Predicting Compressive Strength of Concrete Containing Recycled Aggregate Using Modified ANN with Different Optimization Algorithms
Using recycled aggregate in concrete is one of the best ways to reduce construction pollution and prevent the exploitation of natural resources to provide the needed aggregate. However, recycled aggregates affect the mechanical properties of concrete, but the existing information on the subject is l...
Saved in:
Published in | Applied sciences Vol. 11; no. 2; p. 485 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Using recycled aggregate in concrete is one of the best ways to reduce construction pollution and prevent the exploitation of natural resources to provide the needed aggregate. However, recycled aggregates affect the mechanical properties of concrete, but the existing information on the subject is less than what the industry needs. Compressive strength, on the other hand, is the most important mechanical property of concrete. Therefore, having predictive models to provide the required information can be helpful to convince the industry to increase the use of recycled aggregate in concrete. In this research, three different optimization algorithms including genetic algorithm (GA), salp swarm algorithm (SSA), and grasshopper optimization algorithm (GOA) are employed to be hybridized with artificial neural network (ANN) separately to predict the compressive strength of concrete containing recycled aggregate, and a M5P tree model is used to test the efficiency of the ANNs. The results of this study show the superior efficiency of the modified ANN with SSA when compared to other models. However, the statistical indicators of the hybrid ANNs with SSA, GA, and GOA are so close to each other. |
---|---|
AbstractList | Using recycled aggregate in concrete is one of the best ways to reduce construction pollution and prevent the exploitation of natural resources to provide the needed aggregate. However, recycled aggregates affect the mechanical properties of concrete, but the existing information on the subject is less than what the industry needs. Compressive strength, on the other hand, is the most important mechanical property of concrete. Therefore, having predictive models to provide the required information can be helpful to convince the industry to increase the use of recycled aggregate in concrete. In this research, three different optimization algorithms including genetic algorithm (GA), salp swarm algorithm (SSA), and grasshopper optimization algorithm (GOA) are employed to be hybridized with artificial neural network (ANN) separately to predict the compressive strength of concrete containing recycled aggregate, and a M5P tree model is used to test the efficiency of the ANNs. The results of this study show the superior efficiency of the modified ANN with SSA when compared to other models. However, the statistical indicators of the hybrid ANNs with SSA, GA, and GOA are so close to each other. |
Author | Kandiri, Amirreza Kioumarsi, Mahdi Sartipi, Farid |
Author_xml | – sequence: 1 givenname: Amirreza orcidid: 0000-0001-8683-7984 surname: Kandiri fullname: Kandiri, Amirreza – sequence: 2 givenname: Farid orcidid: 0000-0001-6863-9773 surname: Sartipi fullname: Sartipi, Farid – sequence: 3 givenname: Mahdi orcidid: 0000-0001-7719-7997 surname: Kioumarsi fullname: Kioumarsi, Mahdi |
BookMark | eNptkclKBDEQhoMouJ58gQaPMpqtk85xGFdww-UcMlnaDDOdNomKXn1x046CiLmkqv6_PqqoTbDahc4CsIvgASECHqq-RwhiSJt6BWxgyNmIUMRXf8XrYCelGSxPINIguAE-bqI1XmfftdUkLPpoU_IvtrrL0XZtfqyCK_VOR5vtEGTlu8F7a_WbnltTjds22lYV9SENwmUw3vlBuLqqXn0hHHnnbKHl6rrPfuHfVfahq8bzNsSiL9I2WHNqnuzO978FHk6O7ydno4vr0_PJ-GKkCaN5ZKa40Y2dUsYR5showY3SDguBHYFWaOYgYtAxgXCtCWF1yTknVDVaMVqTLXC-5JqgZrKPfqHimwzKy69CiK1UMfuylnQNhhjVWgjoqJkaMSVQk7pm3AmKVFNYe0tWH8PTs01ZzsJz7Mr4ElPOOEE15cWFli4dQ0rROql9_lo_R-XnEkE5nE7-Ol3p2f_T8zPpf-5PUIqcRw |
CitedBy_id | crossref_primary_10_1088_1755_1315_1130_1_012016 crossref_primary_10_1002_suco_202100250 crossref_primary_10_3390_su14042404 crossref_primary_10_1002_suco_202200779 crossref_primary_10_1007_s41939_024_00480_w crossref_primary_10_1007_s11356_021_17210_1 crossref_primary_10_1007_s13369_024_09061_y crossref_primary_10_3390_app12199766 crossref_primary_10_3233_JIFS_230132 crossref_primary_10_3390_w15061016 crossref_primary_10_3390_app11114754 crossref_primary_10_1007_s41062_024_01471_z crossref_primary_10_1016_j_cscm_2025_e04305 crossref_primary_10_3151_jact_20_404 crossref_primary_10_3390_infrastructures6020017 crossref_primary_10_1016_j_jobe_2023_108369 crossref_primary_10_1108_JEDT_07_2021_0373 crossref_primary_10_3390_app11125670 crossref_primary_10_1016_j_cscm_2025_e04486 crossref_primary_10_1016_j_clet_2025_100899 crossref_primary_10_1007_s41062_024_01640_0 crossref_primary_10_1016_j_coco_2024_102073 crossref_primary_10_1080_15732479_2022_2030368 crossref_primary_10_3390_buildings14124062 crossref_primary_10_1016_j_jobe_2023_106611 crossref_primary_10_1016_j_matpr_2023_08_252 crossref_primary_10_3390_cryst12050569 crossref_primary_10_1155_2022_5433474 crossref_primary_10_3390_math12162542 crossref_primary_10_1016_j_resconrec_2023_106947 crossref_primary_10_1007_s41939_023_00252_y crossref_primary_10_1016_j_conbuildmat_2023_133669 crossref_primary_10_1016_j_clet_2023_100604 crossref_primary_10_1007_s12205_024_0854_5 crossref_primary_10_1016_j_jclepro_2022_135504 crossref_primary_10_1007_s00521_024_10736_8 crossref_primary_10_1016_j_conbuildmat_2022_126525 crossref_primary_10_1061__ASCE_CO_1943_7862_0002246 crossref_primary_10_3390_app122312470 crossref_primary_10_3390_app112210826 crossref_primary_10_3390_ma17184533 crossref_primary_10_1061__ASCE_SC_1943_5576_0000683 crossref_primary_10_1002_eng2_12676 crossref_primary_10_32604_fdmp_2023_029545 crossref_primary_10_1007_s41939_024_00490_8 crossref_primary_10_1186_s40069_022_00554_4 crossref_primary_10_1080_13287982_2025_2471714 crossref_primary_10_1002_suco_202100681 crossref_primary_10_3233_JIFS_224382 crossref_primary_10_1016_j_matpr_2021_03_263 crossref_primary_10_3390_buildings12111870 crossref_primary_10_1016_j_istruc_2022_02_003 crossref_primary_10_1016_j_conbuildmat_2024_137002 crossref_primary_10_1016_j_istruc_2024_106098 crossref_primary_10_1016_j_clema_2022_100044 crossref_primary_10_1016_j_jmrt_2023_02_009 crossref_primary_10_3233_JIFS_221714 |
Cites_doi | 10.1007/s11704-009-0005-7 10.1016/j.matpr.2018.10.257 10.1016/j.eswa.2011.01.156 10.1617/s11527-006-9161-5 10.1016/j.conbuildmat.2020.118152 10.1016/j.conbuildmat.2018.09.096 10.1016/j.compositesb.2012.05.019 10.1061/(ASCE)CP.1943-5487.0000561 10.1016/j.conbuildmat.2008.12.003 10.1016/j.conbuildmat.2015.08.124 10.1016/j.jclepro.2014.01.002 10.1016/j.conbuildmat.2010.11.108 10.1016/j.advengsoft.2019.03.003 10.1016/j.jobe.2020.101296 10.1016/j.cemconcomp.2018.11.005 10.1016/j.advengsoft.2017.07.002 10.1016/j.cemconcomp.2010.10.003 10.1016/j.conbuildmat.2007.03.032 10.4028/www.scientific.net/AMR.287-290.1015 10.1016/j.commatsci.2015.02.045 10.3390/app9142802 10.1016/j.autcon.2015.12.026 10.7551/mitpress/1090.001.0001 10.1016/j.conbuildmat.2013.03.014 10.1016/j.jclepro.2010.09.014 10.1016/j.conbuildmat.2020.118803 10.1016/j.advengsoft.2013.09.004 10.1016/j.compstruct.2016.11.068 10.1016/j.compstruct.2020.112748 10.1016/j.conbuildmat.2019.03.119 10.1016/j.conbuildmat.2013.11.054 10.1016/j.conbuildmat.2017.03.061 10.1016/j.jclepro.2018.09.170 10.1016/j.compstruc.2020.106272 10.1016/j.ceramint.2015.06.037 10.1016/j.conbuildmat.2018.05.201 10.1016/j.cemconcomp.2015.02.009 10.1016/j.jclepro.2018.12.059 10.1016/j.jclepro.2017.11.186 10.1016/S1750-5836(07)00094-1 10.3390/app10031185 10.1016/j.istruc.2019.09.006 10.1016/j.eswa.2014.08.048 10.1016/j.jobe.2020.101445 10.3390/app10207330 10.1016/j.conbuildmat.2019.117293 10.1016/j.conbuildmat.2020.118271 10.1016/j.conbuildmat.2012.09.026 10.1016/j.jobe.2020.101205 10.3390/app9204322 10.1016/j.conbuildmat.2012.06.060 10.1126/science.1176731 10.1016/j.conbuildmat.2019.117266 10.1016/j.conbuildmat.2013.08.078 10.1016/j.advengsoft.2009.01.005 10.1016/j.cemconres.2004.09.020 10.1016/j.jclepro.2018.08.065 10.1016/j.engstruct.2020.111221 10.1016/j.conbuildmat.2018.10.209 10.1016/j.conbuildmat.2010.02.031 10.1016/j.buildenv.2005.07.033 10.1016/j.jobe.2018.01.007 10.1617/s11527-006-9192-y 10.1016/B978-008043948-8/50158-2 10.3390/app9173570 10.1016/j.egypro.2017.03.1209 10.1016/j.conbuildmat.2019.07.155 10.1016/j.commatsci.2007.04.009 10.1016/j.conbuildmat.2015.06.055 10.1016/j.cemconcomp.2006.12.004 10.1242/jeb.00648 10.1016/j.conbuildmat.2020.118676 10.1016/S0008-8846(03)00186-8 10.1016/j.conbuildmat.2019.03.234 10.20944/preprints202003.0233.v1 10.1016/j.conbuildmat.2008.07.021 10.1016/j.probengmech.2020.103079 10.3390/app9061039 10.3390/ma13245721 10.1016/j.conbuildmat.2018.09.097 10.1016/j.advengsoft.2008.05.005 10.1111/j.1469-185X.1999.tb00038.x |
ContentType | Journal Article |
Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app11020485 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: 开放获取期刊(Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_f820215c990f4dbd9b30c35567f941a8 10_3390_app11020485 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c364t-db28c8eb4671271dc97dacf2992f30e9c6f0160f69125c3365f017734a8ca6453 |
IEDL.DBID | BENPR |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:30:37 EDT 2025 Mon Jun 30 11:10:15 EDT 2025 Tue Jul 01 03:14:59 EDT 2025 Thu Apr 24 23:04:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-db28c8eb4671271dc97dacf2992f30e9c6f0160f69125c3365f017734a8ca6453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6863-9773 0000-0001-8683-7984 0000-0001-7719-7997 |
OpenAccessLink | https://www.proquest.com/docview/2476731547?pq-origsite=%requestingapplication% |
PQID | 2476731547 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f820215c990f4dbd9b30c35567f941a8 proquest_journals_2476731547 crossref_citationtrail_10_3390_app11020485 crossref_primary_10_3390_app11020485 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Behnood (ref_45) 2015; 98 Shahnewaz (ref_57) 2020; 23 Corinaldesi (ref_69) 2010; 24 Getahun (ref_22) 2018; 190 ref_12 Saridemir (ref_27) 2009; 23 ref_54 Villacampa (ref_56) 2018; 189 Andreu (ref_66) 2014; 52 Thomas (ref_13) 2013; 45 ref_53 Simpson (ref_80) 2007; 74 Poon (ref_67) 2004; 34 Behnood (ref_37) 2020; 243 Ahmadi (ref_52) 2020; 234 Hammoudi (ref_3) 2019; 209 Golafshani (ref_49) 2020; 232 Ismail (ref_68) 2013; 44 Hamdia (ref_85) 2015; 102 Bui (ref_88) 2018; 180 Wang (ref_2) 2019; 206 Naderpour (ref_26) 2018; 16 Kandiri (ref_43) 2021; 2 Chandwani (ref_17) 2015; 42 Sadowski (ref_15) 2019; 212 Xu (ref_39) 2019; 226 Bilim (ref_55) 2009; 40 Behnood (ref_10) 2015; 94 Poon (ref_64) 2006; 40 ref_24 Chou (ref_87) 2013; 49 ref_65 ref_20 Han (ref_16) 2020; 244 ref_29 Kou (ref_72) 2012; 36 ref_28 Casuccio (ref_63) 2008; 22 Rochelle (ref_5) 2009; 325 Atis (ref_19) 2009; 40 Xu (ref_51) 2019; 211 Golafshani (ref_83) 2018; 176 Golafshani (ref_41) 2019; 96 Xiao (ref_73) 2005; 35 Chou (ref_86) 2016; 30 Rahal (ref_74) 2007; 42 Golafshani (ref_25) 2016; 64 Behnood (ref_30) 2018; 202 Uysal (ref_36) 2011; 25 Golafshani (ref_21) 2018; 22 ref_31 Dubey (ref_60) 2020; 237 ref_75 Etxeberria (ref_11) 2006; 40 Yu (ref_59) 2020; 61 Kang (ref_78) 2019; 131 Kou (ref_62) 2011; 33 Dantas (ref_48) 2013; 38 Wang (ref_6) 2017; 114 Yuan (ref_44) 2014; 67 Richardson (ref_14) 2011; 19 Marai (ref_38) 2009; 23 Evangelista (ref_70) 2007; 29 Lotfy (ref_1) 2015; 61 Higuera (ref_61) 2020; 30 Ramezani (ref_58) 2020; 253 Rogers (ref_79) 2003; 206 Coello (ref_82) 2009; 3 Kandiri (ref_40) 2020; 248 Mirjalili (ref_77) 2017; 114 Yan (ref_47) 2017; 161 ref_46 Adnan (ref_71) 2011; 9 Azenha (ref_8) 2018; 193 Behnood (ref_33) 2017; 142 Kandiri (ref_35) 2021; 2 (ref_42) 2008; 41 ref_84 Solhmirzaei (ref_50) 2020; 224 Sahoo (ref_76) 2018; 5 Medina (ref_9) 2014; 68 Delgado (ref_18) 2020; 31 Todhunter (ref_7) 2019; 1 Nazari (ref_81) 2015; 41 Figueroa (ref_4) 2008; 2 Zhang (ref_23) 2020; 249 Atici (ref_34) 2011; 38 Shahnewaz (ref_32) 2020; 29 |
References_xml | – volume: 3 start-page: 18 year: 2009 ident: ref_82 article-title: Evolutionary multi-objective optimization: Some current research trends and topics that remain to be explored publication-title: Front. Comput. Sci. China doi: 10.1007/s11704-009-0005-7 – volume: 5 start-page: 24595 year: 2018 ident: ref_76 article-title: ANN Modeling to study strength loss of Fly Ash Concrete against Long term Sulphate Attack publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2018.10.257 – volume: 38 start-page: 9609 year: 2011 ident: ref_34 article-title: Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.01.156 – volume: 40 start-page: 529 year: 2006 ident: ref_11 article-title: Recycled aggregate concrete as structural material publication-title: Mater. Struct. doi: 10.1617/s11527-006-9161-5 – volume: 243 start-page: 118152 year: 2020 ident: ref_37 article-title: Machine learning study of the mechanical properties of concretes containing waste foundry sand publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118152 – volume: 22 start-page: 419 year: 2018 ident: ref_21 article-title: Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method publication-title: Comput. Concr. – volume: 189 start-page: 1173 year: 2018 ident: ref_56 article-title: Prediction and sensitivity analysis of compressive strength in segregated lightweight concrete based on artificial neural network using ultrasonic pulse velocity publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.09.096 – volume: 45 start-page: 474 year: 2013 ident: ref_13 article-title: Influence of recycled aggregates containing sulphur on properties of recycled aggregate mortar and concrete publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2012.05.019 – ident: ref_84 – volume: 30 start-page: 04016007 year: 2016 ident: ref_86 article-title: Nature-Inspired Metaheuristic Regression System: Programming and Implementation for Civil Engineering Applications publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000561 – volume: 1 start-page: 1 year: 2019 ident: ref_7 article-title: Use of the by-products of post-combustion carbon capture in concrete production: Australian case study publication-title: J. Constr. Mater. – volume: 23 start-page: 2214 year: 2009 ident: ref_38 article-title: Neural networks for predicting compressive strength of structural light weight concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2008.12.003 – volume: 98 start-page: 519 year: 2015 ident: ref_45 article-title: Evaluation of the splitting tensile strength in plain and steel fiber-reinforced concrete based on the compressive strength publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.08.124 – volume: 68 start-page: 216 year: 2014 ident: ref_9 article-title: Influence of mixed recycled aggregate on the physi-cal-mechanical properties of recycled concrete publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2014.01.002 – volume: 25 start-page: 4105 year: 2011 ident: ref_36 article-title: Predicting the core compressive strength of self-compacting concrete (SCC) mixtures with mineral additives using artificial neural network publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2010.11.108 – volume: 131 start-page: 60 year: 2019 ident: ref_78 article-title: Prediction of long-term temperature effect in structural health monitoring of concrete dams using support vector machines with Jaya optimizer and salp swarm algorithms publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2019.03.003 – volume: 30 start-page: 101296 year: 2020 ident: ref_61 article-title: Probabilistic modeling to predict fly-ash concrete corrosion initiation publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2020.101296 – volume: 96 start-page: 95 year: 2019 ident: ref_41 article-title: Estimating the optimal mix design of silica fume concrete using biogeography-based pro-gramming publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2018.11.005 – volume: 114 start-page: 163 year: 2017 ident: ref_77 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 – volume: 33 start-page: 286 year: 2011 ident: ref_62 article-title: Influence of recycled aggregates on long term mechanical properties and pore size distribution of concrete publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2010.10.003 – volume: 22 start-page: 1500 year: 2008 ident: ref_63 article-title: Failure mechanism of recycled aggregate concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2007.03.032 – ident: ref_12 doi: 10.4028/www.scientific.net/AMR.287-290.1015 – volume: 102 start-page: 304 year: 2015 ident: ref_85 article-title: Predicting the fracture toughness of PNCs: A stochastic approach based on ANN and ANFIS publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2015.02.045 – ident: ref_29 doi: 10.3390/app9142802 – volume: 64 start-page: 7 year: 2016 ident: ref_25 article-title: Prediction of self-compacting concrete elastic modulus using two symbolic regression techniques publication-title: Autom. Constr. doi: 10.1016/j.autcon.2015.12.026 – ident: ref_75 doi: 10.7551/mitpress/1090.001.0001 – volume: 44 start-page: 464 year: 2013 ident: ref_68 article-title: Engineering properties of treated recycled concrete aggregate (RCA) for structural applications publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.03.014 – volume: 19 start-page: 272 year: 2011 ident: ref_14 article-title: Freeze/thaw durability of concrete with recycled demolition aggregate compared to virgin aggregate concrete publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2010.09.014 – volume: 249 start-page: 118803 year: 2020 ident: ref_23 article-title: A metaheuristic-optimized multi-output model for predicting multiple properties of pervious concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118803 – volume: 67 start-page: 156 year: 2014 ident: ref_44 article-title: Prediction of concrete compressive strength: Research on hybrid models genetic based algorithms and ANFIS publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.09.004 – volume: 161 start-page: 441 year: 2017 ident: ref_47 article-title: Evaluation and prediction of bond strength of GFRP-bar reinforced concrete using artificial neural network optimized with genetic algorithm publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2016.11.068 – volume: 253 start-page: 112748 year: 2020 ident: ref_58 article-title: Probabilistic model for flexural strength of carbon nanotube reinforced cement-based materials publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2020.112748 – volume: 209 start-page: 425 year: 2019 ident: ref_3 article-title: Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.03.119 – volume: 52 start-page: 227 year: 2014 ident: ref_66 article-title: Experimental analysis of properties of high performance recycled aggregate concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.11.054 – volume: 142 start-page: 199 year: 2017 ident: ref_33 article-title: Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.03.061 – volume: 206 start-page: 1004 year: 2019 ident: ref_2 article-title: Considering life-cycle environmental impacts and society’s willingness for optimizing construction and demolition waste management fee: An empirical study of China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.09.170 – volume: 237 start-page: 106272 year: 2020 ident: ref_60 article-title: A probabilistic upscaling of microstructural randomness in modeling mesoscale elastic properties of concrete publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2020.106272 – volume: 41 start-page: 12164 year: 2015 ident: ref_81 article-title: Modelling of compressive strength of geopolymer paste, mortar and concrete by optimized support vector machine publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.06.037 – volume: 180 start-page: 320 year: 2018 ident: ref_88 article-title: A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.05.201 – volume: 61 start-page: 36 year: 2015 ident: ref_1 article-title: Performance evaluation of structural concrete using controlled quality coarse and fine recycled concrete aggregate publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2015.02.009 – volume: 212 start-page: 727 year: 2019 ident: ref_15 article-title: Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dust publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.12.059 – volume: 176 start-page: 1163 year: 2018 ident: ref_83 article-title: Application of soft computing methods for predicting the elastic modulus of recycled aggregate concrete publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.11.186 – volume: 2 start-page: 9 year: 2008 ident: ref_4 article-title: Advances in CO2 capture technology-The U.S. Department of Energy’s Carbon Sequestration Program publication-title: Int. J. Greenh. Gas Control. doi: 10.1016/S1750-5836(07)00094-1 – ident: ref_53 doi: 10.3390/app10031185 – volume: 23 start-page: 494 year: 2020 ident: ref_57 article-title: Shear strength of reinforced concrete deep beams—A review with improved model by genetic algorithm and reliability analysis publication-title: Structures doi: 10.1016/j.istruc.2019.09.006 – volume: 42 start-page: 885 year: 2015 ident: ref_17 article-title: Modeling slump of ready mix concrete using genetic algorithms assisted training of Artificial Neural Networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.08.048 – volume: 31 start-page: 101445 year: 2020 ident: ref_18 article-title: Artificial neural networks to assess the useful life of reinforced concrete elements deteriorated by accelerated chloride tests publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2020.101445 – ident: ref_24 doi: 10.3390/app10207330 – volume: 234 start-page: 117293 year: 2020 ident: ref_52 article-title: New empirical approach for determining nominal shear capacity of steel fiber reinforced concrete beams publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117293 – volume: 244 start-page: 118271 year: 2020 ident: ref_16 article-title: An ensemble machine learning approach for prediction and optimization of modulus of elasticity of recycled aggregate concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118271 – volume: 38 start-page: 717 year: 2013 ident: ref_48 article-title: Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2012.09.026 – volume: 9 start-page: 193 year: 2011 ident: ref_71 article-title: Recycled aggregate as coarse aggregate replacement in concrete mixes publication-title: HBRC – volume: 29 start-page: 101205 year: 2020 ident: ref_32 article-title: Genetic algorithm for predicting shear strength of steel fiber reinforced concrete beam with parameter identification and sensitivity analysis publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2020.101205 – ident: ref_31 doi: 10.3390/app9204322 – volume: 36 start-page: 881 year: 2012 ident: ref_72 article-title: Properties of concrete prepared with low-grade recycled aggregates publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2012.06.060 – volume: 325 start-page: 1652 year: 2009 ident: ref_5 article-title: Amine Scrubbing for CO2 Capture publication-title: Science doi: 10.1126/science.1176731 – volume: 232 start-page: 117266 year: 2020 ident: ref_49 article-title: Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117266 – volume: 49 start-page: 554 year: 2013 ident: ref_87 article-title: Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.08.078 – volume: 40 start-page: 856 year: 2009 ident: ref_19 article-title: Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2009.01.005 – volume: 35 start-page: 1187 year: 2005 ident: ref_73 article-title: Mechanical properties of recycled aggregate concrete under uniaxial loading publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2004.09.020 – volume: 202 start-page: 54 year: 2018 ident: ref_30 article-title: Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.08.065 – volume: 224 start-page: 111221 year: 2020 ident: ref_50 article-title: Machine learning framework for predicting failure mode and shear capacity of ultra high performance concrete beams publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.111221 – volume: 193 start-page: 323 year: 2018 ident: ref_8 article-title: Concrete with fine and coarse recycled aggregates: E-modulus evolution, compressive strength and non-destructive testing at early ages publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.10.209 – volume: 24 start-page: 1616 year: 2010 ident: ref_69 article-title: Mechanical and elastic behaviour of concretes made of recycled-concrete coarse aggregates publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2010.02.031 – volume: 42 start-page: 407 year: 2007 ident: ref_74 article-title: Mechanical properties of concrete with recycled coarse aggregate publication-title: Build. Environ. doi: 10.1016/j.buildenv.2005.07.033 – volume: 16 start-page: 213 year: 2018 ident: ref_26 article-title: Compressive strength prediction of environmentally friendly concrete using artificial neural networks publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2018.01.007 – volume: 2 start-page: 2 year: 2021 ident: ref_43 article-title: Prediction of the creep coefficient of green concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and Salp swarm algorithm publication-title: J. Constr. Mater. – volume: 40 start-page: 981 year: 2006 ident: ref_64 article-title: Influence of recycled aggregate on slump and bleeding of fresh concrete publication-title: Mater. Struct. doi: 10.1617/s11527-006-9192-y – ident: ref_65 doi: 10.1016/B978-008043948-8/50158-2 – ident: ref_46 doi: 10.3390/app9173570 – volume: 114 start-page: 650 year: 2017 ident: ref_6 article-title: A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.1209 – volume: 226 start-page: 534 year: 2019 ident: ref_39 article-title: Prediction of triaxial behavior of recycled aggregate concrete using multivariable regression and artificial neural network techniques publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.07.155 – volume: 41 start-page: 305 year: 2008 ident: ref_42 article-title: Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2007.04.009 – volume: 94 start-page: 137 year: 2015 ident: ref_10 article-title: Predicting modulus elasticity of recycled aggregate concrete using M5′ model tree algorithm publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.06.055 – volume: 29 start-page: 397 year: 2007 ident: ref_70 article-title: Mechanical behaviour of concrete made with fine recycled concrete aggregates publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2006.12.004 – volume: 206 start-page: 3991 year: 2003 ident: ref_79 article-title: Mechanosensory-induced behavioural gregarization in the desert locust Schistocerca gregaria publication-title: J. Exp. Biol. doi: 10.1242/jeb.00648 – volume: 248 start-page: 118676 year: 2020 ident: ref_40 article-title: Estimation of the compressive strength of concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and salp swarm algorithm publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118676 – volume: 34 start-page: 31 year: 2004 ident: ref_67 article-title: Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(03)00186-8 – volume: 2 start-page: 2 year: 2021 ident: ref_35 article-title: Prediction of the module of elasticity of green concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and Salp swarm algorithm publication-title: J. Constr. Mater. – volume: 211 start-page: 479 year: 2019 ident: ref_51 article-title: Parametric sensitivity analysis and modelling of mechanical properties of normal- and high-strength recycled aggregate concrete using grey theory, multiple nonlinear regression and artificial neural networks publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.03.234 – ident: ref_54 doi: 10.20944/preprints202003.0233.v1 – volume: 23 start-page: 1279 year: 2009 ident: ref_27 article-title: Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2008.07.021 – volume: 61 start-page: 103079 year: 2020 ident: ref_59 article-title: Probabilistic bond strength model for reinforcement bar in concrete publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2020.103079 – ident: ref_20 doi: 10.3390/app9061039 – ident: ref_28 doi: 10.3390/ma13245721 – volume: 190 start-page: 517 year: 2018 ident: ref_22 article-title: Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.09.097 – volume: 40 start-page: 334 year: 2009 ident: ref_55 article-title: Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2008.05.005 – volume: 74 start-page: 461 year: 2007 ident: ref_80 article-title: A behavioural analysis of phase change in the desert locust publication-title: Biol. Rev. doi: 10.1111/j.1469-185X.1999.tb00038.x |
SSID | ssj0000913810 |
Score | 2.4606774 |
Snippet | Using recycled aggregate in concrete is one of the best ways to reduce construction pollution and prevent the exploitation of natural resources to provide the... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 485 |
SubjectTerms | Aggregates Artificial intelligence artificial neural network Cement compressive strength concrete Datasets Exploitation genetic algorithm Genetic algorithms grasshopper optimization algorithm Mechanical properties Mutation Optimization algorithms salp swarm algorithm |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOXhQodhu0qQ5ri9E2NWDgreSR7MK2pXdKnj2jzuTZmVFwYu3thlIyTyTmXxDyL4UudMpN4nmuUo4VywpMmkSj4lErpUwIdHeH4jLO351n9_PtPrCmrAWHrhduGMPLgrckgWr6bkzThmWWnCSQnrFMx2u-YLPm9lMBRusMoSuai_kMdjXYz4YPB3C1ObfXFBA6v9hiIN3uVgmSzEspL32d1bIXFWvksUZsMBVshLVcEIPIlb04Rr5uBljpgVrlymqdqhqfasoJpvrYfNARx6-1xAaNhU-NG1DCArR4jtM5GhvCBtuPEqjoXiA9kfu0T_iwGBA8ZCWnsUWKg29BvPyHO9t0t7TcDSG8efJOrm7OL89vUxiX4XEMsGbxJluYYvKgI3MujJzVkmnrQfH1PUsrZQVHnHnvFAQ_VjGRA7vUjKuC6sFz9kGma9HdbVJaGqVtqnVPgdlM7JSxmQOgg6ji8KDOeiQo-lSlzaCjmPvi6cSNh_Il3KGLx2y_0X80mJt_E52gjz7IkGA7PABxKaMYlP-JTYdsjPleBm1dlJ2uRSSQVApt_5jjm2ygATtgc0OmW_Gr9UuhDCN2QvS-gn7Nu5D priority: 102 providerName: Directory of Open Access Journals |
Title | Predicting Compressive Strength of Concrete Containing Recycled Aggregate Using Modified ANN with Different Optimization Algorithms |
URI | https://www.proquest.com/docview/2476731547 https://doaj.org/article/f820215c990f4dbd9b30c35567f941a8 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R9gIHRAuILWXlQw-AFJGsHT9OaAtdKqQuFaJSb5Ef8bZSm5TdgMSZP85M4l2KQNwSx0okj2fmmxnnG4BDJctgc-EyK0qTCWF4pgvlskiFRGGNdH2h_XQuT87Fx4vyIiXcVulY5dom9oY6tJ5y5G8mQknF0eGrt7dfM-oaRdXV1EJjC3bQBGsMvnaOjudnnzdZFmK91EU-_JjHMb6nujB6PKKrLf9wRT1j_18Gufcys0fwMMFDNh3kuQv36mYPHtwhDdyD3aSOK_YycUa_egw_z5ZUcaEzzIxUvD_d-r1mVHRuFt0layOONwgRu5ouuqExBEPU-AM_FNh0gYE3pdRYf4iAnbbhKl7Rg_mcUbKWvU-tVDr2Cc3MTfp_k02vF7hM3eXN6gmcz46_vDvJUn-FzHMpuiy4ifa6dmgri4kqgjcqWB_RQU0iz2vjZST-uSgNoiDPuSzxXikurPZWipI_he2mbepnwHJvrM-9jSUqnVO1ca4ICD6c1TqiWRjB6_VSVz6Rj1MPjOsKgxCSS3VHLiM43Ey-HTg3_j3tiGS2mUJE2f1Au1xUSe-qiAgHUY1HpxtFcME4nnvEWFJFIwqrR3CwlniVtHdV_d5r-_9__Bzu0-uHlMwBbHfLb_ULBCmdG8OWnn0Yp_047kP9X_l56aU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiBYQSwv4UCRAikhix44PCC2UZUu7C4dW6i34ua3UJu1uAPXc_9PfyEweSxGIW2-JbcmSZ-ab8cx4hpAtKTKnY24izTMVca5YlCfSRAEDiVwrYZpA-2Qqxgf882F2uEKu-rcwmFbZY2ID1K6y6CN_k3IpJAOFL9-dnUfYNQqjq30LjZYtdv3FT7iyLd7ubAN9X6Tp6OP-h3HUdRWILBO8jpxJc5t7AwiRpDJxVkmnbQBYTgOLvbIiYNW1IBTofsuYyOBfSsZ1brXg2CUCIP8WZ0yhROWjT0ufDtbYzJO4fQYI8zFGoUG_YnHc7A_F1_QH-Av-G502uk_udcYoHbbcs0ZWfLlO7l4rUbhO1jrhX9CXXYXqVw_I5dc5xncwY5oioDS5tD88xRB3OauPaBVgvASDtPb4UbdtKCjYqBewkaPDGVzz0YFHm5QFOqnccTjGiemUomuYbneNW2r6BUDttHstSocnMyBKfXS6eEgObuTcH5HVsir9Y0Jjq7SNrQ4ZiLiRXhmTODB1jM7zACA0IK_7oy5sV-ocO26cFHDlQboU1-gyIFvLxWdthY9_L3uPNFsuwbLczUA1nxWdlBcB7CmwoSyo-MCdccqw2IJFJ2RQPNH5gGz2FC86rFgUvzn7yf-nn5Pb4_3JXrG3M93dIHdwq9YZtElW6_l3_xTMo9o8a3iSkm83LQS_ANdjIhU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwELWqrYTggNoCYksBH4oESFGT2LHjA0JbtquW0rBCVOot2E68rdQm7W4A9cxf8XXMJM5SBOLWW2JbsuSx3zzPjGcI2ZYiKXTITaB5ogLOFQvSSJrAoSORayVM62g_ysT-MX9_kpyskJ_9WxgMq-wxsQXqorZoI9-JuRSSgcKXO86HRUzHk7eXVwFWkEJPa19Oo9sih-X1d7i-Ld4cjEHWL-J4svf53X7gKwwElgneBIWJU5uWBtAiimVUWCULbR1AdOxYWCorHGZgc0IBD7CMiQT-pWRcp1YLjhUjAP5XJdyKwgFZ3d3Lpp-WFh7MuJlGYfcokDEVok8atC2myk3-UINttYC_lEGr4SZr5L6npnTU7aV1slJWG-TejYSFG2TdQ8GCvvT5ql89ID-mc_T2YPw0RXhpI2u_lRQd3tWsOaW1g_YK6GlT4kfTFaWgwFivYaKCjmZw6UdzHm0DGOhRXZy5M-zIMoqGYjr2ZVwa-hEg7sK_HaWj8xmIpTm9WDwkx7ey8o_IoKqr8jGhoVXahla7BA68kaUyJiqA-Bidpg4gaUhe90udW5_4HOtvnOdwAUK55DfkMiTby8GXXb6Pfw_bRZkth2CS7rahns9yf-ZzB-wKGJUFhe94YQplWGiB3wnpFI90OiRbvcRzjxyL_Pc-3_x_93NyBw5A_uEgO3xC7uJMnWVoiwya-dfyKXClxjzzm5KSL7d9Dn4BDREnpw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Compressive+Strength+of+Concrete+Containing+Recycled+Aggregate+Using+Modified+ANN+with+Different+Optimization+Algorithms&rft.jtitle=Applied+sciences&rft.date=2021-01-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=2&rft.spage=485&rft_id=info:doi/10.3390%2Fapp11020485&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |