007_s13042_022_01576_w
crossref_primary_10_1016_j_ijar_2019_12_010
crossref_primary_10_1007_s13042_023_01954_y
crossref_primary_10_3390_sym14050850
crossref_primary_10_1007_s10462_021_10048_6
crossref_primary_10_1016_j_knosys_2022_110093
crossref_primary_10_1088_1742_6596_1624_2_022011
crossref_primary_10_1007_s13042_019_01015_3
crossref_primary_10_2166_wpt_2023_017
Cites_doi 10.1017/S0140525X00070813
10.4018/jssci.2009070101
10.1109/TCYB.2014.2361772
10.1016/0898-1221(92)90120-7
10.1109/TCYB.2017.2653223
10.1145/1978542.1978559
10.1016/j.ijar.2012.07.005
10.1007/s12559-017-9498-9
10.1007/s13042-016-0553-8
10.1109/TFUZZ.2017.2717803
10.1016/j.ins.2016.06.015
10.1002/9780470724163
10.1016/j.ijar.2018.07.007
10.4018/jcini.2008040101
10.1109/TSMCB.2009.2013334
10.1007/s13042-014-0313-6
10.1016/j.camwa.2006.03.040
10.1007/s13042-016-0568-1
10.1016/j.ins.2016.04.051
10.1109/TCYB.2013.2245891
10.1109/TFUZZ.2014.2371479
10.1111/cogs.12319
10.1007/s13042-012-0128-2
10.1016/j.ins.2011.11.041
10.1016/j.ins.2014.12.010
10.1109/TKDE.2008.223
10.1016/j.ijar.2017.01.009
10.1016/j.knosys.2015.07.024
10.1007/978-3-642-59830-2
10.1007/s13042-016-0593-0
10.1007/s13042-011-0034-z
10.1016/j.mcm.2008.06.007
10.1016/j.ins.2017.06.013
10.1109/TCYB.2013.2263382
10.1016/j.ijar.2013.10.002
10.1016/j.cogsys.2008.08.003
10.1007/978-3-642-76307-6_21
10.1016/j.knosys.2015.08.006
10.1007/978-3-540-32262-7_23
10.1007/978-3-540-25929-9_6
10.1109/GRC.2006.1635922
10.4018/978-1-4666-0261-8.ch007
10.1007/978-3-319-11740-9_67
10.1109/ICDM.2002.1183898
10.1109/CMPSAC.2001.960680
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2018
Springer-Verlag GmbH Germany, part of Springer Nature 2018.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s13042-018-0879-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1868-808X
EndPage 2437
ExternalDocumentID 10_1007_s13042_018_0879_5
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61472463; 71471060; 61772002
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Macau Science and Technology Development Fund<
  grantid: 081/2015/A3
– fundername: Science and Technology Research Program of Chongqing Municipal Education Commission
  grantid: KJ1709221
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
HCIFZ
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O93
O9J
P2P
P9P
PT4
PTHSS
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7X
Z83
Z88
ZMTXR
~A9
2VQ
AARHV
AAYXX
AAYZH
ABBRH
ABDBE
ABFSG
ABULA
ACSTC
ADKFA
AEBTG
AEZWR
AFDZB
AFHIU
AFLOW
AFOHR
AGJBK
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
CITATION
H13
O9-
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c364t-dd53530c93c88c12a77720a3b93b2f941c7e2c1792565f4a3886c64f053002b3
IEDL.DBID AGYKE
ISSN 1868-8071
IngestDate Fri Jul 25 11:06:45 EDT 2025
Tue Jul 01 03:50:59 EDT 2025
Thu Apr 24 23:12:33 EDT 2025
Fri Feb 21 02:40:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Concept learning
Formal concept analysis
Granular computing
Multi-level cognitive
Cognitive computing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-dd53530c93c88c12a77720a3b93b2f941c7e2c1792565f4a3886c64f053002b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2919438903
PQPubID 2043904
PageCount 17
ParticipantIDs proquest_journals_2919438903
crossref_citationtrail_10_1007_s13042_018_0879_5
crossref_primary_10_1007_s13042_018_0879_5
springer_journals_10_1007_s13042_018_0879_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of machine learning and cybernetics
PublicationTitleAbbrev Int. J. Mach. Learn. & Cyber
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Wang, He, Wang (CR34) 2014; 44
Qi, Qian, Wei (CR23) 2016; 91
Yao (CR47) 2017; 8
Luksch, Wille (CR16) 1991
Rodríguez-Jiménez, Cordero, Enciso, Mora, Bertet, Rudolph (CR24) 2014
Pei, Mi (CR20) 2011; 2
CR30
Xu, Li (CR44) 2016; 46
Agarwal (CR1) 1991; 14
Xu, Pang, Luo (CR45) 2014; 55
Wille (CR42) 1982
CR2
CR4
CR3
Wang, Wang, Xu (CR33) 2018; 48
Wang, Wang, Feng, Wang (CR35) 2014; 44
Li, Huang, Qi, Qian, Liu (CR9) 2017; 378
CR49
CR46
Wang, Wang, Kwong, Xu (CR32) 2017; 25
Wang (CR38) 2009; 1
Li, Mei, Lv (CR11) 2013; 54
Shivhare, Cherukuri (CR27) 2017; 8
Li, Mei, Xu, Qian (CR12) 2015; 298
CR40
Li, Ren, Mei, Qian, Yang (CR13) 2016; 91
Liu, Shao, Zhang, Wu (CR15) 2007; 53
Rodríguez-Jiménez, Cordero, Enciso, Rudolph (CR25) 2016; 369
Singh, Cherukuri, Li (CR29) 2017; 8
Li, Mei, Lv (CR10) 2012; 189
Wang, Xing, Li, Hua, Dong, Pedrycz (CR36) 2015; 23
Li, Pedrycz, Xue, Xu, Fan (CR14) 2018; 101
Wu, Leung, Mi (CR43) 2009; 21
CR50
Shao, Yang (CR26) 2013; 4
Huang, Li, Mei, Wu (CR6) 2017; 83
Konecny (CR7) 2017; 415–416
Wang (CR37) 2008; 2
Modha, Ananthanarayanan, Esser, Ndirango, Sherbondy, Singh (CR17) 2011; 54
Yao (CR48) 2009; 39
Pedrycz, Skowron, Kreinovich (CR19) 2008
Wang, Chiew (CR39) 2010; 11
Moreton, Pater, Pertsova (CR18) 2017; 41
CR22
CR21
Kumar, Ishwarya, Loo (CR8) 2015; 12
Wang, Zhang (CR31) 2008; 48
Zhao, Li, Liu, Xu (CR51) 2017; 8
Ganter (CR5) 1999
Shivhare, Cherukuri, Li (CR28) 2017; 9
Wille (CR41) 1992; 23
M Shao (879_CR26) 2013; 4
PK Singh (879_CR29) 2017; 8
DS Modha (879_CR17) 2011; 54
E Moreton (879_CR18) 2017; 41
XZ Wang (879_CR35) 2014; 44
Y Wang (879_CR38) 2009; 1
879_CR4
Y Yao (879_CR47) 2017; 8
WZ Wu (879_CR43) 2009; 21
B Ganter (879_CR5) 1999
CA Kumar (879_CR8) 2015; 12
W Li (879_CR14) 2018; 101
R Shivhare (879_CR28) 2017; 9
H Wang (879_CR31) 2008; 48
879_CR50
J Li (879_CR9) 2017; 378
JM Rodríguez-Jiménez (879_CR25) 2016; 369
Y Zhao (879_CR51) 2017; 8
P Luksch (879_CR16) 1991
J Li (879_CR11) 2013; 54
879_CR22
R Wang (879_CR32) 2017; 25
879_CR21
XZ Wang (879_CR33) 2018; 48
Y Yao (879_CR48) 2009; 39
GC Agarwal (879_CR1) 1991; 14
M Liu (879_CR15) 2007; 53
W Xu (879_CR44) 2016; 46
R Shivhare (879_CR27) 2017; 8
879_CR30
R Wille (879_CR41) 1992; 23
JM Rodríguez-Jiménez (879_CR24) 2014
J Konecny (879_CR7) 2017; 415–416
J Li (879_CR13) 2016; 91
D Pei (879_CR20) 2011; 2
879_CR46
W Xu (879_CR45) 2014; 55
J Li (879_CR12) 2015; 298
W Pedrycz (879_CR19) 2008
879_CR40
C Huang (879_CR6) 2017; 83
J Qi (879_CR23) 2016; 91
XZ Wang (879_CR34) 2014; 44
J Li (879_CR10) 2012; 189
879_CR49
X Wang (879_CR36) 2015; 23
R Wille (879_CR42) 1982
879_CR2
879_CR3
Y Wang (879_CR37) 2008; 2
Y Wang (879_CR39) 2010; 11
References_xml – volume: 14
  start-page: 485
  issue: 3
  year: 1991
  end-page: 486
  ident: CR1
  article-title: Human cognition is an adaptive process
  publication-title: Behav Brain Sci
  doi: 10.1017/S0140525X00070813
– volume: 1
  start-page: 1
  issue: 3
  year: 2009
  end-page: 15
  ident: CR38
  article-title: On cognitive computing
  publication-title: Int J Softw Sci Comput Intell
  doi: 10.4018/jssci.2009070101
– ident: CR22
– volume: 46
  start-page: 366
  issue: 2
  year: 2016
  end-page: 379
  ident: CR44
  article-title: Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2014.2361772
– volume: 23
  start-page: 493
  issue: 6–9
  year: 1992
  end-page: 515
  ident: CR41
  article-title: Concept lattices and conceptual knowledge systems
  publication-title: Comput Math Appl
  doi: 10.1016/0898-1221(92)90120-7
– volume: 48
  start-page: 703
  issue: 2
  year: 2018
  end-page: 715
  ident: CR33
  article-title: Discovering the relationship between generalization and uncertainty by incorporating complexity of classification
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2017.2653223
– ident: CR49
– ident: CR4
– volume: 54
  start-page: 62
  issue: 8
  year: 2011
  end-page: 71
  ident: CR17
  article-title: Cognitive computing
  publication-title: Commun ACM
  doi: 10.1145/1978542.1978559
– volume: 54
  start-page: 149
  issue: 1
  year: 2013
  end-page: 165
  ident: CR11
  article-title: Incomplete decision contexts: approximate concept construction, rule acquisition and knowledge reduction
  publication-title: Int J Approx Reason
  doi: 10.1016/j.ijar.2012.07.005
– volume: 9
  start-page: 721
  issue: 5
  year: 2017
  end-page: 729
  ident: CR28
  article-title: Establishment of cognitive relations based on cognitive informatics
  publication-title: Cogn Comput
  doi: 10.1007/s12559-017-9498-9
– volume: 8
  start-page: 159
  issue: 1
  year: 2017
  end-page: 170
  ident: CR51
  article-title: Cognitive concept learning from incomplete information
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-016-0553-8
– volume: 25
  start-page: 1460
  issue: 6
  year: 2017
  end-page: 1475
  ident: CR32
  article-title: Incorporating diversity and informativeness in multiple-instance active learning
  publication-title: IEEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2017.2717803
– ident: CR21
– ident: CR46
– volume: 369
  start-page: 51
  year: 2016
  end-page: 62
  ident: CR25
  article-title: Concept lattices with negative information: a characterization theorem
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.06.015
– year: 2008
  ident: CR19
  publication-title: Handbook of granular computing
  doi: 10.1002/9780470724163
– volume: 101
  start-page: 206
  year: 2018
  end-page: 233
  ident: CR14
  article-title: Distance-based double-quantitative rough fuzzy sets with logic operations
  publication-title: Int J Approx Reason
  doi: 10.1016/j.ijar.2018.07.007
– volume: 2
  start-page: 1
  issue: 2
  year: 2008
  end-page: 19
  ident: CR37
  article-title: On concept algebra: a denotational mathematical structure for knowledge and software modeling
  publication-title: Int J Cogn Inform Nat Intell
  doi: 10.4018/jcini.2008040101
– ident: CR50
– volume: 39
  start-page: 855
  issue: 4
  year: 2009
  end-page: 866
  ident: CR48
  article-title: Interpreting concept learning in cognitive informatics and granular computing
  publication-title: IEEE Trans Syst Man Cybern Part B (Cybern)
  doi: 10.1109/TSMCB.2009.2013334
– volume: 8
  start-page: 179
  issue: 1
  year: 2017
  end-page: 189
  ident: CR29
  article-title: Concepts reduction in formal concept analysis with fuzzy setting using Shannon entropy
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-014-0313-6
– volume: 53
  start-page: 1390
  issue: 9
  year: 2007
  end-page: 1410
  ident: CR15
  article-title: Reduction method for concept lattices based on rough set theory and its application
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2006.03.040
– volume: 8
  start-page: 3
  issue: 1
  year: 2017
  end-page: 20
  ident: CR47
  article-title: Interval sets and three-way concept analysis in incomplete contexts
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-016-0568-1
– volume: 378
  start-page: 244
  year: 2017
  end-page: 263
  ident: CR9
  article-title: Three-way cognitive concept learning via multi-granularity
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.04.051
– start-page: 267
  year: 2014
  end-page: 279
  ident: CR24
  article-title: A generalized framework to consider positive and negative attributes in formal concept analysis
  publication-title: Proceedings of the eleventh international conference on concept lattices and their applications, CLA 2014
– volume: 44
  start-page: 21
  issue: 1
  year: 2014
  end-page: 39
  ident: CR34
  article-title: Non-naive Bayesian classifiers for classification problems with continuous attributes
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2245891
– volume: 23
  start-page: 1638
  issue: 5
  year: 2015
  end-page: 1654
  ident: CR36
  article-title: A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2014.2371479
– volume: 41
  start-page: 4
  issue: 1
  year: 2017
  end-page: 69
  ident: CR18
  article-title: Phonological concept learning
  publication-title: Cogn Sci
  doi: 10.1111/cogs.12319
– ident: CR2
– volume: 4
  start-page: 621
  issue: 6
  year: 2013
  end-page: 630
  ident: CR26
  article-title: Two kinds of multi-level formal concepts and its application for sets approximations
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-012-0128-2
– ident: CR30
– volume: 189
  start-page: 191
  year: 2012
  end-page: 207
  ident: CR10
  article-title: Knowledge reduction in real decision formal contexts
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2011.11.041
– volume: 298
  start-page: 447
  year: 2015
  end-page: 467
  ident: CR12
  article-title: Concept learning via granular computing: a cognitive viewpoint
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.12.010
– start-page: 445
  year: 1982
  end-page: 470
  ident: CR42
  publication-title: Restructuring lattice theory: an approach based on hierarchies of concepts. Ordered sets
– volume: 21
  start-page: 1461
  issue: 10
  year: 2009
  end-page: 1474
  ident: CR43
  article-title: Granular computing and knowledge reduction in formal contexts
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2008.223
– volume: 83
  start-page: 218
  year: 2017
  end-page: 242
  ident: CR6
  article-title: Three-way concept learning based on cognitive operators: an information fusion viewpoint
  publication-title: Int J Approx Reason
  doi: 10.1016/j.ijar.2017.01.009
– volume: 91
  start-page: 152
  year: 2016
  end-page: 164
  ident: CR13
  article-title: A comparative study of multigranulation rough sets and concept lattices via rule acquisition
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.07.024
– ident: CR40
– year: 1999
  ident: CR5
  publication-title: Formal concept analysis: mathematical foundations
  doi: 10.1007/978-3-642-59830-2
– volume: 8
  start-page: 21
  issue: 1
  year: 2017
  end-page: 34
  ident: CR27
  article-title: Three-way conceptual approach for cognitive memory functionalities
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-016-0593-0
– volume: 2
  start-page: 289
  issue: 4
  year: 2011
  end-page: 293
  ident: CR20
  article-title: Attribute reduction in decision formal context based on homomorphism
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-011-0034-z
– volume: 48
  start-page: 1677
  issue: 11–12
  year: 2008
  end-page: 1684
  ident: CR31
  article-title: Approaches to knowledge reduction in generalized consistent decision formal context
  publication-title: Math Comput Model
  doi: 10.1016/j.mcm.2008.06.007
– volume: 415–416
  start-page: 199
  year: 2017
  end-page: 212
  ident: CR7
  article-title: On attribute reduction in concept lattices: methods based on discernibility matrix are outperformed by basic clarification and reduction
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.06.013
– volume: 44
  start-page: 620
  issue: 5
  year: 2014
  end-page: 635
  ident: CR35
  article-title: A new approach to classifier fusion based on upper integral
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2263382
– volume: 12
  start-page: 20
  year: 2015
  end-page: 33
  ident: CR8
  article-title: Formal concept analysis approach to cognitive functionalities of bidirectional associative memory
  publication-title: Biol Inspir Cogn Archit
– ident: CR3
– volume: 55
  start-page: 853
  issue: 3
  year: 2014
  end-page: 866
  ident: CR45
  article-title: A novel cognitive system model and approach to transformation of information granules
  publication-title: Int J Approx Reason
  doi: 10.1016/j.ijar.2013.10.002
– volume: 11
  start-page: 81
  issue: 1
  year: 2010
  end-page: 92
  ident: CR39
  article-title: On the cognitive process of human problem solving
  publication-title: Cogn Syst Res
  doi: 10.1016/j.cogsys.2008.08.003
– start-page: 156
  year: 1991
  end-page: 162
  ident: CR16
  publication-title: A mathematical model for conceptual knowledge systems. Classification, data analysis, and knowledge organization
  doi: 10.1007/978-3-642-76307-6_21
– volume: 91
  start-page: 143
  year: 2016
  end-page: 151
  ident: CR23
  article-title: The connections between three-way and classical concept lattices
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.08.006
– volume: 8
  start-page: 21
  issue: 1
  year: 2017
  ident: 879_CR27
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-016-0593-0
– ident: 879_CR30
  doi: 10.1007/978-3-540-32262-7_23
– volume: 11
  start-page: 81
  issue: 1
  year: 2010
  ident: 879_CR39
  publication-title: Cogn Syst Res
  doi: 10.1016/j.cogsys.2008.08.003
– volume: 46
  start-page: 366
  issue: 2
  year: 2016
  ident: 879_CR44
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2014.2361772
– volume: 48
  start-page: 703
  issue: 2
  year: 2018
  ident: 879_CR33
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2017.2653223
– volume: 415–416
  start-page: 199
  year: 2017
  ident: 879_CR7
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.06.013
– volume: 378
  start-page: 244
  year: 2017
  ident: 879_CR9
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.04.051
– volume: 189
  start-page: 191
  year: 2012
  ident: 879_CR10
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2011.11.041
– volume: 8
  start-page: 3
  issue: 1
  year: 2017
  ident: 879_CR47
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-016-0568-1
– ident: 879_CR46
  doi: 10.1007/978-3-540-25929-9_6
– volume: 83
  start-page: 218
  year: 2017
  ident: 879_CR6
  publication-title: Int J Approx Reason
  doi: 10.1016/j.ijar.2017.01.009
– volume: 44
  start-page: 21
  issue: 1
  year: 2014
  ident: 879_CR34
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2245891
– volume: 21
  start-page: 1461
  issue: 10
  year: 2009
  ident: 879_CR43
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2008.223
– volume: 4
  start-page: 621
  issue: 6
  year: 2013
  ident: 879_CR26
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-012-0128-2
– volume-title: Formal concept analysis: mathematical foundations
  year: 1999
  ident: 879_CR5
  doi: 10.1007/978-3-642-59830-2
– volume: 53
  start-page: 1390
  issue: 9
  year: 2007
  ident: 879_CR15
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2006.03.040
– volume: 2
  start-page: 1
  issue: 2
  year: 2008
  ident: 879_CR37
  publication-title: Int J Cogn Inform Nat Intell
  doi: 10.4018/jcini.2008040101
– ident: 879_CR2
  doi: 10.1109/GRC.2006.1635922
– ident: 879_CR21
– volume: 101
  start-page: 206
  year: 2018
  ident: 879_CR14
  publication-title: Int J Approx Reason
  doi: 10.1016/j.ijar.2018.07.007
– volume: 8
  start-page: 179
  issue: 1
  year: 2017
  ident: 879_CR29
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-014-0313-6
– start-page: 156
  volume-title: A mathematical model for conceptual knowledge systems. Classification, data analysis, and knowledge organization
  year: 1991
  ident: 879_CR16
  doi: 10.1007/978-3-642-76307-6_21
– volume: 298
  start-page: 447
  year: 2015
  ident: 879_CR12
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.12.010
– volume: 48
  start-page: 1677
  issue: 11–12
  year: 2008
  ident: 879_CR31
  publication-title: Math Comput Model
  doi: 10.1016/j.mcm.2008.06.007
– ident: 879_CR3
– volume: 91
  start-page: 143
  year: 2016
  ident: 879_CR23
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.08.006
– volume: 8
  start-page: 159
  issue: 1
  year: 2017
  ident: 879_CR51
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-016-0553-8
– volume: 369
  start-page: 51
  year: 2016
  ident: 879_CR25
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.06.015
– volume: 39
  start-page: 855
  issue: 4
  year: 2009
  ident: 879_CR48
  publication-title: IEEE Trans Syst Man Cybern Part B (Cybern)
  doi: 10.1109/TSMCB.2009.2013334
– volume: 91
  start-page: 152
  year: 2016
  ident: 879_CR13
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.07.024
– start-page: 267
  volume-title: Proceedings of the eleventh international conference on concept lattices and their applications, CLA 2014
  year: 2014
  ident: 879_CR24
– volume: 55
  start-page: 853
  issue: 3
  year: 2014
  ident: 879_CR45
  publication-title: Int J Approx Reason
  doi: 10.1016/j.ijar.2013.10.002
– volume: 23
  start-page: 493
  issue: 6–9
  year: 1992
  ident: 879_CR41
  publication-title: Comput Math Appl
  doi: 10.1016/0898-1221(92)90120-7
– ident: 879_CR40
  doi: 10.4018/978-1-4666-0261-8.ch007
– start-page: 445
  volume-title: Restructuring lattice theory: an approach based on hierarchies of concepts. Ordered sets
  year: 1982
  ident: 879_CR42
– volume: 9
  start-page: 721
  issue: 5
  year: 2017
  ident: 879_CR28
  publication-title: Cogn Comput
  doi: 10.1007/s12559-017-9498-9
– volume-title: Handbook of granular computing
  year: 2008
  ident: 879_CR19
  doi: 10.1002/9780470724163
– ident: 879_CR22
  doi: 10.1007/978-3-319-11740-9_67
– volume: 2
  start-page: 289
  issue: 4
  year: 2011
  ident: 879_CR20
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-011-0034-z
– ident: 879_CR49
– volume: 44
  start-page: 620
  issue: 5
  year: 2014
  ident: 879_CR35
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2263382
– volume: 41
  start-page: 4
  issue: 1
  year: 2017
  ident: 879_CR18
  publication-title: Cogn Sci
  doi: 10.1111/cogs.12319
– volume: 14
  start-page: 485
  issue: 3
  year: 1991
  ident: 879_CR1
  publication-title: Behav Brain Sci
  doi: 10.1017/S0140525X00070813
– volume: 12
  start-page: 20
  year: 2015
  ident: 879_CR8
  publication-title: Biol Inspir Cogn Archit
– volume: 25
  start-page: 1460
  issue: 6
  year: 2017
  ident: 879_CR32
  publication-title: IEEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2017.2717803
– ident: 879_CR4
  doi: 10.1109/ICDM.2002.1183898
– volume: 23
  start-page: 1638
  issue: 5
  year: 2015
  ident: 879_CR36
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2014.2371479
– ident: 879_CR50
  doi: 10.1109/CMPSAC.2001.960680
– volume: 54
  start-page: 149
  issue: 1
  year: 2013
  ident: 879_CR11
  publication-title: Int J Approx Reason
  doi: 10.1016/j.ijar.2012.07.005
– volume: 1
  start-page: 1
  issue: 3
  year: 2009
  ident: 879_CR38
  publication-title: Int J Softw Sci Comput Intell
  doi: 10.4018/jssci.2009070101
– volume: 54
  start-page: 62
  issue: 8
  year: 2011
  ident: 879_CR17
  publication-title: Commun ACM
  doi: 10.1145/1978542.1978559
SSID ssj0000603302
ssib031263576
ssib033405570
Score 2.3669746
Snippet Recently, formal concept analysis has become a potential direction of cognitive computing, which can describe the processes of cognitive concept learning. We...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2421
SubjectTerms Active learning
Algorithms
Applied mathematics
Approximation
Artificial Intelligence
Brain
Cognition
Cognition & reasoning
Complex Systems
Computational Intelligence
Control
Engineering
Fuzzy sets
Informatics
Knowledge discovery
Lattice theory
Machine learning
Mechatronics
Object recognition
Original Article
Pattern Recognition
Robotics
Semantics
Systems Biology
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLCyI8hCFgjww8JCFHTuuzYIqRKkQMBWpWxQ7NkvVFhIG_j224zQCiW5R4ljK5c53vjt_HwDnzud7v6OQkZojxhKGpFICGSO5Sq0QJFR0X175-I09TdNpTLiVsa2yWRPDQl0stM-R3yTSbbedd8X0bvmBPGuUr65GCo1NsEWcp_F6LkaPjT5R4pFWWndLKQuIU6scDObuXt2WKLjwuLykKXyG03V-q-_22h7CeSBR-tt1tfHonxJq8EyjXbATQ0o4rHWgCzbMfA90o9GW8CIiS1_ug-dhVRNcGf9pHo2zgKv-IXcVTjDCSCTxDssaufb7FuYwNB6imW8xgjXr9AGYjB4m92MU6RSQppxVqChSmlKsJdVCaJLkAxdZ45wqSVViJSN6YBLtDNRFQallORWCa86sM1O3bCp6CDrzxdwcAUgId-OUUARrJixWllosDE50bgdEFT2AG0FlOkKNe8aLWdaCJHvZZk62mZdtlvbA1eqVZY2zsW5wv5F-Fk2uzFoF6YHr5o-0j_-d7Hj9ZCdg28VIsa2sDzrV55c5dXFIpc6Csv0AYpTS4w
  priority: 102
  providerName: ProQuest
Title Attribute-oriented cognitive concept learning strategy: a multi-level method
URI https://link.springer.com/article/10.1007/s13042-018-0879-5
https://www.proquest.com/docview/2919438903
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFH4a5bId2AqbVmCVDzsAk5EdO669Wzu1oI1VCBWJnaLYdTgMFUTDYfv1PCdOM6ptEqdEsRPL9vN7n_OevwfwEW1-sDuWeuMUlTKR1FirqfdG2bTQmlce3e9TdXopv16lV_Ec97KJdm9ckpWmbg-7hZ03bn0Do_LA0HQDNlOuje7A5vDkx7dxI0aCB4KV1soKISuiqdWvF6bwWR2NqJUOdLy88Xf-rZ2nFquFoWue08ogTV7DrOlKHYfy8_ihtMfu9xrL4zP7-ga2IkAlw1qiuvDCL7bh1R-0hdvQjQphSQ4ia_XhDpwNyzp5lqe3gTsZkSxZxSbhXXU6ksQkFddkWbPi_vpMclIFNdKbEL5E6ozWb2E2Gc--nNKYqoE6oWRJ5_NUpII5I5zWjif5AFE7y4U1wiaFkdwNfOJw8SPCSguZC62VU7JAFYAq2Yp30FncLvx7IJwrrGe15cxJXTBbiIJpzxKXFwNu5z1gzWxkLtKYh2waN1lLwBwGL8PBy8LgZWkPjlav3NUcHv-rvN9McRaX8zJLDDchTTwTPfjUzFhb_M-P7T6r9h68RDgWI9j2oVPeP_gPCHlK24cNPTnpo6BPRqNpPwo8Xkfj6fkFll4mw0ebHPWv
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BcigXVGgRW5biA5X6kIUdO16nUlVRHlrKsqqqReJmxY7Ty2p57FbV_qj-R8aJs1GRyo1blDg-jD_PjD0z3wAcoM0PdsdSnzlFpUwkzazV1PtM2bTUmlcR3cuRGlzJ79fp9Qr8bWphQlploxMrRV3cuHBHfphkeNxG68rE19s7GrpGhehq00KjhsWFX_zBI9vsy_kJru-7JDk7HR8PaOwqQJ1Qck6LIhWpYC4TTmvHk7yPDibLhc2ETcpMctf3iUOcojOQljIXWiunZIloRe1hBU67CmsyFLR2YO3b6ejHzwbAggdql9a-CyEriqvlpQ9T-K7Og9RKByJg3kRaq3K-cLeAh_vAGd3PaPqvrWwd4Ecx28oUnr2EjejDkqMadJuw4qdbsBm1xIy8j1TWH17B8Ghed9TyQZaB_rMgy4QlfKpKJknsXPGLzGqq3MVnkpMq05FOQk4Tqdtcv4bxc0h6GzrTm6nfAcK5wnFWW86c1CWzpSiZ9ixxednntugCawRlXOQ2Dy02JqZlZQ6yNShbE2Rr0i58XP5yWxN7PDW410jfxD0-My0iu_CpWZH2838ne_P0ZPvwYjC-HJrh-ehiF9bRQYs5bT3ozO9_-z10gub2bYQeAfPMYH8AKToOWQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gOhBXB-4PnPw4INg0qTZxNuiLusTDwreSpNNvCyruPXgvzdp062KCt5Km7Ywmcl87Uy-D2DP5_yQdzS2ygjMecKx0lpia5XQqZOSlhXdm1vRf-CXj-lj1Dkd193udUmy2tMQWJpGxfHLwB03G9_CV7j_DA7syh2F02mY9asxDY7-kHRrh2I0UK00-ZYxXlJOTX7CEOHPVX2JUshAzEvryudPb_mauxpA-q2GWqam3hIsRkyJupUTtGDKjpZh4RPT4DK0YgyP0X4kmj5YgetuUeldWfwc6I49-ESTdiJ_VG5oRFFX4gmNKyLb9xOUo7IPEQ9DxxGqRKhX4b53fn_ax1FdARsmeIEHg5SljBjFjJSGJnnHA22SM62YTpzi1HRsYny8elCUOp4zKYUR3Pmo9auoZmswM3oe2XVAlAo_TktNieHSEe2YI9KSxOSuQ_WgDaQ2W2Yi83gQwBhmDWdysHTmLZ0FS2dpGw4nt7xUtBt_Dd6q5yKLETjOEkVVUHYnrA1H9fw0l3992Ma_Ru_C3N1ZL7u-uL3ahHkPpmL_2RbMFK9vdtsDlkLvlE75AZNb2xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attribute-oriented+cognitive+concept+learning+strategy%3A+a+multi-level+method&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Fan%2C+Bingjiao&rft.au=Tsang%2C+Eric+C.+C.&rft.au=Xu%2C+Weihua&rft.au=Chen%2C+Degang&rft.date=2019-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=10&rft.issue=9&rft.spage=2421&rft.epage=2437&rft_id=info:doi/10.1007%2Fs13042-018-0879-5&rft.externalDocID=10_1007_s13042_018_0879_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon