Attribute-oriented cognitive concept learning strategy: a multi-level method
Recently, formal concept analysis has become a potential direction of cognitive computing, which can describe the processes of cognitive concept learning. We establish a concept hierarchy structure based on the existing cognitive concept learning methods. However, none of these methods could obtain...
Saved in:
Published in | International journal of machine learning and cybernetics Vol. 10; no. 9; pp. 2421 - 2437 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1868-8071 1868-808X |
DOI | 10.1007/s13042-018-0879-5 |
Cover
Abstract | Recently, formal concept analysis has become a potential direction of cognitive computing, which can describe the processes of cognitive concept learning. We establish a concept hierarchy structure based on the existing cognitive concept learning methods. However, none of these methods could obtain the following results: get the concept, recognize objects and distinguish between two different objects. In this paper, our focus is to construct an attribute-oriented multi-level cognitive concept learning method so as to improve and enhance the ability of cognitive concept learning. Firstly, the view point of human cognition is discussed from the multi-level approach, and then the mechanism of attribute-oriented cognitive concept learning is investigated. Through some defined special attributes, we propose a corresponding structure of attribute-oriented multi-level cognitive concept learning from an interdisciplinary viewpoint. It is a combination of philosophy and psychology of human cognition. Moreover, to make the presented attribute-oriented multi-level method easier to understand and apply in practice, an algorithm of cognitive concept learning is established. Furthermore, a case study about how to recognize the real-world animals is studied to use the proposed method and theory. Finally, in order to solve conceptual cognition problems, we perform an experimental evaluation on five data sets downloaded from the University of California-Irvine (UCI) databases. And then we provide a comparative analysis with the existing
g
r
a
n
u
l
a
r
c
o
m
p
u
t
i
n
g
a
p
p
r
o
a
c
h
t
o
t
w
o
-
w
a
y
l
e
a
r
n
i
n
g
[
44
] and the
three
-
w
a
y
c
o
g
n
i
t
i
v
e
c
o
n
c
e
p
t
l
e
a
r
n
i
n
g
v
i
a
m
u
l
t
i
-
granularity
[
9
]. We obtain more number of concepts than
t
h
e
t
w
o
-
w
a
y
l
e
a
r
n
i
n
g
a
n
d
t
h
e
t
h
r
e
e
-
w
a
y
c
o
g
n
i
t
i
v
e
c
o
n
c
e
p
t
l
e
a
r
n
i
n
g
a
p
p
r
o
a
c
h
e
s
, which shows the feasibility and effectiveness of our attribute-oriented multi-level cognitive learning method. |
---|---|
AbstractList | Recently, formal concept analysis has become a potential direction of cognitive computing, which can describe the processes of cognitive concept learning. We establish a concept hierarchy structure based on the existing cognitive concept learning methods. However, none of these methods could obtain the following results: get the concept, recognize objects and distinguish between two different objects. In this paper, our focus is to construct an attribute-oriented multi-level cognitive concept learning method so as to improve and enhance the ability of cognitive concept learning. Firstly, the view point of human cognition is discussed from the multi-level approach, and then the mechanism of attribute-oriented cognitive concept learning is investigated. Through some defined special attributes, we propose a corresponding structure of attribute-oriented multi-level cognitive concept learning from an interdisciplinary viewpoint. It is a combination of philosophy and psychology of human cognition. Moreover, to make the presented attribute-oriented multi-level method easier to understand and apply in practice, an algorithm of cognitive concept learning is established. Furthermore, a case study about how to recognize the real-world animals is studied to use the proposed method and theory. Finally, in order to solve conceptual cognition problems, we perform an experimental evaluation on five data sets downloaded from the University of California-Irvine (UCI) databases. And then we provide a comparative analysis with the existing granularcomputingapproachtotwo-waylearning [44] and the three-waycognitiveconceptlearningviamulti-granularity [9]. We obtain more number of concepts than thetwo-waylearningandthethree-waycognitiveconceptlearningapproaches, which shows the feasibility and effectiveness of our attribute-oriented multi-level cognitive learning method. Recently, formal concept analysis has become a potential direction of cognitive computing, which can describe the processes of cognitive concept learning. We establish a concept hierarchy structure based on the existing cognitive concept learning methods. However, none of these methods could obtain the following results: get the concept, recognize objects and distinguish between two different objects. In this paper, our focus is to construct an attribute-oriented multi-level cognitive concept learning method so as to improve and enhance the ability of cognitive concept learning. Firstly, the view point of human cognition is discussed from the multi-level approach, and then the mechanism of attribute-oriented cognitive concept learning is investigated. Through some defined special attributes, we propose a corresponding structure of attribute-oriented multi-level cognitive concept learning from an interdisciplinary viewpoint. It is a combination of philosophy and psychology of human cognition. Moreover, to make the presented attribute-oriented multi-level method easier to understand and apply in practice, an algorithm of cognitive concept learning is established. Furthermore, a case study about how to recognize the real-world animals is studied to use the proposed method and theory. Finally, in order to solve conceptual cognition problems, we perform an experimental evaluation on five data sets downloaded from the University of California-Irvine (UCI) databases. And then we provide a comparative analysis with the existing g r a n u l a r c o m p u t i n g a p p r o a c h t o t w o - w a y l e a r n i n g [ 44 ] and the three - w a y c o g n i t i v e c o n c e p t l e a r n i n g v i a m u l t i - granularity [ 9 ]. We obtain more number of concepts than t h e t w o - w a y l e a r n i n g a n d t h e t h r e e - w a y c o g n i t i v e c o n c e p t l e a r n i n g a p p r o a c h e s , which shows the feasibility and effectiveness of our attribute-oriented multi-level cognitive learning method. |
Author | Li, Wentao Chen, Degang Xu, Weihua Tsang, Eric C. C. Fan, Bingjiao |
Author_xml | – sequence: 1 givenname: Bingjiao surname: Fan fullname: Fan, Bingjiao organization: Faculty of Information Technology, Macau University of Science and Technology – sequence: 2 givenname: Eric C. C. surname: Tsang fullname: Tsang, Eric C. C. email: cctsang@must.edu.mo organization: Faculty of Information Technology, Macau University of Science and Technology – sequence: 3 givenname: Weihua surname: Xu fullname: Xu, Weihua organization: School of Mathematics and Statistics, Southwest University – sequence: 4 givenname: Degang surname: Chen fullname: Chen, Degang organization: Department of Mathematics and Physics, North China Electric Power University – sequence: 5 givenname: Wentao surname: Li fullname: Li, Wentao organization: Department of Mathematics, Harbin Institute of Technology |
BookMark | eNp9kE1LAzEQhoNUsNb-AG8LnqP52N0k3krxCwpeevAWstnsmrJNapIW-u9NWVEQdC4zh_eZmfe9BBPnnQHgGqNbjBC7i5iikkCEOUScCVidgSnmNYcc8bfJ98zwBZjHuEG5akQpIlOwWqQUbLNPBvpgjUumLbTvnU32YPLktNmlYjAqOOv6IqagkumP94UqtvshWTiYgxmKrUnvvr0C550aopl_9RlYPz6sl89w9fr0slysoKZ1mWDbVrSiSAuqOdeYKMYYQYo2gjakEyXWzBCNmSBVXXWlopzXui47lCFEGjoDN-PaXfAfexOT3Ph9cPmiJAKLknKR3c0AG1U6-BiD6aS2SSXrXfZgB4mRPIUnx_BkDk-ewpNVJvEvchfsVoXjvwwZmZi1rjfh56e_oU84NIJt |
CitedBy_id | crossref_primary_10_1002_pra2_243 crossref_primary_10_1016_j_knosys_2024_112618 crossref_primary_10_1109_TNNLS_2023_3333537 crossref_primary_10_1007_s00500_022_07524_8 crossref_primary_10_1007_s10489_024_05583_y crossref_primary_10_1016_j_knosys_2021_106898 crossref_primary_10_1109_TCYB_2020_2980794 crossref_primary_10_1007_s13042_018_0893_7 crossref_primary_10_1016_j_asoc_2024_112363 crossref_primary_10_1007_s13042_019_01040_2 crossref_primary_10_1016_j_ijar_2022_01_007 crossref_primary_10_1016_j_knosys_2020_105859 crossref_primary_10_1016_j_inffus_2024_102426 crossref_primary_10_1016_j_ins_2024_120366 crossref_primary_10_1016_j_ins_2024_121698 crossref_primary_10_1007_s12559_022_09999_x crossref_primary_10_1016_j_jclepro_2022_131364 crossref_primary_10_1016_j_ins_2022_03_029 crossref_primary_10_3233_JIFS_200218 crossref_primary_10_1016_j_ijar_2024_109327 crossref_primary_10_1016_j_ipm_2023_103365 crossref_primary_10_1016_j_ins_2023_119818 crossref_primary_10_1016_j_cogsys_2024_101258 crossref_primary_10_1007_s12559_021_09930_w crossref_primary_10_1007_s13042_022_01576_w crossref_primary_10_1016_j_ijar_2019_12_010 crossref_primary_10_1007_s13042_023_01954_y crossref_primary_10_3390_sym14050850 crossref_primary_10_1007_s10462_021_10048_6 crossref_primary_10_1016_j_knosys_2022_110093 crossref_primary_10_1088_1742_6596_1624_2_022011 crossref_primary_10_1007_s13042_019_01015_3 crossref_primary_10_2166_wpt_2023_017 |
Cites_doi | 10.1017/S0140525X00070813 10.4018/jssci.2009070101 10.1109/TCYB.2014.2361772 10.1016/0898-1221(92)90120-7 10.1109/TCYB.2017.2653223 10.1145/1978542.1978559 10.1016/j.ijar.2012.07.005 10.1007/s12559-017-9498-9 10.1007/s13042-016-0553-8 10.1109/TFUZZ.2017.2717803 10.1016/j.ins.2016.06.015 10.1002/9780470724163 10.1016/j.ijar.2018.07.007 10.4018/jcini.2008040101 10.1109/TSMCB.2009.2013334 10.1007/s13042-014-0313-6 10.1016/j.camwa.2006.03.040 10.1007/s13042-016-0568-1 10.1016/j.ins.2016.04.051 10.1109/TCYB.2013.2245891 10.1109/TFUZZ.2014.2371479 10.1111/cogs.12319 10.1007/s13042-012-0128-2 10.1016/j.ins.2011.11.041 10.1016/j.ins.2014.12.010 10.1109/TKDE.2008.223 10.1016/j.ijar.2017.01.009 10.1016/j.knosys.2015.07.024 10.1007/978-3-642-59830-2 10.1007/s13042-016-0593-0 10.1007/s13042-011-0034-z 10.1016/j.mcm.2008.06.007 10.1016/j.ins.2017.06.013 10.1109/TCYB.2013.2263382 10.1016/j.ijar.2013.10.002 10.1016/j.cogsys.2008.08.003 10.1007/978-3-642-76307-6_21 10.1016/j.knosys.2015.08.006 10.1007/978-3-540-32262-7_23 10.1007/978-3-540-25929-9_6 10.1109/GRC.2006.1635922 10.4018/978-1-4666-0261-8.ch007 10.1007/978-3-319-11740-9_67 10.1109/ICDM.2002.1183898 10.1109/CMPSAC.2001.960680 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2018 Springer-Verlag GmbH Germany, part of Springer Nature 2018. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s13042-018-0879-5 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 1868-808X |
EndPage | 2437 |
ExternalDocumentID | 10_1007_s13042_018_0879_5 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61472463; 71471060; 61772002 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Macau Science and Technology Development Fund< grantid: 081/2015/A3 – fundername: Science and Technology Research Program of Chongqing Municipal Education Commission grantid: KJ1709221 |
GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2JY 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFKRA AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS AUKKA AXYYD AYJHY BENPR BGLVJ BGNMA CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 HCIFZ HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O93 O9J P2P P9P PT4 PTHSS QOS R89 R9I RLLFE ROL RSV S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7X Z83 Z88 ZMTXR ~A9 2VQ AARHV AAYXX AAYZH ABBRH ABDBE ABFSG ABULA ACSTC ADKFA AEBTG AEZWR AFDZB AFHIU AFLOW AFOHR AGJBK AHPBZ AHSBF AHWEU AIXLP AJBLW ATHPR AYFIA CITATION H13 O9- PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c364t-dd53530c93c88c12a77720a3b93b2f941c7e2c1792565f4a3886c64f053002b3 |
IEDL.DBID | AGYKE |
ISSN | 1868-8071 |
IngestDate | Fri Jul 25 11:06:45 EDT 2025 Tue Jul 01 03:50:59 EDT 2025 Thu Apr 24 23:12:33 EDT 2025 Fri Feb 21 02:40:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Concept learning Formal concept analysis Granular computing Multi-level cognitive Cognitive computing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-dd53530c93c88c12a77720a3b93b2f941c7e2c1792565f4a3886c64f053002b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2919438903 |
PQPubID | 2043904 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2919438903 crossref_citationtrail_10_1007_s13042_018_0879_5 crossref_primary_10_1007_s13042_018_0879_5 springer_journals_10_1007_s13042_018_0879_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | International journal of machine learning and cybernetics |
PublicationTitleAbbrev | Int. J. Mach. Learn. & Cyber |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Wang, He, Wang (CR34) 2014; 44 Qi, Qian, Wei (CR23) 2016; 91 Yao (CR47) 2017; 8 Luksch, Wille (CR16) 1991 Rodríguez-Jiménez, Cordero, Enciso, Mora, Bertet, Rudolph (CR24) 2014 Pei, Mi (CR20) 2011; 2 CR30 Xu, Li (CR44) 2016; 46 Agarwal (CR1) 1991; 14 Xu, Pang, Luo (CR45) 2014; 55 Wille (CR42) 1982 CR2 CR4 CR3 Wang, Wang, Xu (CR33) 2018; 48 Wang, Wang, Feng, Wang (CR35) 2014; 44 Li, Huang, Qi, Qian, Liu (CR9) 2017; 378 CR49 CR46 Wang, Wang, Kwong, Xu (CR32) 2017; 25 Wang (CR38) 2009; 1 Li, Mei, Lv (CR11) 2013; 54 Shivhare, Cherukuri (CR27) 2017; 8 Li, Mei, Xu, Qian (CR12) 2015; 298 CR40 Li, Ren, Mei, Qian, Yang (CR13) 2016; 91 Liu, Shao, Zhang, Wu (CR15) 2007; 53 Rodríguez-Jiménez, Cordero, Enciso, Rudolph (CR25) 2016; 369 Singh, Cherukuri, Li (CR29) 2017; 8 Li, Mei, Lv (CR10) 2012; 189 Wang, Xing, Li, Hua, Dong, Pedrycz (CR36) 2015; 23 Li, Pedrycz, Xue, Xu, Fan (CR14) 2018; 101 Wu, Leung, Mi (CR43) 2009; 21 CR50 Shao, Yang (CR26) 2013; 4 Huang, Li, Mei, Wu (CR6) 2017; 83 Konecny (CR7) 2017; 415–416 Wang (CR37) 2008; 2 Modha, Ananthanarayanan, Esser, Ndirango, Sherbondy, Singh (CR17) 2011; 54 Yao (CR48) 2009; 39 Pedrycz, Skowron, Kreinovich (CR19) 2008 Wang, Chiew (CR39) 2010; 11 Moreton, Pater, Pertsova (CR18) 2017; 41 CR22 CR21 Kumar, Ishwarya, Loo (CR8) 2015; 12 Wang, Zhang (CR31) 2008; 48 Zhao, Li, Liu, Xu (CR51) 2017; 8 Ganter (CR5) 1999 Shivhare, Cherukuri, Li (CR28) 2017; 9 Wille (CR41) 1992; 23 M Shao (879_CR26) 2013; 4 PK Singh (879_CR29) 2017; 8 DS Modha (879_CR17) 2011; 54 E Moreton (879_CR18) 2017; 41 XZ Wang (879_CR35) 2014; 44 Y Wang (879_CR38) 2009; 1 879_CR4 Y Yao (879_CR47) 2017; 8 WZ Wu (879_CR43) 2009; 21 B Ganter (879_CR5) 1999 CA Kumar (879_CR8) 2015; 12 W Li (879_CR14) 2018; 101 R Shivhare (879_CR28) 2017; 9 H Wang (879_CR31) 2008; 48 879_CR50 J Li (879_CR9) 2017; 378 JM Rodríguez-Jiménez (879_CR25) 2016; 369 Y Zhao (879_CR51) 2017; 8 P Luksch (879_CR16) 1991 J Li (879_CR11) 2013; 54 879_CR22 R Wang (879_CR32) 2017; 25 879_CR21 XZ Wang (879_CR33) 2018; 48 Y Yao (879_CR48) 2009; 39 GC Agarwal (879_CR1) 1991; 14 M Liu (879_CR15) 2007; 53 W Xu (879_CR44) 2016; 46 R Shivhare (879_CR27) 2017; 8 879_CR30 R Wille (879_CR41) 1992; 23 JM Rodríguez-Jiménez (879_CR24) 2014 J Konecny (879_CR7) 2017; 415–416 J Li (879_CR13) 2016; 91 D Pei (879_CR20) 2011; 2 879_CR46 W Xu (879_CR45) 2014; 55 J Li (879_CR12) 2015; 298 W Pedrycz (879_CR19) 2008 879_CR40 C Huang (879_CR6) 2017; 83 J Qi (879_CR23) 2016; 91 XZ Wang (879_CR34) 2014; 44 J Li (879_CR10) 2012; 189 879_CR49 X Wang (879_CR36) 2015; 23 R Wille (879_CR42) 1982 879_CR2 879_CR3 Y Wang (879_CR37) 2008; 2 Y Wang (879_CR39) 2010; 11 |
References_xml | – volume: 14 start-page: 485 issue: 3 year: 1991 end-page: 486 ident: CR1 article-title: Human cognition is an adaptive process publication-title: Behav Brain Sci doi: 10.1017/S0140525X00070813 – volume: 1 start-page: 1 issue: 3 year: 2009 end-page: 15 ident: CR38 article-title: On cognitive computing publication-title: Int J Softw Sci Comput Intell doi: 10.4018/jssci.2009070101 – ident: CR22 – volume: 46 start-page: 366 issue: 2 year: 2016 end-page: 379 ident: CR44 article-title: Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2014.2361772 – volume: 23 start-page: 493 issue: 6–9 year: 1992 end-page: 515 ident: CR41 article-title: Concept lattices and conceptual knowledge systems publication-title: Comput Math Appl doi: 10.1016/0898-1221(92)90120-7 – volume: 48 start-page: 703 issue: 2 year: 2018 end-page: 715 ident: CR33 article-title: Discovering the relationship between generalization and uncertainty by incorporating complexity of classification publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2017.2653223 – ident: CR49 – ident: CR4 – volume: 54 start-page: 62 issue: 8 year: 2011 end-page: 71 ident: CR17 article-title: Cognitive computing publication-title: Commun ACM doi: 10.1145/1978542.1978559 – volume: 54 start-page: 149 issue: 1 year: 2013 end-page: 165 ident: CR11 article-title: Incomplete decision contexts: approximate concept construction, rule acquisition and knowledge reduction publication-title: Int J Approx Reason doi: 10.1016/j.ijar.2012.07.005 – volume: 9 start-page: 721 issue: 5 year: 2017 end-page: 729 ident: CR28 article-title: Establishment of cognitive relations based on cognitive informatics publication-title: Cogn Comput doi: 10.1007/s12559-017-9498-9 – volume: 8 start-page: 159 issue: 1 year: 2017 end-page: 170 ident: CR51 article-title: Cognitive concept learning from incomplete information publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-016-0553-8 – volume: 25 start-page: 1460 issue: 6 year: 2017 end-page: 1475 ident: CR32 article-title: Incorporating diversity and informativeness in multiple-instance active learning publication-title: IEEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2017.2717803 – ident: CR21 – ident: CR46 – volume: 369 start-page: 51 year: 2016 end-page: 62 ident: CR25 article-title: Concept lattices with negative information: a characterization theorem publication-title: Inf Sci doi: 10.1016/j.ins.2016.06.015 – year: 2008 ident: CR19 publication-title: Handbook of granular computing doi: 10.1002/9780470724163 – volume: 101 start-page: 206 year: 2018 end-page: 233 ident: CR14 article-title: Distance-based double-quantitative rough fuzzy sets with logic operations publication-title: Int J Approx Reason doi: 10.1016/j.ijar.2018.07.007 – volume: 2 start-page: 1 issue: 2 year: 2008 end-page: 19 ident: CR37 article-title: On concept algebra: a denotational mathematical structure for knowledge and software modeling publication-title: Int J Cogn Inform Nat Intell doi: 10.4018/jcini.2008040101 – ident: CR50 – volume: 39 start-page: 855 issue: 4 year: 2009 end-page: 866 ident: CR48 article-title: Interpreting concept learning in cognitive informatics and granular computing publication-title: IEEE Trans Syst Man Cybern Part B (Cybern) doi: 10.1109/TSMCB.2009.2013334 – volume: 8 start-page: 179 issue: 1 year: 2017 end-page: 189 ident: CR29 article-title: Concepts reduction in formal concept analysis with fuzzy setting using Shannon entropy publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-014-0313-6 – volume: 53 start-page: 1390 issue: 9 year: 2007 end-page: 1410 ident: CR15 article-title: Reduction method for concept lattices based on rough set theory and its application publication-title: Comput Math Appl doi: 10.1016/j.camwa.2006.03.040 – volume: 8 start-page: 3 issue: 1 year: 2017 end-page: 20 ident: CR47 article-title: Interval sets and three-way concept analysis in incomplete contexts publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-016-0568-1 – volume: 378 start-page: 244 year: 2017 end-page: 263 ident: CR9 article-title: Three-way cognitive concept learning via multi-granularity publication-title: Inf Sci doi: 10.1016/j.ins.2016.04.051 – start-page: 267 year: 2014 end-page: 279 ident: CR24 article-title: A generalized framework to consider positive and negative attributes in formal concept analysis publication-title: Proceedings of the eleventh international conference on concept lattices and their applications, CLA 2014 – volume: 44 start-page: 21 issue: 1 year: 2014 end-page: 39 ident: CR34 article-title: Non-naive Bayesian classifiers for classification problems with continuous attributes publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2013.2245891 – volume: 23 start-page: 1638 issue: 5 year: 2015 end-page: 1654 ident: CR36 article-title: A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2014.2371479 – volume: 41 start-page: 4 issue: 1 year: 2017 end-page: 69 ident: CR18 article-title: Phonological concept learning publication-title: Cogn Sci doi: 10.1111/cogs.12319 – ident: CR2 – volume: 4 start-page: 621 issue: 6 year: 2013 end-page: 630 ident: CR26 article-title: Two kinds of multi-level formal concepts and its application for sets approximations publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-012-0128-2 – ident: CR30 – volume: 189 start-page: 191 year: 2012 end-page: 207 ident: CR10 article-title: Knowledge reduction in real decision formal contexts publication-title: Inf Sci doi: 10.1016/j.ins.2011.11.041 – volume: 298 start-page: 447 year: 2015 end-page: 467 ident: CR12 article-title: Concept learning via granular computing: a cognitive viewpoint publication-title: Inf Sci doi: 10.1016/j.ins.2014.12.010 – start-page: 445 year: 1982 end-page: 470 ident: CR42 publication-title: Restructuring lattice theory: an approach based on hierarchies of concepts. Ordered sets – volume: 21 start-page: 1461 issue: 10 year: 2009 end-page: 1474 ident: CR43 article-title: Granular computing and knowledge reduction in formal contexts publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2008.223 – volume: 83 start-page: 218 year: 2017 end-page: 242 ident: CR6 article-title: Three-way concept learning based on cognitive operators: an information fusion viewpoint publication-title: Int J Approx Reason doi: 10.1016/j.ijar.2017.01.009 – volume: 91 start-page: 152 year: 2016 end-page: 164 ident: CR13 article-title: A comparative study of multigranulation rough sets and concept lattices via rule acquisition publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.07.024 – ident: CR40 – year: 1999 ident: CR5 publication-title: Formal concept analysis: mathematical foundations doi: 10.1007/978-3-642-59830-2 – volume: 8 start-page: 21 issue: 1 year: 2017 end-page: 34 ident: CR27 article-title: Three-way conceptual approach for cognitive memory functionalities publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-016-0593-0 – volume: 2 start-page: 289 issue: 4 year: 2011 end-page: 293 ident: CR20 article-title: Attribute reduction in decision formal context based on homomorphism publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-011-0034-z – volume: 48 start-page: 1677 issue: 11–12 year: 2008 end-page: 1684 ident: CR31 article-title: Approaches to knowledge reduction in generalized consistent decision formal context publication-title: Math Comput Model doi: 10.1016/j.mcm.2008.06.007 – volume: 415–416 start-page: 199 year: 2017 end-page: 212 ident: CR7 article-title: On attribute reduction in concept lattices: methods based on discernibility matrix are outperformed by basic clarification and reduction publication-title: Inf Sci doi: 10.1016/j.ins.2017.06.013 – volume: 44 start-page: 620 issue: 5 year: 2014 end-page: 635 ident: CR35 article-title: A new approach to classifier fusion based on upper integral publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2013.2263382 – volume: 12 start-page: 20 year: 2015 end-page: 33 ident: CR8 article-title: Formal concept analysis approach to cognitive functionalities of bidirectional associative memory publication-title: Biol Inspir Cogn Archit – ident: CR3 – volume: 55 start-page: 853 issue: 3 year: 2014 end-page: 866 ident: CR45 article-title: A novel cognitive system model and approach to transformation of information granules publication-title: Int J Approx Reason doi: 10.1016/j.ijar.2013.10.002 – volume: 11 start-page: 81 issue: 1 year: 2010 end-page: 92 ident: CR39 article-title: On the cognitive process of human problem solving publication-title: Cogn Syst Res doi: 10.1016/j.cogsys.2008.08.003 – start-page: 156 year: 1991 end-page: 162 ident: CR16 publication-title: A mathematical model for conceptual knowledge systems. Classification, data analysis, and knowledge organization doi: 10.1007/978-3-642-76307-6_21 – volume: 91 start-page: 143 year: 2016 end-page: 151 ident: CR23 article-title: The connections between three-way and classical concept lattices publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.08.006 – volume: 8 start-page: 21 issue: 1 year: 2017 ident: 879_CR27 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-016-0593-0 – ident: 879_CR30 doi: 10.1007/978-3-540-32262-7_23 – volume: 11 start-page: 81 issue: 1 year: 2010 ident: 879_CR39 publication-title: Cogn Syst Res doi: 10.1016/j.cogsys.2008.08.003 – volume: 46 start-page: 366 issue: 2 year: 2016 ident: 879_CR44 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2014.2361772 – volume: 48 start-page: 703 issue: 2 year: 2018 ident: 879_CR33 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2017.2653223 – volume: 415–416 start-page: 199 year: 2017 ident: 879_CR7 publication-title: Inf Sci doi: 10.1016/j.ins.2017.06.013 – volume: 378 start-page: 244 year: 2017 ident: 879_CR9 publication-title: Inf Sci doi: 10.1016/j.ins.2016.04.051 – volume: 189 start-page: 191 year: 2012 ident: 879_CR10 publication-title: Inf Sci doi: 10.1016/j.ins.2011.11.041 – volume: 8 start-page: 3 issue: 1 year: 2017 ident: 879_CR47 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-016-0568-1 – ident: 879_CR46 doi: 10.1007/978-3-540-25929-9_6 – volume: 83 start-page: 218 year: 2017 ident: 879_CR6 publication-title: Int J Approx Reason doi: 10.1016/j.ijar.2017.01.009 – volume: 44 start-page: 21 issue: 1 year: 2014 ident: 879_CR34 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2013.2245891 – volume: 21 start-page: 1461 issue: 10 year: 2009 ident: 879_CR43 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2008.223 – volume: 4 start-page: 621 issue: 6 year: 2013 ident: 879_CR26 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-012-0128-2 – volume-title: Formal concept analysis: mathematical foundations year: 1999 ident: 879_CR5 doi: 10.1007/978-3-642-59830-2 – volume: 53 start-page: 1390 issue: 9 year: 2007 ident: 879_CR15 publication-title: Comput Math Appl doi: 10.1016/j.camwa.2006.03.040 – volume: 2 start-page: 1 issue: 2 year: 2008 ident: 879_CR37 publication-title: Int J Cogn Inform Nat Intell doi: 10.4018/jcini.2008040101 – ident: 879_CR2 doi: 10.1109/GRC.2006.1635922 – ident: 879_CR21 – volume: 101 start-page: 206 year: 2018 ident: 879_CR14 publication-title: Int J Approx Reason doi: 10.1016/j.ijar.2018.07.007 – volume: 8 start-page: 179 issue: 1 year: 2017 ident: 879_CR29 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-014-0313-6 – start-page: 156 volume-title: A mathematical model for conceptual knowledge systems. Classification, data analysis, and knowledge organization year: 1991 ident: 879_CR16 doi: 10.1007/978-3-642-76307-6_21 – volume: 298 start-page: 447 year: 2015 ident: 879_CR12 publication-title: Inf Sci doi: 10.1016/j.ins.2014.12.010 – volume: 48 start-page: 1677 issue: 11–12 year: 2008 ident: 879_CR31 publication-title: Math Comput Model doi: 10.1016/j.mcm.2008.06.007 – ident: 879_CR3 – volume: 91 start-page: 143 year: 2016 ident: 879_CR23 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.08.006 – volume: 8 start-page: 159 issue: 1 year: 2017 ident: 879_CR51 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-016-0553-8 – volume: 369 start-page: 51 year: 2016 ident: 879_CR25 publication-title: Inf Sci doi: 10.1016/j.ins.2016.06.015 – volume: 39 start-page: 855 issue: 4 year: 2009 ident: 879_CR48 publication-title: IEEE Trans Syst Man Cybern Part B (Cybern) doi: 10.1109/TSMCB.2009.2013334 – volume: 91 start-page: 152 year: 2016 ident: 879_CR13 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.07.024 – start-page: 267 volume-title: Proceedings of the eleventh international conference on concept lattices and their applications, CLA 2014 year: 2014 ident: 879_CR24 – volume: 55 start-page: 853 issue: 3 year: 2014 ident: 879_CR45 publication-title: Int J Approx Reason doi: 10.1016/j.ijar.2013.10.002 – volume: 23 start-page: 493 issue: 6–9 year: 1992 ident: 879_CR41 publication-title: Comput Math Appl doi: 10.1016/0898-1221(92)90120-7 – ident: 879_CR40 doi: 10.4018/978-1-4666-0261-8.ch007 – start-page: 445 volume-title: Restructuring lattice theory: an approach based on hierarchies of concepts. Ordered sets year: 1982 ident: 879_CR42 – volume: 9 start-page: 721 issue: 5 year: 2017 ident: 879_CR28 publication-title: Cogn Comput doi: 10.1007/s12559-017-9498-9 – volume-title: Handbook of granular computing year: 2008 ident: 879_CR19 doi: 10.1002/9780470724163 – ident: 879_CR22 doi: 10.1007/978-3-319-11740-9_67 – volume: 2 start-page: 289 issue: 4 year: 2011 ident: 879_CR20 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-011-0034-z – ident: 879_CR49 – volume: 44 start-page: 620 issue: 5 year: 2014 ident: 879_CR35 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2013.2263382 – volume: 41 start-page: 4 issue: 1 year: 2017 ident: 879_CR18 publication-title: Cogn Sci doi: 10.1111/cogs.12319 – volume: 14 start-page: 485 issue: 3 year: 1991 ident: 879_CR1 publication-title: Behav Brain Sci doi: 10.1017/S0140525X00070813 – volume: 12 start-page: 20 year: 2015 ident: 879_CR8 publication-title: Biol Inspir Cogn Archit – volume: 25 start-page: 1460 issue: 6 year: 2017 ident: 879_CR32 publication-title: IEEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2017.2717803 – ident: 879_CR4 doi: 10.1109/ICDM.2002.1183898 – volume: 23 start-page: 1638 issue: 5 year: 2015 ident: 879_CR36 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2014.2371479 – ident: 879_CR50 doi: 10.1109/CMPSAC.2001.960680 – volume: 54 start-page: 149 issue: 1 year: 2013 ident: 879_CR11 publication-title: Int J Approx Reason doi: 10.1016/j.ijar.2012.07.005 – volume: 1 start-page: 1 issue: 3 year: 2009 ident: 879_CR38 publication-title: Int J Softw Sci Comput Intell doi: 10.4018/jssci.2009070101 – volume: 54 start-page: 62 issue: 8 year: 2011 ident: 879_CR17 publication-title: Commun ACM doi: 10.1145/1978542.1978559 |
SSID | ssj0000603302 ssib031263576 ssib033405570 |
Score | 2.3669746 |
Snippet | Recently, formal concept analysis has become a potential direction of cognitive computing, which can describe the processes of cognitive concept learning. We... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2421 |
SubjectTerms | Active learning Algorithms Applied mathematics Approximation Artificial Intelligence Brain Cognition Cognition & reasoning Complex Systems Computational Intelligence Control Engineering Fuzzy sets Informatics Knowledge discovery Lattice theory Machine learning Mechatronics Object recognition Original Article Pattern Recognition Robotics Semantics Systems Biology |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLCyI8hCFgjww8JCFHTuuzYIqRKkQMBWpWxQ7NkvVFhIG_j224zQCiW5R4ljK5c53vjt_HwDnzud7v6OQkZojxhKGpFICGSO5Sq0QJFR0X175-I09TdNpTLiVsa2yWRPDQl0stM-R3yTSbbedd8X0bvmBPGuUr65GCo1NsEWcp_F6LkaPjT5R4pFWWndLKQuIU6scDObuXt2WKLjwuLykKXyG03V-q-_22h7CeSBR-tt1tfHonxJq8EyjXbATQ0o4rHWgCzbMfA90o9GW8CIiS1_ug-dhVRNcGf9pHo2zgKv-IXcVTjDCSCTxDssaufb7FuYwNB6imW8xgjXr9AGYjB4m92MU6RSQppxVqChSmlKsJdVCaJLkAxdZ45wqSVViJSN6YBLtDNRFQallORWCa86sM1O3bCp6CDrzxdwcAUgId-OUUARrJixWllosDE50bgdEFT2AG0FlOkKNe8aLWdaCJHvZZk62mZdtlvbA1eqVZY2zsW5wv5F-Fk2uzFoF6YHr5o-0j_-d7Hj9ZCdg28VIsa2sDzrV55c5dXFIpc6Csv0AYpTS4w priority: 102 providerName: ProQuest |
Title | Attribute-oriented cognitive concept learning strategy: a multi-level method |
URI | https://link.springer.com/article/10.1007/s13042-018-0879-5 https://www.proquest.com/docview/2919438903 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFH4a5bId2AqbVmCVDzsAk5EdO669Wzu1oI1VCBWJnaLYdTgMFUTDYfv1PCdOM6ptEqdEsRPL9vN7n_OevwfwEW1-sDuWeuMUlTKR1FirqfdG2bTQmlce3e9TdXopv16lV_Ec97KJdm9ckpWmbg-7hZ03bn0Do_LA0HQDNlOuje7A5vDkx7dxI0aCB4KV1soKISuiqdWvF6bwWR2NqJUOdLy88Xf-rZ2nFquFoWue08ogTV7DrOlKHYfy8_ihtMfu9xrL4zP7-ga2IkAlw1qiuvDCL7bh1R-0hdvQjQphSQ4ia_XhDpwNyzp5lqe3gTsZkSxZxSbhXXU6ksQkFddkWbPi_vpMclIFNdKbEL5E6ozWb2E2Gc--nNKYqoE6oWRJ5_NUpII5I5zWjif5AFE7y4U1wiaFkdwNfOJw8SPCSguZC62VU7JAFYAq2Yp30FncLvx7IJwrrGe15cxJXTBbiIJpzxKXFwNu5z1gzWxkLtKYh2waN1lLwBwGL8PBy8LgZWkPjlav3NUcHv-rvN9McRaX8zJLDDchTTwTPfjUzFhb_M-P7T6r9h68RDgWI9j2oVPeP_gPCHlK24cNPTnpo6BPRqNpPwo8Xkfj6fkFll4mw0ebHPWv |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BcigXVGgRW5biA5X6kIUdO16nUlVRHlrKsqqqReJmxY7Ty2p57FbV_qj-R8aJs1GRyo1blDg-jD_PjD0z3wAcoM0PdsdSnzlFpUwkzazV1PtM2bTUmlcR3cuRGlzJ79fp9Qr8bWphQlploxMrRV3cuHBHfphkeNxG68rE19s7GrpGhehq00KjhsWFX_zBI9vsy_kJru-7JDk7HR8PaOwqQJ1Qck6LIhWpYC4TTmvHk7yPDibLhc2ETcpMctf3iUOcojOQljIXWiunZIloRe1hBU67CmsyFLR2YO3b6ejHzwbAggdql9a-CyEriqvlpQ9T-K7Og9RKByJg3kRaq3K-cLeAh_vAGd3PaPqvrWwd4Ecx28oUnr2EjejDkqMadJuw4qdbsBm1xIy8j1TWH17B8Ghed9TyQZaB_rMgy4QlfKpKJknsXPGLzGqq3MVnkpMq05FOQk4Tqdtcv4bxc0h6GzrTm6nfAcK5wnFWW86c1CWzpSiZ9ixxednntugCawRlXOQ2Dy02JqZlZQ6yNShbE2Rr0i58XP5yWxN7PDW410jfxD0-My0iu_CpWZH2838ne_P0ZPvwYjC-HJrh-ehiF9bRQYs5bT3ozO9_-z10gub2bYQeAfPMYH8AKToOWQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gOhBXB-4PnPw4INg0qTZxNuiLusTDwreSpNNvCyruPXgvzdp062KCt5Km7Ywmcl87Uy-D2DP5_yQdzS2ygjMecKx0lpia5XQqZOSlhXdm1vRf-CXj-lj1Dkd193udUmy2tMQWJpGxfHLwB03G9_CV7j_DA7syh2F02mY9asxDY7-kHRrh2I0UK00-ZYxXlJOTX7CEOHPVX2JUshAzEvryudPb_mauxpA-q2GWqam3hIsRkyJupUTtGDKjpZh4RPT4DK0YgyP0X4kmj5YgetuUeldWfwc6I49-ESTdiJ_VG5oRFFX4gmNKyLb9xOUo7IPEQ9DxxGqRKhX4b53fn_ax1FdARsmeIEHg5SljBjFjJSGJnnHA22SM62YTpzi1HRsYny8elCUOp4zKYUR3Pmo9auoZmswM3oe2XVAlAo_TktNieHSEe2YI9KSxOSuQ_WgDaQ2W2Yi83gQwBhmDWdysHTmLZ0FS2dpGw4nt7xUtBt_Dd6q5yKLETjOEkVVUHYnrA1H9fw0l3992Ma_Ru_C3N1ZL7u-uL3ahHkPpmL_2RbMFK9vdtsDlkLvlE75AZNb2xw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attribute-oriented+cognitive+concept+learning+strategy%3A+a+multi-level+method&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Fan%2C+Bingjiao&rft.au=Tsang%2C+Eric+C.+C.&rft.au=Xu%2C+Weihua&rft.au=Chen%2C+Degang&rft.date=2019-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=10&rft.issue=9&rft.spage=2421&rft.epage=2437&rft_id=info:doi/10.1007%2Fs13042-018-0879-5&rft.externalDocID=10_1007_s13042_018_0879_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon |