Methodology for Data-Informed Process Improvement to Enable Automated Manufacturing in Current Manual Processes
Manufacturing industries are constantly identifying ways to automate machinery and processes to reduce waste and increase profits. Machines that were previously handled manually in non-standardized manners can now be automated. Converting non-digital records to digital formats is called digitization...
Saved in:
Published in | Applied sciences Vol. 11; no. 9; p. 3889 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-3417 2076-3417 |
DOI | 10.3390/app11093889 |
Cover
Abstract | Manufacturing industries are constantly identifying ways to automate machinery and processes to reduce waste and increase profits. Machines that were previously handled manually in non-standardized manners can now be automated. Converting non-digital records to digital formats is called digitization. Data that are analyzed or entered manually are subject to human error. Digitization can remove human error, when dealing with data, via automatic extraction and data conversion. This paper presents methodology to identify automation opportunities and eliminate manual processes via digitized data analyses. The method uses a hybrid combination of Lean Six Sigma (LSS), CRISP-DM framework, and “pre-automation” sequence, which address the gaps in each individual methodology and enable the identification and analysis of processes for optimization, in terms of automation. The results from the use case validates the novel methodology, reducing the implant manufacturing process cycle time by 3.76%, with a 4.48% increase in product output per day, as a result of identification and removal of manual steps based on capability studies. This work can guide manufacturing industries in automating manual production processes using data digitization. |
---|---|
AbstractList | Manufacturing industries are constantly identifying ways to automate machinery and processes to reduce waste and increase profits. Machines that were previously handled manually in non-standardized manners can now be automated. Converting non-digital records to digital formats is called digitization. Data that are analyzed or entered manually are subject to human error. Digitization can remove human error, when dealing with data, via automatic extraction and data conversion. This paper presents methodology to identify automation opportunities and eliminate manual processes via digitized data analyses. The method uses a hybrid combination of Lean Six Sigma (LSS), CRISP-DM framework, and “pre-automation” sequence, which address the gaps in each individual methodology and enable the identification and analysis of processes for optimization, in terms of automation. The results from the use case validates the novel methodology, reducing the implant manufacturing process cycle time by 3.76%, with a 4.48% increase in product output per day, as a result of identification and removal of manual steps based on capability studies. This work can guide manufacturing industries in automating manual production processes using data digitization. |
Author | Brem, Alexander Allen, Eoin Bruton, Ken Adrita, Mumtahina Mahajabin O’Sullivan, Dominic |
Author_xml | – sequence: 1 givenname: Mumtahina Mahajabin orcidid: 0000-0003-2099-8771 surname: Adrita fullname: Adrita, Mumtahina Mahajabin – sequence: 2 givenname: Alexander orcidid: 0000-0001-5202-3421 surname: Brem fullname: Brem, Alexander – sequence: 3 givenname: Dominic orcidid: 0000-0001-7370-471X surname: O’Sullivan fullname: O’Sullivan, Dominic – sequence: 4 givenname: Eoin surname: Allen fullname: Allen, Eoin – sequence: 5 givenname: Ken orcidid: 0000-0002-6509-2554 surname: Bruton fullname: Bruton, Ken |
BookMark | eNptkU1rHDEMhk1IoGmaU_-Aoccyqb9m1j6GbdosJKSH9mw0tmYzy4y9tT2F_Pt6sw2EEl0kpEcvL9J7chpiQEI-cnYlpWFfYL_nnBmptTkh54KtukYqvjp9Vb8jlznvWA3DpebsnMR7LI_Rxylun-gQE_0KBZpNqOWMnv5I0WHOdDPvU_yDM4ZCS6Q3AfoJ6fVS4gylcvcQlgFcWdIYtnQMdL2kdIAPA5hedDB_IGcDTBkv_-UL8uvbzc_1bXP38H2zvr5rnOxUaTy0Xcf7XmgO0qHD1klQQ-d7jy03XkrQTBtn0OuKtlp23LW-00qhlgLkBdkcdX2End2ncYb0ZCOM9rkR09ZCKqOb0Hq_AmBqMFyslNK9Nq1C1bcSna8zUbU-HbXqDX4vmIvdxSWFat-KVmhRESErxY-USzHnhIN1Y4EyxlASjJPlzB7eZF-9qe58_m_nxelb9F_kSZaN |
CitedBy_id | crossref_primary_10_1109_TEM_2023_3324542 crossref_primary_10_3390_su16041436 crossref_primary_10_3390_app13116397 crossref_primary_10_1108_BIJ_05_2022_0289 crossref_primary_10_1016_j_clpl_2025_100093 crossref_primary_10_3390_pr12122816 crossref_primary_10_1080_21693277_2025_2476436 |
Cites_doi | 10.1007/978-3-030-58779-6_15 10.1080/00207543.2017.1391420 10.1504/IJPLM.2005.007342 10.1007/978-3-319-44742-1_1 10.5772/intechopen.72304 10.1080/10789669.2005.10391123 10.1109/ICMA.2015.7237557 10.1109/ICE.2018.8436256 10.1108/IJLSS-02-2019-0011 10.1016/j.proeng.2015.01.485 10.1080/09537280500483350 10.1109/ICIAS.2018.8540597 10.1109/ICQR2MSE.2012.6246467 10.1109/ITMC.2018.8691266 10.1016/j.procir.2016.05.102 10.1007/s12599-020-00641-4 10.4018/ijkss.2015070102 10.1080/14783363.2015.1015411 10.1016/j.cie.2018.11.034 10.1080/09537287.2016.1165300 10.1109/SYSTEMS.2010.5482485 10.1016/j.procir.2016.11.003 10.4103/0972-6748.77642 10.1109/IEEM.2008.4738230 10.1109/IEEM.2012.6837706 10.1007/978-3-030-21290-2_28 10.1109/METROI4.2019.8792889 10.1016/j.cie.2016.08.002 10.1108/02635570510592389 10.1109/ASMC.2018.8373214 10.1080/14783360802622995 10.1109/ICQR2MSE.2012.6246481 10.1109/ES.2017.19 10.1080/00207543.2018.1445877 10.1016/J.ENG.2017.05.015 10.1007/s12525-019-00365-8 10.1109/ICENCO.2017.8289795 10.1109/ICIME.2010.5478088 10.1109/ICFIR.2019.8894776 10.1016/j.matpr.2020.05.195 10.1016/j.cie.2017.09.016 10.1108/JMTM-11-2017-0236 10.1108/09544780610660004 10.1109/CCIENG.2011.6008137 10.1109/TSMCA.2009.2033030 10.1057/palgrave.jors.2601122 10.1109/IEEM.2008.4738132 10.1016/j.procir.2017.03.311 10.1109/KAM.2009.14 10.1016/j.cie.2017.03.027 10.9790/iosrjen11A01100010009 10.1080/00207543.2013.842015 10.1520/SSMS20190036 10.1504/IJBPIM.2019.100927 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app11093889 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_dd7aa04f9127448b8954e4b53ecddd72 10_3390_app11093889 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c364t-da5661bb281a3cece5c3a4f6dbde519d33a8089c9ed8a5658361c5d6844e832a3 |
IEDL.DBID | 8FG |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:30:39 EDT 2025 Mon Jun 30 11:06:35 EDT 2025 Tue Jul 01 00:50:46 EDT 2025 Thu Apr 24 22:52:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-da5661bb281a3cece5c3a4f6dbde519d33a8089c9ed8a5658361c5d6844e832a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5202-3421 0000-0002-6509-2554 0000-0003-2099-8771 0000-0001-7370-471X |
OpenAccessLink | https://www.proquest.com/docview/2528272323?pq-origsite=%requestingapplication% |
PQID | 2528272323 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dd7aa04f9127448b8954e4b53ecddd72 proquest_journals_2528272323 crossref_citationtrail_10_3390_app11093889 crossref_primary_10_3390_app11093889 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Ezeanyim (ref_10) 2014; 41 Venkatesh (ref_23) 2014; 9 ref_13 Banerjee (ref_84) 2010; 19 Su (ref_35) 2009; 40 ref_55 Hofmann (ref_65) 2020; 30 Dey (ref_69) 2019; 9 Lugert (ref_77) 2018; 29 Nakladal (ref_64) 2018; 2196 Ogunleye (ref_88) 2018; 7 ref_19 ref_18 ref_16 Upasani (ref_41) 2017; 108 Leopold (ref_68) 2018; Volume 19 ref_15 Subrahmanian (ref_42) 2005; 1 Katipamula (ref_59) 2005; 11 Longo (ref_38) 2017; 113 Schatton (ref_58) 2016; 57 Banga (ref_14) 2020; 28 Hannola (ref_53) 2018; 56 Giannetti (ref_72) 2016; 101 ref_61 Drohomeretski (ref_11) 2014; 52 Andersson (ref_12) 2006; 18 Kumar (ref_26) 2011; 1 Adrita (ref_60) 2020; 4 Valles (ref_17) 2009; 16 ref_67 ref_22 ref_21 ref_63 Shagluf (ref_4) 2015; 15 ref_62 Sheil (ref_51) 2001; 52 ref_29 ref_28 ref_27 Raisinghani (ref_82) 2005; 105 Irit (ref_50) 2015; 8 Thomas (ref_25) 2016; 27 ref_70 Oliff (ref_56) 2017; 63 ref_79 ref_34 ref_78 Kaushik (ref_24) 2009; 20 ref_33 ref_32 ref_31 ref_75 ref_30 ref_74 Nascimento (ref_76) 2019; 11 Georgieva (ref_66) 2018; 43 Omar (ref_44) 2019; 6 Tortorella (ref_57) 2018; 56 Giannetti (ref_73) 2015; 6 Cousineau (ref_87) 2011; 6 ref_37 Singh (ref_85) 2014; 2 Havlikova (ref_36) 2015; 100 Kumar (ref_71) 2020; 2 ref_83 Ramly (ref_20) 2012; 2 ref_81 ref_80 ref_47 Parvadavardini (ref_6) 2016; 27 ref_46 Bahrin (ref_54) 2016; 78 ref_43 ref_86 Hecklau (ref_45) 2016; 54 ref_40 ref_1 Kumar (ref_89) 2006; 17 ref_3 ref_2 Zhong (ref_39) 2017; 3 ref_49 ref_48 ref_9 ref_8 ref_5 Plaza (ref_52) 2019; 127 ref_7 |
References_xml | – ident: ref_33 doi: 10.1007/978-3-030-58779-6_15 – volume: 56 start-page: 2975 year: 2018 ident: ref_57 article-title: Implementation of Industry 4.0 and lean production in Brazilian manufacturing companies publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2017.1391420 – volume: 1 start-page: 4 year: 2005 ident: ref_42 article-title: Product lifecycle management support: A challenge in supporting product design and manufacturing in a networked economy publication-title: Int. J. Prod. Lifecycle Manag. doi: 10.1504/IJPLM.2005.007342 – ident: ref_9 – ident: ref_48 doi: 10.1007/978-3-319-44742-1_1 – ident: ref_78 – ident: ref_55 doi: 10.5772/intechopen.72304 – volume: 11 start-page: 3 year: 2005 ident: ref_59 article-title: Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems—A Review, Part I publication-title: HVAC&R Res. doi: 10.1080/10789669.2005.10391123 – ident: ref_74 – ident: ref_80 – ident: ref_46 doi: 10.1109/ICMA.2015.7237557 – ident: ref_40 doi: 10.1109/ICE.2018.8436256 – volume: 11 start-page: 577 year: 2019 ident: ref_76 article-title: A lean six sigma framework for continuous and incremental improvement in the oil and gas sector publication-title: Int. J. Lean Six Sigma doi: 10.1108/IJLSS-02-2019-0011 – volume: 7 start-page: 130 year: 2018 ident: ref_88 article-title: Comparison of Common Tests for Normality publication-title: Int. J. Probab. Stat. – volume: 100 start-page: 1207 year: 2015 ident: ref_36 article-title: Human Reliability in Man-machine Systems publication-title: Procedia Eng. doi: 10.1016/j.proeng.2015.01.485 – volume: 17 start-page: 407 year: 2006 ident: ref_89 article-title: Implementing the Lean Sigma framework in an Indian SME: A case study publication-title: Prod. Plan. Control. doi: 10.1080/09537280500483350 – volume: 9 start-page: 45 year: 2014 ident: ref_23 article-title: Evaluation of Six Sigma in automobile manufacturing industries publication-title: J. Contemp. Res. Manag. – ident: ref_27 doi: 10.1109/ICIAS.2018.8540597 – volume: 8 start-page: 1 year: 2015 ident: ref_50 article-title: A New Trend for Knowledge Based Decision Support Systems Design publication-title: Int. J. Inf. Decis. Sci. – ident: ref_30 doi: 10.1109/ICQR2MSE.2012.6246467 – ident: ref_1 – ident: ref_75 doi: 10.1109/ITMC.2018.8691266 – volume: 54 start-page: 1 year: 2016 ident: ref_45 article-title: Holistic Approach for Human Resource Management in Industry 4.0 publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.05.102 – ident: ref_32 doi: 10.1007/s12599-020-00641-4 – ident: ref_8 – ident: ref_31 – volume: 6 start-page: 18 year: 2015 ident: ref_73 article-title: Organisational Knowledge Management for Defect Reduction and Sustainable Development in Foundries publication-title: Int. J. Knowl. Syst. Sci. doi: 10.4018/ijkss.2015070102 – volume: Volume 19 start-page: 67 year: 2018 ident: ref_68 article-title: Identifying candidate tasks for robotic process automation in textual process descriptions publication-title: Proceedings of the International Conference on Business Process Modeling, Development and Support – ident: ref_83 – volume: 27 start-page: 507 year: 2016 ident: ref_6 article-title: Impact of quality management practices on quality performance and financial performance: Evidence from Indian manufacturing companies publication-title: Total. Qual. Manag. Bus. Excel. doi: 10.1080/14783363.2015.1015411 – volume: 127 start-page: 21 year: 2019 ident: ref_52 article-title: Decision system supporting optimization of machining strategy publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2018.11.034 – volume: 27 start-page: 1 year: 2016 ident: ref_25 article-title: Implementing Lean Six Sigma to overcome the production challenges in an aerospace company publication-title: Prod. Plan. Control. doi: 10.1080/09537287.2016.1165300 – ident: ref_7 doi: 10.1109/SYSTEMS.2010.5482485 – volume: 57 start-page: 8 year: 2016 ident: ref_58 article-title: Ecosystems, Strategy and Business Models in the age of Digitization—How the Manufacturing Industry is Going to Change its Logic publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.11.003 – volume: 19 start-page: 60 year: 2010 ident: ref_84 article-title: Statistics without tears: Populations and samples publication-title: Ind. Psychiatry J. doi: 10.4103/0972-6748.77642 – ident: ref_19 doi: 10.1109/IEEM.2008.4738230 – ident: ref_34 doi: 10.1109/IEEM.2012.6837706 – ident: ref_62 – ident: ref_70 doi: 10.1007/978-3-030-21290-2_28 – volume: 41 start-page: 1140 year: 2014 ident: ref_10 article-title: A Comparative Analysis of Cost of Rework and Cost of Conformance to Quality in Manufacturing Sector: A Case Study of Aluminium Industry in Nigeria publication-title: Int. J. Mater. Sci. Manuf. Eng. – ident: ref_5 doi: 10.1109/METROI4.2019.8792889 – volume: 6 start-page: 1 year: 2011 ident: ref_87 article-title: Comparing Distributions: The Two-Sample Anderson—Darling Test as an Alternative to the Kolmogorov—Smirnov test publication-title: J. Appl. Quant. Methods – volume: 101 start-page: 70 year: 2016 ident: ref_72 article-title: Risk based uncertainty quantification to improve robustness of manufacturing operations publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2016.08.002 – volume: 105 start-page: 491 year: 2005 ident: ref_82 article-title: Six Sigma: Concepts, tools, and applications publication-title: Ind. Manag. Data Syst. doi: 10.1108/02635570510592389 – ident: ref_37 doi: 10.1109/ASMC.2018.8373214 – volume: 16 start-page: 171 year: 2009 ident: ref_17 article-title: Implementation of Six Sigma in a manufacturing process: A case study publication-title: Int. J. Ind. Eng. Theory Appl. Pract. – volume: 20 start-page: 197 year: 2009 ident: ref_24 article-title: Application of Six Sigma DMAIC methodology in thermal power plants: A case study publication-title: Total. Qual. Manag. Bus. Excel. doi: 10.1080/14783360802622995 – volume: 43 start-page: 71 year: 2018 ident: ref_66 article-title: Robotic process automation (rpa) the example of coca-cola hellenic business service organization publication-title: Int. J. Sci. Arts IDEA – ident: ref_13 doi: 10.1109/ICQR2MSE.2012.6246481 – ident: ref_79 doi: 10.1109/ES.2017.19 – volume: 56 start-page: 4729 year: 2018 ident: ref_53 article-title: Empowering production workers with digitally facilitated knowledge processes–a conceptual framework publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2018.1445877 – volume: 3 start-page: 616 year: 2017 ident: ref_39 article-title: Intelligent Manufacturing in the Context of Industry 4.0: A Review publication-title: Engineering doi: 10.1016/J.ENG.2017.05.015 – ident: ref_3 – volume: 30 start-page: 99 year: 2020 ident: ref_65 article-title: Robotic process automation publication-title: Electron. Mark. doi: 10.1007/s12525-019-00365-8 – ident: ref_47 – ident: ref_86 – ident: ref_28 doi: 10.1109/ICENCO.2017.8289795 – ident: ref_21 doi: 10.1109/ICIME.2010.5478088 – ident: ref_67 – volume: 2 start-page: 32 year: 2014 ident: ref_85 article-title: Sampling Techniques & Determination of Sample Size in Applied Statistics Reseaech: An Overview publication-title: Int. J. Econ. Commer. Manag. – volume: 6 start-page: 100127 year: 2019 ident: ref_44 article-title: Business analytics in manufacturing: Current trends, challenges and pathway to market leadership publication-title: Oper. Res. Perspect. – ident: ref_63 – ident: ref_18 – ident: ref_61 doi: 10.1109/ICFIR.2019.8894776 – volume: 28 start-page: 1788 year: 2020 ident: ref_14 article-title: Productivity improvement in manufacturing industry by lean tool publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.05.195 – volume: 113 start-page: 144 year: 2017 ident: ref_38 article-title: Smart operators in industry 4.0: A human-centered approach to enhance operators’ capabilities and competencies within the new smart factory context publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2017.09.016 – volume: 2196 start-page: 124 year: 2018 ident: ref_64 article-title: Process mining and Robotic process automation: A perfect match publication-title: CEUR Workshop Proc. – volume: 29 start-page: 886 year: 2018 ident: ref_77 article-title: Empirical assessment of the future adequacy of value stream mapping in manufacturing industries publication-title: J. Manuf. Technol. Manag. doi: 10.1108/JMTM-11-2017-0236 – volume: 2 start-page: 359 year: 2012 ident: ref_20 article-title: Six Sigma DMAIC: Process Improvements towards Better IT Customer Support publication-title: Int. J. e-Educ. e-Bus. e-Manag. e-Learn. – volume: 18 start-page: 282 year: 2006 ident: ref_12 article-title: Similarities and differences between TQM, six sigma and lean publication-title: TQM Mag. doi: 10.1108/09544780610660004 – ident: ref_81 – ident: ref_29 – ident: ref_2 – ident: ref_16 doi: 10.1109/CCIENG.2011.6008137 – volume: 40 start-page: 107 year: 2009 ident: ref_35 article-title: A Systematic Study of the Prediction Model for Operator-Induced Assembly Defects Based on Assembly Complexity Factors publication-title: IEEE Trans. Syst. Man Cybern. Part A Syst. Humans doi: 10.1109/TSMCA.2009.2033030 – volume: 52 start-page: 642 year: 2001 ident: ref_51 article-title: First-off inspection of capable manufacturing processes publication-title: J. Oper. Res. Soc. doi: 10.1057/palgrave.jors.2601122 – volume: 2 start-page: 1248 year: 2020 ident: ref_71 article-title: Robotic Process Automation publication-title: Int. Res. J. Mod. Eng. Technol. Sci. – ident: ref_22 doi: 10.1109/IEEM.2008.4738132 – volume: 63 start-page: 167 year: 2017 ident: ref_56 article-title: Towards Industry 4.0 Utilizing Data-Mining Techniques: A Case Study on Quality Improvement publication-title: Procedia CIRP doi: 10.1016/j.procir.2017.03.311 – volume: 78 start-page: 137 year: 2016 ident: ref_54 article-title: Industry 4.0: A review on industrial automation and robotic publication-title: J. Teknol. – ident: ref_49 doi: 10.1109/KAM.2009.14 – ident: ref_15 – volume: 15 start-page: 17 year: 2015 ident: ref_4 article-title: Derivation of a cost model to aid management of cnc machine tool accuracy maintenance publication-title: J. Mach. Eng. – volume: 108 start-page: 1 year: 2017 ident: ref_41 article-title: Distributed maintenance planning in manufacturing industries publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2017.03.027 – ident: ref_43 – volume: 1 start-page: 1 year: 2011 ident: ref_26 article-title: Performance improvement of manufacturing industry by reducing the Defectives using Six Sigma Methodologies publication-title: IOSR J. Eng. doi: 10.9790/iosrjen11A01100010009 – volume: 52 start-page: 804 year: 2014 ident: ref_11 article-title: Lean, Six Sigma and Lean Six Sigma: An analysis based on operations strategy publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2013.842015 – volume: 4 start-page: 20190036 year: 2020 ident: ref_60 article-title: Development of a Decision Support System to Enable Adaptive Manufacturing publication-title: Smart Sustain. Manuf. Syst. doi: 10.1520/SSMS20190036 – volume: 9 start-page: 220 year: 2019 ident: ref_69 article-title: Robotic process automation: Assessment of the technology for transformation of business processes publication-title: Int. J. Bus. Process. Integr. Manag. doi: 10.1504/IJBPIM.2019.100927 |
SSID | ssj0000913810 |
Score | 2.262365 |
Snippet | Manufacturing industries are constantly identifying ways to automate machinery and processes to reduce waste and increase profits. Machines that were... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 3889 |
SubjectTerms | Automation data digitization Decision making Digitization Lean manufacturing optimization in manufacturing process improvement method |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BS8MwFA6ykx7ETcXplBx2UCHYNkmbHqduDGGeHOxW0uQVBOnEdf_flzQbBQUvHts82pD3knzvJe97hIyjpNSQWc1iYzImTCqYrmTCIK1AOgyh_EH74jWdL8XLSq46pb7cnbCWHrgduAdrM60jUeWx47JTpcqlAFFKDsZim199ozzqOFN-Dc5jR13VJuRx9OvdebAj1-TKFXTvbEGeqf_HQux3l9kJOQ6wkE7a7vTJAdQDctQhCxyQfpiGG3obuKLvTsl64StA-9g4RfxJn3WjWZtjBJaGNADahg58JJA2azr1CVN0sm3WCFhRbqHrrUtx8DmL9L2mgbbJN2C_wndgc0aWs-nb05yFGgrM8FQ0zGrEa3FZJirW3IABabgWVWpLCwjeLOdaRSo3OViFolLxNDbSpkoIwMmu-Tnp1esaLggFnUr0XY0rpi4qofHRIBgDZREyQKyG5H43rIUJBOOuzsVHgY6G00HR0cGQjPfCny2vxu9ij04_exFHhu1foIkUwUSKv0xkSEY77RZhhm6KRKKzmSGe5Jf_8Y8rcpi42y4-ODMiveZrC9cIV5ryxlvmN5ND6dY priority: 102 providerName: Directory of Open Access Journals |
Title | Methodology for Data-Informed Process Improvement to Enable Automated Manufacturing in Current Manual Processes |
URI | https://www.proquest.com/docview/2528272323 https://doaj.org/article/dd7aa04f9127448b8954e4b53ecddd72 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED629qV7KG3XsfRH0EMf1oFYbEmO8lTaLlkZpJSxQt-MLJ3HYNht4_z_vZOVNLCxR1uHMD6d7ruT7juAs1FeORwHJzPvx1L7QktXm1xiUaNhDGHjQfv8tri5198fzENKuC3StcrVnhg36tB6zpF_yQ0FB2Py_-ri8Uly1yg-XU0tNN7Cdkaehte5nX1b51iY89Jmo74sT1F0z6fCTLGpLLd133BEka__r-04-pjZHuwmcCgue23uwxtsDuDdBmXgAewnY1yIT4kx-vw9tPPYBzpmyAWhUPHVdU72lUYYRCoGEH0CIeYDRdeKaSybEpfLriXYSnJz1yy50CFWLorfjUjkTXGAvivNg4tDuJ9Nf17fyNRJQXpV6E4GR6gtq6rcZk559Gi8crouQhWQIFxQytmRnfgJBkuixqoi8yYUVmskk3fqA2w1bYMfQaArDEWwnluq61o7evQEydAGAg6Y2QF8Xv3W0ieace528aekcIN1UG7oYABna-HHnl3j32JXrJ-1CFNixxft868yWVgZwti5ka4nGZMe2spOjEZdGYU-0Fg-gJOVdstkp4vydVUd_X_4GHZyvs0Sky8nsNU9L_GU4EhXDeOaG8L21fT27scwBvUv3fjjTQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V7QE4VG0BdfsBPhQJkCKS2M46B4RautWWdlcItVJvwbEnCAklbTcrxJ_iNzJ2nGUlELceE4-sKDP2vBl73gAcxmmpcWR1lBgzioTJRKQrmUaYVSgdhlD-oH06yyZX4uO1vF6DX30tjLtW2e-JfqO2jXE58reppOBgRP6fv7-5jVzXKHe62rfQ6MziHH_-oJBt_u7shPT7Mk1Px5cfJlHoKhAZnok2spoQTFKWqUo0N2hQGq5FldnSIsEZy7lWscpNjlaRqFQ8S4y0mRICyfw1p3kfwLpwFa0DWD8ezz59XmZ1HMumSuKuEJDzPHbn0I7UkyvXSH7F9fkOAX85AO_VTjdhI8BRdtTZzxasYb0Nj1dICrdhKyz_OXsVOKpfP4Fm6jtP-5w8I9zLTnSro662CS0L5QesS1n4DCRrGzb2hVrsaNE2BJRJbqrrhSut8LWS7FvNAl2UH6DvCvPg_Clc3ctffgaDuqlxBxjqTFLMbFwTd1EJTY-GQCAqS1AFEzWEN_1vLUwgNnf9Nb4XFOA4HRQrOhjC4VL4puPz-LfYsdPPUsSRcPsXzd3XIqzpwtqR1rGo8sTRLKpS5VKgKCVHY2ksHcJ-r90i7Azz4o8d7_5_-AU8nFxOL4qLs9n5HjxK3V0an_rZh0F7t8ADAkNt-TxYIIMv9230vwGMOB-4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwEB2VIiE4IFpAbCngQ5EAyWoS24lzQKiwXVrKVhyo1Ftw7AlCqpLSzQrxa3wdY8dZVgJx6zHxyIoy4_GbsecNwF6S1QYLZ3hqbcGlzSU3jco45g0qjyF0OGifn-ZHZ_LDuTrfgF9jLYy_Vjn6xOCoXWd9jnw_UxQcFLT_i_0mXov4NJ29ufzOfQcpf9I6ttMYTOQEf_6g8G3x-nhKun6eZbPDz--OeOwwwK3IZc-dITST1nWmUyMsWlRWGNnkrnZI0MYJYXSiS1ui0ySqtMhTq1yupURaCkbQvDfgZiGK0gd-evZ-ld_xfJs6TYaSQCHKxJ9Ie3pPoX1L-bVNMPQK-GsrCPvb7B7cjcCUHQyWtAUb2G7DnTW6wm3Yio5gwV5EtuqX96Gbhx7UITvPCAGzqekNH6qc0LFYiMCG5EXIRbK-Y4ehZIsdLPuOIDPJzU279EUWoWqSfWtZJI4KA_RdcR5cPICza_nHD2Gz7Vp8BAxNrih6tr6du2ykoUdLcBC1I9CCqZ7Aq_G3VjZSnPtOGxcVhTpeB9WaDiawtxK-HJg9_i321utnJeLpuMOL7uprFVd35VxhTCKbMvWEi7rWpZIoayXQOhrLJrA7areKPmJR_bHonf8PP4NbZOrVx-PTk8dwO_OXakIOaBc2-6slPiFU1NdPg_kx-HLd9v4bsmMiiA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methodology+for+Data-Informed+Process+Improvement+to+Enable+Automated+Manufacturing+in+Current+Manual+Processes&rft.jtitle=Applied+sciences&rft.au=Adrita%2C+Mumtahina+Mahajabin&rft.au=Brem%2C+Alexander&rft.au=O%E2%80%99Sullivan%2C+Dominic&rft.au=Allen%2C+Eoin&rft.date=2021&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=11&rft.issue=9&rft.spage=3889&rft_id=info:doi/10.3390%2Fapp11093889&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app11093889 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |