Predicting Compressive Strength of Concrete Containing Recycled Aggregate Using Modified ANN with Different Optimization Algorithms

Using recycled aggregate in concrete is one of the best ways to reduce construction pollution and prevent the exploitation of natural resources to provide the needed aggregate. However, recycled aggregates affect the mechanical properties of concrete, but the existing information on the subject is l...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 11; no. 2; p. 485
Main Authors Kandiri, Amirreza, Sartipi, Farid, Kioumarsi, Mahdi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Using recycled aggregate in concrete is one of the best ways to reduce construction pollution and prevent the exploitation of natural resources to provide the needed aggregate. However, recycled aggregates affect the mechanical properties of concrete, but the existing information on the subject is less than what the industry needs. Compressive strength, on the other hand, is the most important mechanical property of concrete. Therefore, having predictive models to provide the required information can be helpful to convince the industry to increase the use of recycled aggregate in concrete. In this research, three different optimization algorithms including genetic algorithm (GA), salp swarm algorithm (SSA), and grasshopper optimization algorithm (GOA) are employed to be hybridized with artificial neural network (ANN) separately to predict the compressive strength of concrete containing recycled aggregate, and a M5P tree model is used to test the efficiency of the ANNs. The results of this study show the superior efficiency of the modified ANN with SSA when compared to other models. However, the statistical indicators of the hybrid ANNs with SSA, GA, and GOA are so close to each other.
AbstractList Using recycled aggregate in concrete is one of the best ways to reduce construction pollution and prevent the exploitation of natural resources to provide the needed aggregate. However, recycled aggregates affect the mechanical properties of concrete, but the existing information on the subject is less than what the industry needs. Compressive strength, on the other hand, is the most important mechanical property of concrete. Therefore, having predictive models to provide the required information can be helpful to convince the industry to increase the use of recycled aggregate in concrete. In this research, three different optimization algorithms including genetic algorithm (GA), salp swarm algorithm (SSA), and grasshopper optimization algorithm (GOA) are employed to be hybridized with artificial neural network (ANN) separately to predict the compressive strength of concrete containing recycled aggregate, and a M5P tree model is used to test the efficiency of the ANNs. The results of this study show the superior efficiency of the modified ANN with SSA when compared to other models. However, the statistical indicators of the hybrid ANNs with SSA, GA, and GOA are so close to each other.
Author Kandiri, Amirreza
Kioumarsi, Mahdi
Sartipi, Farid
Author_xml – sequence: 1
  givenname: Amirreza
  orcidid: 0000-0001-8683-7984
  surname: Kandiri
  fullname: Kandiri, Amirreza
– sequence: 2
  givenname: Farid
  orcidid: 0000-0001-6863-9773
  surname: Sartipi
  fullname: Sartipi, Farid
– sequence: 3
  givenname: Mahdi
  orcidid: 0000-0001-7719-7997
  surname: Kioumarsi
  fullname: Kioumarsi, Mahdi
BookMark eNptkclKBDEQhoMouJ58gQaPMpqtk85xGFdww-UcMlnaDDOdNomKXn1x046CiLmkqv6_PqqoTbDahc4CsIvgASECHqq-RwhiSJt6BWxgyNmIUMRXf8XrYCelGSxPINIguAE-bqI1XmfftdUkLPpoU_IvtrrL0XZtfqyCK_VOR5vtEGTlu8F7a_WbnltTjds22lYV9SENwmUw3vlBuLqqXn0hHHnnbKHl6rrPfuHfVfahq8bzNsSiL9I2WHNqnuzO978FHk6O7ydno4vr0_PJ-GKkCaN5ZKa40Y2dUsYR5showY3SDguBHYFWaOYgYtAxgXCtCWF1yTknVDVaMVqTLXC-5JqgZrKPfqHimwzKy69CiK1UMfuylnQNhhjVWgjoqJkaMSVQk7pm3AmKVFNYe0tWH8PTs01ZzsJz7Mr4ElPOOEE15cWFli4dQ0rROql9_lo_R-XnEkE5nE7-Ol3p2f_T8zPpf-5PUIqcRw
CitedBy_id crossref_primary_10_1088_1755_1315_1130_1_012016
crossref_primary_10_1002_suco_202100250
crossref_primary_10_3390_su14042404
crossref_primary_10_1002_suco_202200779
crossref_primary_10_1007_s41939_024_00480_w
crossref_primary_10_1007_s11356_021_17210_1
crossref_primary_10_1007_s13369_024_09061_y
crossref_primary_10_3390_app12199766
crossref_primary_10_3233_JIFS_230132
crossref_primary_10_3390_w15061016
crossref_primary_10_3390_app11114754
crossref_primary_10_1007_s41062_024_01471_z
crossref_primary_10_1016_j_cscm_2025_e04305
crossref_primary_10_3151_jact_20_404
crossref_primary_10_3390_infrastructures6020017
crossref_primary_10_1016_j_jobe_2023_108369
crossref_primary_10_1108_JEDT_07_2021_0373
crossref_primary_10_3390_app11125670
crossref_primary_10_1016_j_cscm_2025_e04486
crossref_primary_10_1016_j_clet_2025_100899
crossref_primary_10_1007_s41062_024_01640_0
crossref_primary_10_1016_j_coco_2024_102073
crossref_primary_10_1080_15732479_2022_2030368
crossref_primary_10_3390_buildings14124062
crossref_primary_10_1016_j_jobe_2023_106611
crossref_primary_10_1016_j_matpr_2023_08_252
crossref_primary_10_3390_cryst12050569
crossref_primary_10_1155_2022_5433474
crossref_primary_10_3390_math12162542
crossref_primary_10_1016_j_resconrec_2023_106947
crossref_primary_10_1007_s41939_023_00252_y
crossref_primary_10_1016_j_conbuildmat_2023_133669
crossref_primary_10_1016_j_clet_2023_100604
crossref_primary_10_1007_s12205_024_0854_5
crossref_primary_10_1016_j_jclepro_2022_135504
crossref_primary_10_1007_s00521_024_10736_8
crossref_primary_10_1016_j_conbuildmat_2022_126525
crossref_primary_10_1061__ASCE_CO_1943_7862_0002246
crossref_primary_10_3390_app122312470
crossref_primary_10_3390_app112210826
crossref_primary_10_3390_ma17184533
crossref_primary_10_1061__ASCE_SC_1943_5576_0000683
crossref_primary_10_1002_eng2_12676
crossref_primary_10_32604_fdmp_2023_029545
crossref_primary_10_1007_s41939_024_00490_8
crossref_primary_10_1186_s40069_022_00554_4
crossref_primary_10_1080_13287982_2025_2471714
crossref_primary_10_1002_suco_202100681
crossref_primary_10_3233_JIFS_224382
crossref_primary_10_1016_j_matpr_2021_03_263
crossref_primary_10_3390_buildings12111870
crossref_primary_10_1016_j_istruc_2022_02_003
crossref_primary_10_1016_j_conbuildmat_2024_137002
crossref_primary_10_1016_j_istruc_2024_106098
crossref_primary_10_1016_j_clema_2022_100044
crossref_primary_10_1016_j_jmrt_2023_02_009
crossref_primary_10_3233_JIFS_221714
Cites_doi 10.1007/s11704-009-0005-7
10.1016/j.matpr.2018.10.257
10.1016/j.eswa.2011.01.156
10.1617/s11527-006-9161-5
10.1016/j.conbuildmat.2020.118152
10.1016/j.conbuildmat.2018.09.096
10.1016/j.compositesb.2012.05.019
10.1061/(ASCE)CP.1943-5487.0000561
10.1016/j.conbuildmat.2008.12.003
10.1016/j.conbuildmat.2015.08.124
10.1016/j.jclepro.2014.01.002
10.1016/j.conbuildmat.2010.11.108
10.1016/j.advengsoft.2019.03.003
10.1016/j.jobe.2020.101296
10.1016/j.cemconcomp.2018.11.005
10.1016/j.advengsoft.2017.07.002
10.1016/j.cemconcomp.2010.10.003
10.1016/j.conbuildmat.2007.03.032
10.4028/www.scientific.net/AMR.287-290.1015
10.1016/j.commatsci.2015.02.045
10.3390/app9142802
10.1016/j.autcon.2015.12.026
10.7551/mitpress/1090.001.0001
10.1016/j.conbuildmat.2013.03.014
10.1016/j.jclepro.2010.09.014
10.1016/j.conbuildmat.2020.118803
10.1016/j.advengsoft.2013.09.004
10.1016/j.compstruct.2016.11.068
10.1016/j.compstruct.2020.112748
10.1016/j.conbuildmat.2019.03.119
10.1016/j.conbuildmat.2013.11.054
10.1016/j.conbuildmat.2017.03.061
10.1016/j.jclepro.2018.09.170
10.1016/j.compstruc.2020.106272
10.1016/j.ceramint.2015.06.037
10.1016/j.conbuildmat.2018.05.201
10.1016/j.cemconcomp.2015.02.009
10.1016/j.jclepro.2018.12.059
10.1016/j.jclepro.2017.11.186
10.1016/S1750-5836(07)00094-1
10.3390/app10031185
10.1016/j.istruc.2019.09.006
10.1016/j.eswa.2014.08.048
10.1016/j.jobe.2020.101445
10.3390/app10207330
10.1016/j.conbuildmat.2019.117293
10.1016/j.conbuildmat.2020.118271
10.1016/j.conbuildmat.2012.09.026
10.1016/j.jobe.2020.101205
10.3390/app9204322
10.1016/j.conbuildmat.2012.06.060
10.1126/science.1176731
10.1016/j.conbuildmat.2019.117266
10.1016/j.conbuildmat.2013.08.078
10.1016/j.advengsoft.2009.01.005
10.1016/j.cemconres.2004.09.020
10.1016/j.jclepro.2018.08.065
10.1016/j.engstruct.2020.111221
10.1016/j.conbuildmat.2018.10.209
10.1016/j.conbuildmat.2010.02.031
10.1016/j.buildenv.2005.07.033
10.1016/j.jobe.2018.01.007
10.1617/s11527-006-9192-y
10.1016/B978-008043948-8/50158-2
10.3390/app9173570
10.1016/j.egypro.2017.03.1209
10.1016/j.conbuildmat.2019.07.155
10.1016/j.commatsci.2007.04.009
10.1016/j.conbuildmat.2015.06.055
10.1016/j.cemconcomp.2006.12.004
10.1242/jeb.00648
10.1016/j.conbuildmat.2020.118676
10.1016/S0008-8846(03)00186-8
10.1016/j.conbuildmat.2019.03.234
10.20944/preprints202003.0233.v1
10.1016/j.conbuildmat.2008.07.021
10.1016/j.probengmech.2020.103079
10.3390/app9061039
10.3390/ma13245721
10.1016/j.conbuildmat.2018.09.097
10.1016/j.advengsoft.2008.05.005
10.1111/j.1469-185X.1999.tb00038.x
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app11020485
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: 开放获取期刊(Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_f820215c990f4dbd9b30c35567f941a8
10_3390_app11020485
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c364t-db28c8eb4671271dc97dacf2992f30e9c6f0160f69125c3365f017734a8ca6453
IEDL.DBID BENPR
ISSN 2076-3417
IngestDate Wed Aug 27 01:30:37 EDT 2025
Mon Jun 30 11:10:15 EDT 2025
Tue Jul 01 03:14:59 EDT 2025
Thu Apr 24 23:04:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-db28c8eb4671271dc97dacf2992f30e9c6f0160f69125c3365f017734a8ca6453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6863-9773
0000-0001-8683-7984
0000-0001-7719-7997
OpenAccessLink https://www.proquest.com/docview/2476731547?pq-origsite=%requestingapplication%
PQID 2476731547
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_f820215c990f4dbd9b30c35567f941a8
proquest_journals_2476731547
crossref_citationtrail_10_3390_app11020485
crossref_primary_10_3390_app11020485
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Behnood (ref_45) 2015; 98
Shahnewaz (ref_57) 2020; 23
Corinaldesi (ref_69) 2010; 24
Getahun (ref_22) 2018; 190
ref_12
Saridemir (ref_27) 2009; 23
ref_54
Villacampa (ref_56) 2018; 189
Andreu (ref_66) 2014; 52
Thomas (ref_13) 2013; 45
ref_53
Simpson (ref_80) 2007; 74
Poon (ref_67) 2004; 34
Behnood (ref_37) 2020; 243
Ahmadi (ref_52) 2020; 234
Hammoudi (ref_3) 2019; 209
Golafshani (ref_49) 2020; 232
Ismail (ref_68) 2013; 44
Hamdia (ref_85) 2015; 102
Bui (ref_88) 2018; 180
Wang (ref_2) 2019; 206
Naderpour (ref_26) 2018; 16
Kandiri (ref_43) 2021; 2
Chandwani (ref_17) 2015; 42
Sadowski (ref_15) 2019; 212
Xu (ref_39) 2019; 226
Bilim (ref_55) 2009; 40
Behnood (ref_10) 2015; 94
Poon (ref_64) 2006; 40
ref_24
Chou (ref_87) 2013; 49
ref_65
ref_20
Han (ref_16) 2020; 244
ref_29
Kou (ref_72) 2012; 36
ref_28
Casuccio (ref_63) 2008; 22
Rochelle (ref_5) 2009; 325
Atis (ref_19) 2009; 40
Xu (ref_51) 2019; 211
Golafshani (ref_83) 2018; 176
Golafshani (ref_41) 2019; 96
Xiao (ref_73) 2005; 35
Chou (ref_86) 2016; 30
Rahal (ref_74) 2007; 42
Golafshani (ref_25) 2016; 64
Behnood (ref_30) 2018; 202
Uysal (ref_36) 2011; 25
Golafshani (ref_21) 2018; 22
ref_31
Dubey (ref_60) 2020; 237
ref_75
Etxeberria (ref_11) 2006; 40
Yu (ref_59) 2020; 61
Kang (ref_78) 2019; 131
Kou (ref_62) 2011; 33
Dantas (ref_48) 2013; 38
Wang (ref_6) 2017; 114
Yuan (ref_44) 2014; 67
Richardson (ref_14) 2011; 19
Marai (ref_38) 2009; 23
Evangelista (ref_70) 2007; 29
Lotfy (ref_1) 2015; 61
Higuera (ref_61) 2020; 30
Ramezani (ref_58) 2020; 253
Rogers (ref_79) 2003; 206
Coello (ref_82) 2009; 3
Kandiri (ref_40) 2020; 248
Mirjalili (ref_77) 2017; 114
Yan (ref_47) 2017; 161
ref_46
Adnan (ref_71) 2011; 9
Azenha (ref_8) 2018; 193
Behnood (ref_33) 2017; 142
Kandiri (ref_35) 2021; 2
(ref_42) 2008; 41
ref_84
Solhmirzaei (ref_50) 2020; 224
Sahoo (ref_76) 2018; 5
Medina (ref_9) 2014; 68
Delgado (ref_18) 2020; 31
Todhunter (ref_7) 2019; 1
Nazari (ref_81) 2015; 41
Figueroa (ref_4) 2008; 2
Zhang (ref_23) 2020; 249
Atici (ref_34) 2011; 38
Shahnewaz (ref_32) 2020; 29
References_xml – volume: 3
  start-page: 18
  year: 2009
  ident: ref_82
  article-title: Evolutionary multi-objective optimization: Some current research trends and topics that remain to be explored
  publication-title: Front. Comput. Sci. China
  doi: 10.1007/s11704-009-0005-7
– volume: 5
  start-page: 24595
  year: 2018
  ident: ref_76
  article-title: ANN Modeling to study strength loss of Fly Ash Concrete against Long term Sulphate Attack
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2018.10.257
– volume: 38
  start-page: 9609
  year: 2011
  ident: ref_34
  article-title: Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.01.156
– volume: 40
  start-page: 529
  year: 2006
  ident: ref_11
  article-title: Recycled aggregate concrete as structural material
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-006-9161-5
– volume: 243
  start-page: 118152
  year: 2020
  ident: ref_37
  article-title: Machine learning study of the mechanical properties of concretes containing waste foundry sand
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118152
– volume: 22
  start-page: 419
  year: 2018
  ident: ref_21
  article-title: Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method
  publication-title: Comput. Concr.
– volume: 189
  start-page: 1173
  year: 2018
  ident: ref_56
  article-title: Prediction and sensitivity analysis of compressive strength in segregated lightweight concrete based on artificial neural network using ultrasonic pulse velocity
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.09.096
– volume: 45
  start-page: 474
  year: 2013
  ident: ref_13
  article-title: Influence of recycled aggregates containing sulphur on properties of recycled aggregate mortar and concrete
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2012.05.019
– ident: ref_84
– volume: 30
  start-page: 04016007
  year: 2016
  ident: ref_86
  article-title: Nature-Inspired Metaheuristic Regression System: Programming and Implementation for Civil Engineering Applications
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000561
– volume: 1
  start-page: 1
  year: 2019
  ident: ref_7
  article-title: Use of the by-products of post-combustion carbon capture in concrete production: Australian case study
  publication-title: J. Constr. Mater.
– volume: 23
  start-page: 2214
  year: 2009
  ident: ref_38
  article-title: Neural networks for predicting compressive strength of structural light weight concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2008.12.003
– volume: 98
  start-page: 519
  year: 2015
  ident: ref_45
  article-title: Evaluation of the splitting tensile strength in plain and steel fiber-reinforced concrete based on the compressive strength
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.08.124
– volume: 68
  start-page: 216
  year: 2014
  ident: ref_9
  article-title: Influence of mixed recycled aggregate on the physi-cal-mechanical properties of recycled concrete
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2014.01.002
– volume: 25
  start-page: 4105
  year: 2011
  ident: ref_36
  article-title: Predicting the core compressive strength of self-compacting concrete (SCC) mixtures with mineral additives using artificial neural network
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2010.11.108
– volume: 131
  start-page: 60
  year: 2019
  ident: ref_78
  article-title: Prediction of long-term temperature effect in structural health monitoring of concrete dams using support vector machines with Jaya optimizer and salp swarm algorithms
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2019.03.003
– volume: 30
  start-page: 101296
  year: 2020
  ident: ref_61
  article-title: Probabilistic modeling to predict fly-ash concrete corrosion initiation
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2020.101296
– volume: 96
  start-page: 95
  year: 2019
  ident: ref_41
  article-title: Estimating the optimal mix design of silica fume concrete using biogeography-based pro-gramming
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2018.11.005
– volume: 114
  start-page: 163
  year: 2017
  ident: ref_77
  article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 33
  start-page: 286
  year: 2011
  ident: ref_62
  article-title: Influence of recycled aggregates on long term mechanical properties and pore size distribution of concrete
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2010.10.003
– volume: 22
  start-page: 1500
  year: 2008
  ident: ref_63
  article-title: Failure mechanism of recycled aggregate concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2007.03.032
– ident: ref_12
  doi: 10.4028/www.scientific.net/AMR.287-290.1015
– volume: 102
  start-page: 304
  year: 2015
  ident: ref_85
  article-title: Predicting the fracture toughness of PNCs: A stochastic approach based on ANN and ANFIS
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2015.02.045
– ident: ref_29
  doi: 10.3390/app9142802
– volume: 64
  start-page: 7
  year: 2016
  ident: ref_25
  article-title: Prediction of self-compacting concrete elastic modulus using two symbolic regression techniques
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2015.12.026
– ident: ref_75
  doi: 10.7551/mitpress/1090.001.0001
– volume: 44
  start-page: 464
  year: 2013
  ident: ref_68
  article-title: Engineering properties of treated recycled concrete aggregate (RCA) for structural applications
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.03.014
– volume: 19
  start-page: 272
  year: 2011
  ident: ref_14
  article-title: Freeze/thaw durability of concrete with recycled demolition aggregate compared to virgin aggregate concrete
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2010.09.014
– volume: 249
  start-page: 118803
  year: 2020
  ident: ref_23
  article-title: A metaheuristic-optimized multi-output model for predicting multiple properties of pervious concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118803
– volume: 67
  start-page: 156
  year: 2014
  ident: ref_44
  article-title: Prediction of concrete compressive strength: Research on hybrid models genetic based algorithms and ANFIS
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.09.004
– volume: 161
  start-page: 441
  year: 2017
  ident: ref_47
  article-title: Evaluation and prediction of bond strength of GFRP-bar reinforced concrete using artificial neural network optimized with genetic algorithm
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2016.11.068
– volume: 253
  start-page: 112748
  year: 2020
  ident: ref_58
  article-title: Probabilistic model for flexural strength of carbon nanotube reinforced cement-based materials
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2020.112748
– volume: 209
  start-page: 425
  year: 2019
  ident: ref_3
  article-title: Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.03.119
– volume: 52
  start-page: 227
  year: 2014
  ident: ref_66
  article-title: Experimental analysis of properties of high performance recycled aggregate concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.11.054
– volume: 142
  start-page: 199
  year: 2017
  ident: ref_33
  article-title: Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.03.061
– volume: 206
  start-page: 1004
  year: 2019
  ident: ref_2
  article-title: Considering life-cycle environmental impacts and society’s willingness for optimizing construction and demolition waste management fee: An empirical study of China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.09.170
– volume: 237
  start-page: 106272
  year: 2020
  ident: ref_60
  article-title: A probabilistic upscaling of microstructural randomness in modeling mesoscale elastic properties of concrete
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2020.106272
– volume: 41
  start-page: 12164
  year: 2015
  ident: ref_81
  article-title: Modelling of compressive strength of geopolymer paste, mortar and concrete by optimized support vector machine
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2015.06.037
– volume: 180
  start-page: 320
  year: 2018
  ident: ref_88
  article-title: A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.05.201
– volume: 61
  start-page: 36
  year: 2015
  ident: ref_1
  article-title: Performance evaluation of structural concrete using controlled quality coarse and fine recycled concrete aggregate
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2015.02.009
– volume: 212
  start-page: 727
  year: 2019
  ident: ref_15
  article-title: Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dust
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.12.059
– volume: 176
  start-page: 1163
  year: 2018
  ident: ref_83
  article-title: Application of soft computing methods for predicting the elastic modulus of recycled aggregate concrete
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.11.186
– volume: 2
  start-page: 9
  year: 2008
  ident: ref_4
  article-title: Advances in CO2 capture technology-The U.S. Department of Energy’s Carbon Sequestration Program
  publication-title: Int. J. Greenh. Gas Control.
  doi: 10.1016/S1750-5836(07)00094-1
– ident: ref_53
  doi: 10.3390/app10031185
– volume: 23
  start-page: 494
  year: 2020
  ident: ref_57
  article-title: Shear strength of reinforced concrete deep beams—A review with improved model by genetic algorithm and reliability analysis
  publication-title: Structures
  doi: 10.1016/j.istruc.2019.09.006
– volume: 42
  start-page: 885
  year: 2015
  ident: ref_17
  article-title: Modeling slump of ready mix concrete using genetic algorithms assisted training of Artificial Neural Networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.08.048
– volume: 31
  start-page: 101445
  year: 2020
  ident: ref_18
  article-title: Artificial neural networks to assess the useful life of reinforced concrete elements deteriorated by accelerated chloride tests
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2020.101445
– ident: ref_24
  doi: 10.3390/app10207330
– volume: 234
  start-page: 117293
  year: 2020
  ident: ref_52
  article-title: New empirical approach for determining nominal shear capacity of steel fiber reinforced concrete beams
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117293
– volume: 244
  start-page: 118271
  year: 2020
  ident: ref_16
  article-title: An ensemble machine learning approach for prediction and optimization of modulus of elasticity of recycled aggregate concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118271
– volume: 38
  start-page: 717
  year: 2013
  ident: ref_48
  article-title: Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.09.026
– volume: 9
  start-page: 193
  year: 2011
  ident: ref_71
  article-title: Recycled aggregate as coarse aggregate replacement in concrete mixes
  publication-title: HBRC
– volume: 29
  start-page: 101205
  year: 2020
  ident: ref_32
  article-title: Genetic algorithm for predicting shear strength of steel fiber reinforced concrete beam with parameter identification and sensitivity analysis
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2020.101205
– ident: ref_31
  doi: 10.3390/app9204322
– volume: 36
  start-page: 881
  year: 2012
  ident: ref_72
  article-title: Properties of concrete prepared with low-grade recycled aggregates
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.06.060
– volume: 325
  start-page: 1652
  year: 2009
  ident: ref_5
  article-title: Amine Scrubbing for CO2 Capture
  publication-title: Science
  doi: 10.1126/science.1176731
– volume: 232
  start-page: 117266
  year: 2020
  ident: ref_49
  article-title: Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117266
– volume: 49
  start-page: 554
  year: 2013
  ident: ref_87
  article-title: Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.08.078
– volume: 40
  start-page: 856
  year: 2009
  ident: ref_19
  article-title: Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2009.01.005
– volume: 35
  start-page: 1187
  year: 2005
  ident: ref_73
  article-title: Mechanical properties of recycled aggregate concrete under uniaxial loading
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2004.09.020
– volume: 202
  start-page: 54
  year: 2018
  ident: ref_30
  article-title: Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.08.065
– volume: 224
  start-page: 111221
  year: 2020
  ident: ref_50
  article-title: Machine learning framework for predicting failure mode and shear capacity of ultra high performance concrete beams
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.111221
– volume: 193
  start-page: 323
  year: 2018
  ident: ref_8
  article-title: Concrete with fine and coarse recycled aggregates: E-modulus evolution, compressive strength and non-destructive testing at early ages
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.10.209
– volume: 24
  start-page: 1616
  year: 2010
  ident: ref_69
  article-title: Mechanical and elastic behaviour of concretes made of recycled-concrete coarse aggregates
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2010.02.031
– volume: 42
  start-page: 407
  year: 2007
  ident: ref_74
  article-title: Mechanical properties of concrete with recycled coarse aggregate
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2005.07.033
– volume: 16
  start-page: 213
  year: 2018
  ident: ref_26
  article-title: Compressive strength prediction of environmentally friendly concrete using artificial neural networks
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2018.01.007
– volume: 2
  start-page: 2
  year: 2021
  ident: ref_43
  article-title: Prediction of the creep coefficient of green concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and Salp swarm algorithm
  publication-title: J. Constr. Mater.
– volume: 40
  start-page: 981
  year: 2006
  ident: ref_64
  article-title: Influence of recycled aggregate on slump and bleeding of fresh concrete
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-006-9192-y
– ident: ref_65
  doi: 10.1016/B978-008043948-8/50158-2
– ident: ref_46
  doi: 10.3390/app9173570
– volume: 114
  start-page: 650
  year: 2017
  ident: ref_6
  article-title: A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.1209
– volume: 226
  start-page: 534
  year: 2019
  ident: ref_39
  article-title: Prediction of triaxial behavior of recycled aggregate concrete using multivariable regression and artificial neural network techniques
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.07.155
– volume: 41
  start-page: 305
  year: 2008
  ident: ref_42
  article-title: Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2007.04.009
– volume: 94
  start-page: 137
  year: 2015
  ident: ref_10
  article-title: Predicting modulus elasticity of recycled aggregate concrete using M5′ model tree algorithm
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.06.055
– volume: 29
  start-page: 397
  year: 2007
  ident: ref_70
  article-title: Mechanical behaviour of concrete made with fine recycled concrete aggregates
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2006.12.004
– volume: 206
  start-page: 3991
  year: 2003
  ident: ref_79
  article-title: Mechanosensory-induced behavioural gregarization in the desert locust Schistocerca gregaria
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.00648
– volume: 248
  start-page: 118676
  year: 2020
  ident: ref_40
  article-title: Estimation of the compressive strength of concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and salp swarm algorithm
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118676
– volume: 34
  start-page: 31
  year: 2004
  ident: ref_67
  article-title: Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(03)00186-8
– volume: 2
  start-page: 2
  year: 2021
  ident: ref_35
  article-title: Prediction of the module of elasticity of green concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and Salp swarm algorithm
  publication-title: J. Constr. Mater.
– volume: 211
  start-page: 479
  year: 2019
  ident: ref_51
  article-title: Parametric sensitivity analysis and modelling of mechanical properties of normal- and high-strength recycled aggregate concrete using grey theory, multiple nonlinear regression and artificial neural networks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.03.234
– ident: ref_54
  doi: 10.20944/preprints202003.0233.v1
– volume: 23
  start-page: 1279
  year: 2009
  ident: ref_27
  article-title: Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2008.07.021
– volume: 61
  start-page: 103079
  year: 2020
  ident: ref_59
  article-title: Probabilistic bond strength model for reinforcement bar in concrete
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/j.probengmech.2020.103079
– ident: ref_20
  doi: 10.3390/app9061039
– ident: ref_28
  doi: 10.3390/ma13245721
– volume: 190
  start-page: 517
  year: 2018
  ident: ref_22
  article-title: Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.09.097
– volume: 40
  start-page: 334
  year: 2009
  ident: ref_55
  article-title: Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2008.05.005
– volume: 74
  start-page: 461
  year: 2007
  ident: ref_80
  article-title: A behavioural analysis of phase change in the desert locust
  publication-title: Biol. Rev.
  doi: 10.1111/j.1469-185X.1999.tb00038.x
SSID ssj0000913810
Score 2.4606774
Snippet Using recycled aggregate in concrete is one of the best ways to reduce construction pollution and prevent the exploitation of natural resources to provide the...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 485
SubjectTerms Aggregates
Artificial intelligence
artificial neural network
Cement
compressive strength
concrete
Datasets
Exploitation
genetic algorithm
Genetic algorithms
grasshopper optimization algorithm
Mechanical properties
Mutation
Optimization algorithms
salp swarm algorithm
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOXhQodhu0qQ5ri9E2NWDgreSR7MK2pXdKnj2jzuTZmVFwYu3thlIyTyTmXxDyL4UudMpN4nmuUo4VywpMmkSj4lErpUwIdHeH4jLO351n9_PtPrCmrAWHrhduGMPLgrckgWr6bkzThmWWnCSQnrFMx2u-YLPm9lMBRusMoSuai_kMdjXYz4YPB3C1ObfXFBA6v9hiIN3uVgmSzEspL32d1bIXFWvksUZsMBVshLVcEIPIlb04Rr5uBljpgVrlymqdqhqfasoJpvrYfNARx6-1xAaNhU-NG1DCArR4jtM5GhvCBtuPEqjoXiA9kfu0T_iwGBA8ZCWnsUWKg29BvPyHO9t0t7TcDSG8efJOrm7OL89vUxiX4XEMsGbxJluYYvKgI3MujJzVkmnrQfH1PUsrZQVHnHnvFAQ_VjGRA7vUjKuC6sFz9kGma9HdbVJaGqVtqnVPgdlM7JSxmQOgg6ji8KDOeiQo-lSlzaCjmPvi6cSNh_Il3KGLx2y_0X80mJt_E52gjz7IkGA7PABxKaMYlP-JTYdsjPleBm1dlJ2uRSSQVApt_5jjm2ygATtgc0OmW_Gr9UuhDCN2QvS-gn7Nu5D
  priority: 102
  providerName: Directory of Open Access Journals
Title Predicting Compressive Strength of Concrete Containing Recycled Aggregate Using Modified ANN with Different Optimization Algorithms
URI https://www.proquest.com/docview/2476731547
https://doaj.org/article/f820215c990f4dbd9b30c35567f941a8
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R9gIHRAuILWXlQw-AFJGsHT9OaAtdKqQuFaJSb5Ef8bZSm5TdgMSZP85M4l2KQNwSx0okj2fmmxnnG4BDJctgc-EyK0qTCWF4pgvlskiFRGGNdH2h_XQuT87Fx4vyIiXcVulY5dom9oY6tJ5y5G8mQknF0eGrt7dfM-oaRdXV1EJjC3bQBGsMvnaOjudnnzdZFmK91EU-_JjHMb6nujB6PKKrLf9wRT1j_18Gufcys0fwMMFDNh3kuQv36mYPHtwhDdyD3aSOK_YycUa_egw_z5ZUcaEzzIxUvD_d-r1mVHRuFt0layOONwgRu5ouuqExBEPU-AM_FNh0gYE3pdRYf4iAnbbhKl7Rg_mcUbKWvU-tVDr2Cc3MTfp_k02vF7hM3eXN6gmcz46_vDvJUn-FzHMpuiy4ifa6dmgri4kqgjcqWB_RQU0iz2vjZST-uSgNoiDPuSzxXikurPZWipI_he2mbepnwHJvrM-9jSUqnVO1ca4ICD6c1TqiWRjB6_VSVz6Rj1MPjOsKgxCSS3VHLiM43Ey-HTg3_j3tiGS2mUJE2f1Au1xUSe-qiAgHUY1HpxtFcME4nnvEWFJFIwqrR3CwlniVtHdV_d5r-_9__Bzu0-uHlMwBbHfLb_ULBCmdG8OWnn0Yp_047kP9X_l56aU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiBYQSwv4UCRAikhix44PCC2UZUu7C4dW6i34ua3UJu1uAPXc_9PfyEweSxGIW2-JbcmSZ-ab8cx4hpAtKTKnY24izTMVca5YlCfSRAEDiVwrYZpA-2Qqxgf882F2uEKu-rcwmFbZY2ID1K6y6CN_k3IpJAOFL9-dnUfYNQqjq30LjZYtdv3FT7iyLd7ubAN9X6Tp6OP-h3HUdRWILBO8jpxJc5t7AwiRpDJxVkmnbQBYTgOLvbIiYNW1IBTofsuYyOBfSsZ1brXg2CUCIP8WZ0yhROWjT0ufDtbYzJO4fQYI8zFGoUG_YnHc7A_F1_QH-Av-G502uk_udcYoHbbcs0ZWfLlO7l4rUbhO1jrhX9CXXYXqVw_I5dc5xncwY5oioDS5tD88xRB3OauPaBVgvASDtPb4UbdtKCjYqBewkaPDGVzz0YFHm5QFOqnccTjGiemUomuYbneNW2r6BUDttHstSocnMyBKfXS6eEgObuTcH5HVsir9Y0Jjq7SNrQ4ZiLiRXhmTODB1jM7zACA0IK_7oy5sV-ocO26cFHDlQboU1-gyIFvLxWdthY9_L3uPNFsuwbLczUA1nxWdlBcB7CmwoSyo-MCdccqw2IJFJ2RQPNH5gGz2FC86rFgUvzn7yf-nn5Pb4_3JXrG3M93dIHdwq9YZtElW6_l3_xTMo9o8a3iSkm83LQS_ANdjIhU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwELWqrYTggNoCYksBH4oESFGT2LHjA0JbtquW0rBCVOot2E68rdQm7W4A9cxf8XXMJM5SBOLWW2JbsuSx3zzPjGcI2ZYiKXTITaB5ogLOFQvSSJrAoSORayVM62g_ysT-MX9_kpyskJ_9WxgMq-wxsQXqorZoI9-JuRSSgcKXO86HRUzHk7eXVwFWkEJPa19Oo9sih-X1d7i-Ld4cjEHWL-J4svf53X7gKwwElgneBIWJU5uWBtAiimVUWCULbR1AdOxYWCorHGZgc0IBD7CMiQT-pWRcp1YLjhUjAP5XJdyKwgFZ3d3Lpp-WFh7MuJlGYfcokDEVok8atC2myk3-UINttYC_lEGr4SZr5L6npnTU7aV1slJWG-TejYSFG2TdQ8GCvvT5ql89ID-mc_T2YPw0RXhpI2u_lRQd3tWsOaW1g_YK6GlT4kfTFaWgwFivYaKCjmZw6UdzHm0DGOhRXZy5M-zIMoqGYjr2ZVwa-hEg7sK_HaWj8xmIpTm9WDwkx7ey8o_IoKqr8jGhoVXahla7BA68kaUyJiqA-Bidpg4gaUhe90udW5_4HOtvnOdwAUK55DfkMiTby8GXXb6Pfw_bRZkth2CS7rahns9yf-ZzB-wKGJUFhe94YQplWGiB3wnpFI90OiRbvcRzjxyL_Pc-3_x_93NyBw5A_uEgO3xC7uJMnWVoiwya-dfyKXClxjzzm5KSL7d9Dn4BDREnpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Compressive+Strength+of+Concrete+Containing+Recycled+Aggregate+Using+Modified+ANN+with+Different+Optimization+Algorithms&rft.jtitle=Applied+sciences&rft.date=2021-01-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=2&rft.spage=485&rft_id=info:doi/10.3390%2Fapp11020485&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon