Methodology for Data-Informed Process Improvement to Enable Automated Manufacturing in Current Manual Processes

Manufacturing industries are constantly identifying ways to automate machinery and processes to reduce waste and increase profits. Machines that were previously handled manually in non-standardized manners can now be automated. Converting non-digital records to digital formats is called digitization...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 11; no. 9; p. 3889
Main Authors Adrita, Mumtahina Mahajabin, Brem, Alexander, O’Sullivan, Dominic, Allen, Eoin, Bruton, Ken
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 2021
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app11093889

Cover

Abstract Manufacturing industries are constantly identifying ways to automate machinery and processes to reduce waste and increase profits. Machines that were previously handled manually in non-standardized manners can now be automated. Converting non-digital records to digital formats is called digitization. Data that are analyzed or entered manually are subject to human error. Digitization can remove human error, when dealing with data, via automatic extraction and data conversion. This paper presents methodology to identify automation opportunities and eliminate manual processes via digitized data analyses. The method uses a hybrid combination of Lean Six Sigma (LSS), CRISP-DM framework, and “pre-automation” sequence, which address the gaps in each individual methodology and enable the identification and analysis of processes for optimization, in terms of automation. The results from the use case validates the novel methodology, reducing the implant manufacturing process cycle time by 3.76%, with a 4.48% increase in product output per day, as a result of identification and removal of manual steps based on capability studies. This work can guide manufacturing industries in automating manual production processes using data digitization.
AbstractList Manufacturing industries are constantly identifying ways to automate machinery and processes to reduce waste and increase profits. Machines that were previously handled manually in non-standardized manners can now be automated. Converting non-digital records to digital formats is called digitization. Data that are analyzed or entered manually are subject to human error. Digitization can remove human error, when dealing with data, via automatic extraction and data conversion. This paper presents methodology to identify automation opportunities and eliminate manual processes via digitized data analyses. The method uses a hybrid combination of Lean Six Sigma (LSS), CRISP-DM framework, and “pre-automation” sequence, which address the gaps in each individual methodology and enable the identification and analysis of processes for optimization, in terms of automation. The results from the use case validates the novel methodology, reducing the implant manufacturing process cycle time by 3.76%, with a 4.48% increase in product output per day, as a result of identification and removal of manual steps based on capability studies. This work can guide manufacturing industries in automating manual production processes using data digitization.
Author Brem, Alexander
Allen, Eoin
Bruton, Ken
Adrita, Mumtahina Mahajabin
O’Sullivan, Dominic
Author_xml – sequence: 1
  givenname: Mumtahina Mahajabin
  orcidid: 0000-0003-2099-8771
  surname: Adrita
  fullname: Adrita, Mumtahina Mahajabin
– sequence: 2
  givenname: Alexander
  orcidid: 0000-0001-5202-3421
  surname: Brem
  fullname: Brem, Alexander
– sequence: 3
  givenname: Dominic
  orcidid: 0000-0001-7370-471X
  surname: O’Sullivan
  fullname: O’Sullivan, Dominic
– sequence: 4
  givenname: Eoin
  surname: Allen
  fullname: Allen, Eoin
– sequence: 5
  givenname: Ken
  orcidid: 0000-0002-6509-2554
  surname: Bruton
  fullname: Bruton, Ken
BookMark eNptkU1rHDEMhk1IoGmaU_-Aoccyqb9m1j6GbdosJKSH9mw0tmYzy4y9tT2F_Pt6sw2EEl0kpEcvL9J7chpiQEI-cnYlpWFfYL_nnBmptTkh54KtukYqvjp9Vb8jlznvWA3DpebsnMR7LI_Rxylun-gQE_0KBZpNqOWMnv5I0WHOdDPvU_yDM4ZCS6Q3AfoJ6fVS4gylcvcQlgFcWdIYtnQMdL2kdIAPA5hedDB_IGcDTBkv_-UL8uvbzc_1bXP38H2zvr5rnOxUaTy0Xcf7XmgO0qHD1klQQ-d7jy03XkrQTBtn0OuKtlp23LW-00qhlgLkBdkcdX2End2ncYb0ZCOM9rkR09ZCKqOb0Hq_AmBqMFyslNK9Nq1C1bcSna8zUbU-HbXqDX4vmIvdxSWFat-KVmhRESErxY-USzHnhIN1Y4EyxlASjJPlzB7eZF-9qe58_m_nxelb9F_kSZaN
CitedBy_id crossref_primary_10_1109_TEM_2023_3324542
crossref_primary_10_3390_su16041436
crossref_primary_10_3390_app13116397
crossref_primary_10_1108_BIJ_05_2022_0289
crossref_primary_10_1016_j_clpl_2025_100093
crossref_primary_10_3390_pr12122816
crossref_primary_10_1080_21693277_2025_2476436
Cites_doi 10.1007/978-3-030-58779-6_15
10.1080/00207543.2017.1391420
10.1504/IJPLM.2005.007342
10.1007/978-3-319-44742-1_1
10.5772/intechopen.72304
10.1080/10789669.2005.10391123
10.1109/ICMA.2015.7237557
10.1109/ICE.2018.8436256
10.1108/IJLSS-02-2019-0011
10.1016/j.proeng.2015.01.485
10.1080/09537280500483350
10.1109/ICIAS.2018.8540597
10.1109/ICQR2MSE.2012.6246467
10.1109/ITMC.2018.8691266
10.1016/j.procir.2016.05.102
10.1007/s12599-020-00641-4
10.4018/ijkss.2015070102
10.1080/14783363.2015.1015411
10.1016/j.cie.2018.11.034
10.1080/09537287.2016.1165300
10.1109/SYSTEMS.2010.5482485
10.1016/j.procir.2016.11.003
10.4103/0972-6748.77642
10.1109/IEEM.2008.4738230
10.1109/IEEM.2012.6837706
10.1007/978-3-030-21290-2_28
10.1109/METROI4.2019.8792889
10.1016/j.cie.2016.08.002
10.1108/02635570510592389
10.1109/ASMC.2018.8373214
10.1080/14783360802622995
10.1109/ICQR2MSE.2012.6246481
10.1109/ES.2017.19
10.1080/00207543.2018.1445877
10.1016/J.ENG.2017.05.015
10.1007/s12525-019-00365-8
10.1109/ICENCO.2017.8289795
10.1109/ICIME.2010.5478088
10.1109/ICFIR.2019.8894776
10.1016/j.matpr.2020.05.195
10.1016/j.cie.2017.09.016
10.1108/JMTM-11-2017-0236
10.1108/09544780610660004
10.1109/CCIENG.2011.6008137
10.1109/TSMCA.2009.2033030
10.1057/palgrave.jors.2601122
10.1109/IEEM.2008.4738132
10.1016/j.procir.2017.03.311
10.1109/KAM.2009.14
10.1016/j.cie.2017.03.027
10.9790/iosrjen11A01100010009
10.1080/00207543.2013.842015
10.1520/SSMS20190036
10.1504/IJBPIM.2019.100927
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app11093889
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_dd7aa04f9127448b8954e4b53ecddd72
10_3390_app11093889
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c364t-da5661bb281a3cece5c3a4f6dbde519d33a8089c9ed8a5658361c5d6844e832a3
IEDL.DBID 8FG
ISSN 2076-3417
IngestDate Wed Aug 27 01:30:39 EDT 2025
Mon Jun 30 11:06:35 EDT 2025
Tue Jul 01 00:50:46 EDT 2025
Thu Apr 24 22:52:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-da5661bb281a3cece5c3a4f6dbde519d33a8089c9ed8a5658361c5d6844e832a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5202-3421
0000-0002-6509-2554
0000-0003-2099-8771
0000-0001-7370-471X
OpenAccessLink https://www.proquest.com/docview/2528272323?pq-origsite=%requestingapplication%
PQID 2528272323
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_dd7aa04f9127448b8954e4b53ecddd72
proquest_journals_2528272323
crossref_citationtrail_10_3390_app11093889
crossref_primary_10_3390_app11093889
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ezeanyim (ref_10) 2014; 41
Venkatesh (ref_23) 2014; 9
ref_13
Banerjee (ref_84) 2010; 19
Su (ref_35) 2009; 40
ref_55
Hofmann (ref_65) 2020; 30
Dey (ref_69) 2019; 9
Lugert (ref_77) 2018; 29
Nakladal (ref_64) 2018; 2196
Ogunleye (ref_88) 2018; 7
ref_19
ref_18
ref_16
Upasani (ref_41) 2017; 108
Leopold (ref_68) 2018; Volume 19
ref_15
Subrahmanian (ref_42) 2005; 1
Katipamula (ref_59) 2005; 11
Longo (ref_38) 2017; 113
Schatton (ref_58) 2016; 57
Banga (ref_14) 2020; 28
Hannola (ref_53) 2018; 56
Giannetti (ref_72) 2016; 101
ref_61
Drohomeretski (ref_11) 2014; 52
Andersson (ref_12) 2006; 18
Kumar (ref_26) 2011; 1
Adrita (ref_60) 2020; 4
Valles (ref_17) 2009; 16
ref_67
ref_22
ref_21
ref_63
Shagluf (ref_4) 2015; 15
ref_62
Sheil (ref_51) 2001; 52
ref_29
ref_28
ref_27
Raisinghani (ref_82) 2005; 105
Irit (ref_50) 2015; 8
Thomas (ref_25) 2016; 27
ref_70
Oliff (ref_56) 2017; 63
ref_79
ref_34
ref_78
Kaushik (ref_24) 2009; 20
ref_33
ref_32
ref_31
ref_75
ref_30
ref_74
Nascimento (ref_76) 2019; 11
Georgieva (ref_66) 2018; 43
Omar (ref_44) 2019; 6
Tortorella (ref_57) 2018; 56
Giannetti (ref_73) 2015; 6
Cousineau (ref_87) 2011; 6
ref_37
Singh (ref_85) 2014; 2
Havlikova (ref_36) 2015; 100
Kumar (ref_71) 2020; 2
ref_83
Ramly (ref_20) 2012; 2
ref_81
ref_80
ref_47
Parvadavardini (ref_6) 2016; 27
ref_46
Bahrin (ref_54) 2016; 78
ref_43
ref_86
Hecklau (ref_45) 2016; 54
ref_40
ref_1
Kumar (ref_89) 2006; 17
ref_3
ref_2
Zhong (ref_39) 2017; 3
ref_49
ref_48
ref_9
ref_8
ref_5
Plaza (ref_52) 2019; 127
ref_7
References_xml – ident: ref_33
  doi: 10.1007/978-3-030-58779-6_15
– volume: 56
  start-page: 2975
  year: 2018
  ident: ref_57
  article-title: Implementation of Industry 4.0 and lean production in Brazilian manufacturing companies
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2017.1391420
– volume: 1
  start-page: 4
  year: 2005
  ident: ref_42
  article-title: Product lifecycle management support: A challenge in supporting product design and manufacturing in a networked economy
  publication-title: Int. J. Prod. Lifecycle Manag.
  doi: 10.1504/IJPLM.2005.007342
– ident: ref_9
– ident: ref_48
  doi: 10.1007/978-3-319-44742-1_1
– ident: ref_78
– ident: ref_55
  doi: 10.5772/intechopen.72304
– volume: 11
  start-page: 3
  year: 2005
  ident: ref_59
  article-title: Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems—A Review, Part I
  publication-title: HVAC&R Res.
  doi: 10.1080/10789669.2005.10391123
– ident: ref_74
– ident: ref_80
– ident: ref_46
  doi: 10.1109/ICMA.2015.7237557
– ident: ref_40
  doi: 10.1109/ICE.2018.8436256
– volume: 11
  start-page: 577
  year: 2019
  ident: ref_76
  article-title: A lean six sigma framework for continuous and incremental improvement in the oil and gas sector
  publication-title: Int. J. Lean Six Sigma
  doi: 10.1108/IJLSS-02-2019-0011
– volume: 7
  start-page: 130
  year: 2018
  ident: ref_88
  article-title: Comparison of Common Tests for Normality
  publication-title: Int. J. Probab. Stat.
– volume: 100
  start-page: 1207
  year: 2015
  ident: ref_36
  article-title: Human Reliability in Man-machine Systems
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2015.01.485
– volume: 17
  start-page: 407
  year: 2006
  ident: ref_89
  article-title: Implementing the Lean Sigma framework in an Indian SME: A case study
  publication-title: Prod. Plan. Control.
  doi: 10.1080/09537280500483350
– volume: 9
  start-page: 45
  year: 2014
  ident: ref_23
  article-title: Evaluation of Six Sigma in automobile manufacturing industries
  publication-title: J. Contemp. Res. Manag.
– ident: ref_27
  doi: 10.1109/ICIAS.2018.8540597
– volume: 8
  start-page: 1
  year: 2015
  ident: ref_50
  article-title: A New Trend for Knowledge Based Decision Support Systems Design
  publication-title: Int. J. Inf. Decis. Sci.
– ident: ref_30
  doi: 10.1109/ICQR2MSE.2012.6246467
– ident: ref_1
– ident: ref_75
  doi: 10.1109/ITMC.2018.8691266
– volume: 54
  start-page: 1
  year: 2016
  ident: ref_45
  article-title: Holistic Approach for Human Resource Management in Industry 4.0
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2016.05.102
– ident: ref_32
  doi: 10.1007/s12599-020-00641-4
– ident: ref_8
– ident: ref_31
– volume: 6
  start-page: 18
  year: 2015
  ident: ref_73
  article-title: Organisational Knowledge Management for Defect Reduction and Sustainable Development in Foundries
  publication-title: Int. J. Knowl. Syst. Sci.
  doi: 10.4018/ijkss.2015070102
– volume: Volume 19
  start-page: 67
  year: 2018
  ident: ref_68
  article-title: Identifying candidate tasks for robotic process automation in textual process descriptions
  publication-title: Proceedings of the International Conference on Business Process Modeling, Development and Support
– ident: ref_83
– volume: 27
  start-page: 507
  year: 2016
  ident: ref_6
  article-title: Impact of quality management practices on quality performance and financial performance: Evidence from Indian manufacturing companies
  publication-title: Total. Qual. Manag. Bus. Excel.
  doi: 10.1080/14783363.2015.1015411
– volume: 127
  start-page: 21
  year: 2019
  ident: ref_52
  article-title: Decision system supporting optimization of machining strategy
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2018.11.034
– volume: 27
  start-page: 1
  year: 2016
  ident: ref_25
  article-title: Implementing Lean Six Sigma to overcome the production challenges in an aerospace company
  publication-title: Prod. Plan. Control.
  doi: 10.1080/09537287.2016.1165300
– ident: ref_7
  doi: 10.1109/SYSTEMS.2010.5482485
– volume: 57
  start-page: 8
  year: 2016
  ident: ref_58
  article-title: Ecosystems, Strategy and Business Models in the age of Digitization—How the Manufacturing Industry is Going to Change its Logic
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2016.11.003
– volume: 19
  start-page: 60
  year: 2010
  ident: ref_84
  article-title: Statistics without tears: Populations and samples
  publication-title: Ind. Psychiatry J.
  doi: 10.4103/0972-6748.77642
– ident: ref_19
  doi: 10.1109/IEEM.2008.4738230
– ident: ref_34
  doi: 10.1109/IEEM.2012.6837706
– ident: ref_62
– ident: ref_70
  doi: 10.1007/978-3-030-21290-2_28
– volume: 41
  start-page: 1140
  year: 2014
  ident: ref_10
  article-title: A Comparative Analysis of Cost of Rework and Cost of Conformance to Quality in Manufacturing Sector: A Case Study of Aluminium Industry in Nigeria
  publication-title: Int. J. Mater. Sci. Manuf. Eng.
– ident: ref_5
  doi: 10.1109/METROI4.2019.8792889
– volume: 6
  start-page: 1
  year: 2011
  ident: ref_87
  article-title: Comparing Distributions: The Two-Sample Anderson—Darling Test as an Alternative to the Kolmogorov—Smirnov test
  publication-title: J. Appl. Quant. Methods
– volume: 101
  start-page: 70
  year: 2016
  ident: ref_72
  article-title: Risk based uncertainty quantification to improve robustness of manufacturing operations
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2016.08.002
– volume: 105
  start-page: 491
  year: 2005
  ident: ref_82
  article-title: Six Sigma: Concepts, tools, and applications
  publication-title: Ind. Manag. Data Syst.
  doi: 10.1108/02635570510592389
– ident: ref_37
  doi: 10.1109/ASMC.2018.8373214
– volume: 16
  start-page: 171
  year: 2009
  ident: ref_17
  article-title: Implementation of Six Sigma in a manufacturing process: A case study
  publication-title: Int. J. Ind. Eng. Theory Appl. Pract.
– volume: 20
  start-page: 197
  year: 2009
  ident: ref_24
  article-title: Application of Six Sigma DMAIC methodology in thermal power plants: A case study
  publication-title: Total. Qual. Manag. Bus. Excel.
  doi: 10.1080/14783360802622995
– volume: 43
  start-page: 71
  year: 2018
  ident: ref_66
  article-title: Robotic process automation (rpa) the example of coca-cola hellenic business service organization
  publication-title: Int. J. Sci. Arts IDEA
– ident: ref_13
  doi: 10.1109/ICQR2MSE.2012.6246481
– ident: ref_79
  doi: 10.1109/ES.2017.19
– volume: 56
  start-page: 4729
  year: 2018
  ident: ref_53
  article-title: Empowering production workers with digitally facilitated knowledge processes–a conceptual framework
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2018.1445877
– volume: 3
  start-page: 616
  year: 2017
  ident: ref_39
  article-title: Intelligent Manufacturing in the Context of Industry 4.0: A Review
  publication-title: Engineering
  doi: 10.1016/J.ENG.2017.05.015
– ident: ref_3
– volume: 30
  start-page: 99
  year: 2020
  ident: ref_65
  article-title: Robotic process automation
  publication-title: Electron. Mark.
  doi: 10.1007/s12525-019-00365-8
– ident: ref_47
– ident: ref_86
– ident: ref_28
  doi: 10.1109/ICENCO.2017.8289795
– ident: ref_21
  doi: 10.1109/ICIME.2010.5478088
– ident: ref_67
– volume: 2
  start-page: 32
  year: 2014
  ident: ref_85
  article-title: Sampling Techniques & Determination of Sample Size in Applied Statistics Reseaech: An Overview
  publication-title: Int. J. Econ. Commer. Manag.
– volume: 6
  start-page: 100127
  year: 2019
  ident: ref_44
  article-title: Business analytics in manufacturing: Current trends, challenges and pathway to market leadership
  publication-title: Oper. Res. Perspect.
– ident: ref_63
– ident: ref_18
– ident: ref_61
  doi: 10.1109/ICFIR.2019.8894776
– volume: 28
  start-page: 1788
  year: 2020
  ident: ref_14
  article-title: Productivity improvement in manufacturing industry by lean tool
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.05.195
– volume: 113
  start-page: 144
  year: 2017
  ident: ref_38
  article-title: Smart operators in industry 4.0: A human-centered approach to enhance operators’ capabilities and competencies within the new smart factory context
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2017.09.016
– volume: 2196
  start-page: 124
  year: 2018
  ident: ref_64
  article-title: Process mining and Robotic process automation: A perfect match
  publication-title: CEUR Workshop Proc.
– volume: 29
  start-page: 886
  year: 2018
  ident: ref_77
  article-title: Empirical assessment of the future adequacy of value stream mapping in manufacturing industries
  publication-title: J. Manuf. Technol. Manag.
  doi: 10.1108/JMTM-11-2017-0236
– volume: 2
  start-page: 359
  year: 2012
  ident: ref_20
  article-title: Six Sigma DMAIC: Process Improvements towards Better IT Customer Support
  publication-title: Int. J. e-Educ. e-Bus. e-Manag. e-Learn.
– volume: 18
  start-page: 282
  year: 2006
  ident: ref_12
  article-title: Similarities and differences between TQM, six sigma and lean
  publication-title: TQM Mag.
  doi: 10.1108/09544780610660004
– ident: ref_81
– ident: ref_29
– ident: ref_2
– ident: ref_16
  doi: 10.1109/CCIENG.2011.6008137
– volume: 40
  start-page: 107
  year: 2009
  ident: ref_35
  article-title: A Systematic Study of the Prediction Model for Operator-Induced Assembly Defects Based on Assembly Complexity Factors
  publication-title: IEEE Trans. Syst. Man Cybern. Part A Syst. Humans
  doi: 10.1109/TSMCA.2009.2033030
– volume: 52
  start-page: 642
  year: 2001
  ident: ref_51
  article-title: First-off inspection of capable manufacturing processes
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2601122
– volume: 2
  start-page: 1248
  year: 2020
  ident: ref_71
  article-title: Robotic Process Automation
  publication-title: Int. Res. J. Mod. Eng. Technol. Sci.
– ident: ref_22
  doi: 10.1109/IEEM.2008.4738132
– volume: 63
  start-page: 167
  year: 2017
  ident: ref_56
  article-title: Towards Industry 4.0 Utilizing Data-Mining Techniques: A Case Study on Quality Improvement
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2017.03.311
– volume: 78
  start-page: 137
  year: 2016
  ident: ref_54
  article-title: Industry 4.0: A review on industrial automation and robotic
  publication-title: J. Teknol.
– ident: ref_49
  doi: 10.1109/KAM.2009.14
– ident: ref_15
– volume: 15
  start-page: 17
  year: 2015
  ident: ref_4
  article-title: Derivation of a cost model to aid management of cnc machine tool accuracy maintenance
  publication-title: J. Mach. Eng.
– volume: 108
  start-page: 1
  year: 2017
  ident: ref_41
  article-title: Distributed maintenance planning in manufacturing industries
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2017.03.027
– ident: ref_43
– volume: 1
  start-page: 1
  year: 2011
  ident: ref_26
  article-title: Performance improvement of manufacturing industry by reducing the Defectives using Six Sigma Methodologies
  publication-title: IOSR J. Eng.
  doi: 10.9790/iosrjen11A01100010009
– volume: 52
  start-page: 804
  year: 2014
  ident: ref_11
  article-title: Lean, Six Sigma and Lean Six Sigma: An analysis based on operations strategy
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2013.842015
– volume: 4
  start-page: 20190036
  year: 2020
  ident: ref_60
  article-title: Development of a Decision Support System to Enable Adaptive Manufacturing
  publication-title: Smart Sustain. Manuf. Syst.
  doi: 10.1520/SSMS20190036
– volume: 9
  start-page: 220
  year: 2019
  ident: ref_69
  article-title: Robotic process automation: Assessment of the technology for transformation of business processes
  publication-title: Int. J. Bus. Process. Integr. Manag.
  doi: 10.1504/IJBPIM.2019.100927
SSID ssj0000913810
Score 2.262365
Snippet Manufacturing industries are constantly identifying ways to automate machinery and processes to reduce waste and increase profits. Machines that were...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3889
SubjectTerms Automation
data digitization
Decision making
Digitization
Lean manufacturing
optimization in manufacturing
process improvement method
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BS8MwFA6ykx7ETcXplBx2UCHYNkmbHqduDGGeHOxW0uQVBOnEdf_flzQbBQUvHts82pD3knzvJe97hIyjpNSQWc1iYzImTCqYrmTCIK1AOgyh_EH74jWdL8XLSq46pb7cnbCWHrgduAdrM60jUeWx47JTpcqlAFFKDsZim199ozzqOFN-Dc5jR13VJuRx9OvdebAj1-TKFXTvbEGeqf_HQux3l9kJOQ6wkE7a7vTJAdQDctQhCxyQfpiGG3obuKLvTsl64StA-9g4RfxJn3WjWZtjBJaGNADahg58JJA2azr1CVN0sm3WCFhRbqHrrUtx8DmL9L2mgbbJN2C_wndgc0aWs-nb05yFGgrM8FQ0zGrEa3FZJirW3IABabgWVWpLCwjeLOdaRSo3OViFolLxNDbSpkoIwMmu-Tnp1esaLggFnUr0XY0rpi4qofHRIBgDZREyQKyG5H43rIUJBOOuzsVHgY6G00HR0cGQjPfCny2vxu9ij04_exFHhu1foIkUwUSKv0xkSEY77RZhhm6KRKKzmSGe5Jf_8Y8rcpi42y4-ODMiveZrC9cIV5ryxlvmN5ND6dY
  priority: 102
  providerName: Directory of Open Access Journals
Title Methodology for Data-Informed Process Improvement to Enable Automated Manufacturing in Current Manual Processes
URI https://www.proquest.com/docview/2528272323
https://doaj.org/article/dd7aa04f9127448b8954e4b53ecddd72
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED629qV7KG3XsfRH0EMf1oFYbEmO8lTaLlkZpJSxQt-MLJ3HYNht4_z_vZOVNLCxR1uHMD6d7ruT7juAs1FeORwHJzPvx1L7QktXm1xiUaNhDGHjQfv8tri5198fzENKuC3StcrVnhg36tB6zpF_yQ0FB2Py_-ri8Uly1yg-XU0tNN7Cdkaehte5nX1b51iY89Jmo74sT1F0z6fCTLGpLLd133BEka__r-04-pjZHuwmcCgue23uwxtsDuDdBmXgAewnY1yIT4kx-vw9tPPYBzpmyAWhUPHVdU72lUYYRCoGEH0CIeYDRdeKaSybEpfLriXYSnJz1yy50CFWLorfjUjkTXGAvivNg4tDuJ9Nf17fyNRJQXpV6E4GR6gtq6rcZk559Gi8crouQhWQIFxQytmRnfgJBkuixqoi8yYUVmskk3fqA2w1bYMfQaArDEWwnluq61o7evQEydAGAg6Y2QF8Xv3W0ieace528aekcIN1UG7oYABna-HHnl3j32JXrJ-1CFNixxft868yWVgZwti5ka4nGZMe2spOjEZdGYU-0Fg-gJOVdstkp4vydVUd_X_4GHZyvs0Sky8nsNU9L_GU4EhXDeOaG8L21fT27scwBvUv3fjjTQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V7QE4VG0BdfsBPhQJkCKS2M46B4RautWWdlcItVJvwbEnCAklbTcrxJ_iNzJ2nGUlELceE4-sKDP2vBl73gAcxmmpcWR1lBgzioTJRKQrmUaYVSgdhlD-oH06yyZX4uO1vF6DX30tjLtW2e-JfqO2jXE58reppOBgRP6fv7-5jVzXKHe62rfQ6MziHH_-oJBt_u7shPT7Mk1Px5cfJlHoKhAZnok2spoQTFKWqUo0N2hQGq5FldnSIsEZy7lWscpNjlaRqFQ8S4y0mRICyfw1p3kfwLpwFa0DWD8ezz59XmZ1HMumSuKuEJDzPHbn0I7UkyvXSH7F9fkOAX85AO_VTjdhI8BRdtTZzxasYb0Nj1dICrdhKyz_OXsVOKpfP4Fm6jtP-5w8I9zLTnSro662CS0L5QesS1n4DCRrGzb2hVrsaNE2BJRJbqrrhSut8LWS7FvNAl2UH6DvCvPg_Clc3ctffgaDuqlxBxjqTFLMbFwTd1EJTY-GQCAqS1AFEzWEN_1vLUwgNnf9Nb4XFOA4HRQrOhjC4VL4puPz-LfYsdPPUsSRcPsXzd3XIqzpwtqR1rGo8sTRLKpS5VKgKCVHY2ksHcJ-r90i7Azz4o8d7_5_-AU8nFxOL4qLs9n5HjxK3V0an_rZh0F7t8ADAkNt-TxYIIMv9230vwGMOB-4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwEB2VIiE4IFpAbCngQ5EAyWoS24lzQKiwXVrKVhyo1Ftw7AlCqpLSzQrxa3wdY8dZVgJx6zHxyIoy4_GbsecNwF6S1QYLZ3hqbcGlzSU3jco45g0qjyF0OGifn-ZHZ_LDuTrfgF9jLYy_Vjn6xOCoXWd9jnw_UxQcFLT_i_0mXov4NJ29ufzOfQcpf9I6ttMYTOQEf_6g8G3x-nhKun6eZbPDz--OeOwwwK3IZc-dITST1nWmUyMsWlRWGNnkrnZI0MYJYXSiS1ui0ySqtMhTq1yupURaCkbQvDfgZiGK0gd-evZ-ld_xfJs6TYaSQCHKxJ9Ie3pPoX1L-bVNMPQK-GsrCPvb7B7cjcCUHQyWtAUb2G7DnTW6wm3Yio5gwV5EtuqX96Gbhx7UITvPCAGzqekNH6qc0LFYiMCG5EXIRbK-Y4ehZIsdLPuOIDPJzU279EUWoWqSfWtZJI4KA_RdcR5cPICza_nHD2Gz7Vp8BAxNrih6tr6du2ykoUdLcBC1I9CCqZ7Aq_G3VjZSnPtOGxcVhTpeB9WaDiawtxK-HJg9_i321utnJeLpuMOL7uprFVd35VxhTCKbMvWEi7rWpZIoayXQOhrLJrA7areKPmJR_bHonf8PP4NbZOrVx-PTk8dwO_OXakIOaBc2-6slPiFU1NdPg_kx-HLd9v4bsmMiiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methodology+for+Data-Informed+Process+Improvement+to+Enable+Automated+Manufacturing+in+Current+Manual+Processes&rft.jtitle=Applied+sciences&rft.au=Adrita%2C+Mumtahina+Mahajabin&rft.au=Brem%2C+Alexander&rft.au=O%E2%80%99Sullivan%2C+Dominic&rft.au=Allen%2C+Eoin&rft.date=2021&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=11&rft.issue=9&rft.spage=3889&rft_id=info:doi/10.3390%2Fapp11093889&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app11093889
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon