Transferable Utility Cooperative Differential Games with Continuous Updating Using Pontryagin Maximum Principle

We consider a class of cooperative differential games with continuous updating making use of the Pontryagin maximum principle. It is assumed that at each moment, players have or use information about the game structure defined in a closed time interval of a fixed duration. Over time, information abo...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 9; no. 2; p. 163
Main Authors Zhou, Jiangjing, Tur, Anna, Petrosian, Ovanes, Gao, Hongwei
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider a class of cooperative differential games with continuous updating making use of the Pontryagin maximum principle. It is assumed that at each moment, players have or use information about the game structure defined in a closed time interval of a fixed duration. Over time, information about the game structure will be updated. The subject of the current paper is to construct players’ cooperative strategies, their cooperative trajectory, the characteristic function, and the cooperative solution for this class of differential games with continuous updating, particularly by using Pontryagin’s maximum principle as the optimality conditions. In order to demonstrate this method’s novelty, we propose to compare cooperative strategies, trajectories, characteristic functions, and corresponding Shapley values for a classic (initial) differential game and a differential game with continuous updating. Our approach provides a means of more profound modeling of conflict controlled processes. In a particular example, we demonstrate that players’ behavior is braver at the beginning of the game with continuous updating because they lack the information for the whole game, and they are “intrinsically time-inconsistent”. In contrast, in the initial model, the players are more cautious, which implies they dare not emit too much pollution at first.
AbstractList We consider a class of cooperative differential games with continuous updating making use of the Pontryagin maximum principle. It is assumed that at each moment, players have or use information about the game structure defined in a closed time interval of a fixed duration. Over time, information about the game structure will be updated. The subject of the current paper is to construct players’ cooperative strategies, their cooperative trajectory, the characteristic function, and the cooperative solution for this class of differential games with continuous updating, particularly by using Pontryagin’s maximum principle as the optimality conditions. In order to demonstrate this method’s novelty, we propose to compare cooperative strategies, trajectories, characteristic functions, and corresponding Shapley values for a classic (initial) differential game and a differential game with continuous updating. Our approach provides a means of more profound modeling of conflict controlled processes. In a particular example, we demonstrate that players’ behavior is braver at the beginning of the game with continuous updating because they lack the information for the whole game, and they are “intrinsically time-inconsistent”. In contrast, in the initial model, the players are more cautious, which implies they dare not emit too much pollution at first.
Author Petrosian, Ovanes
Gao, Hongwei
Tur, Anna
Zhou, Jiangjing
Author_xml – sequence: 1
  givenname: Jiangjing
  surname: Zhou
  fullname: Zhou, Jiangjing
– sequence: 2
  givenname: Anna
  orcidid: 0000-0003-1296-1231
  surname: Tur
  fullname: Tur, Anna
– sequence: 3
  givenname: Ovanes
  orcidid: 0000-0001-7908-2261
  surname: Petrosian
  fullname: Petrosian, Ovanes
– sequence: 4
  givenname: Hongwei
  surname: Gao
  fullname: Gao, Hongwei
BookMark eNptkUFP3DAQha2KSgXKqX_AEke07cT2JvERLRSQqMqBPVsTx168SuxgO9D99_WyrYSq-mBbb773NJo5IUc-eEPIlwq-ci7h24j5SQKDquYfyDFjrFk0RT969_9EzlLaQjmy4q2QxyQ8RvTJmojdYOg6u8HlHV2FMBUpuxdDr5wtZeOzw4He4GgSfXX5qTBF8nOYE11PfWH9hq7T_n4olbjDjfP0B_5y4zzSh-i8dtNgPpOPFodkzv68p2T9_fpxdbu4_3lzt7q8X2hei7zoG1x2TQ9LbAViyzRj0grssLOWQ9_rCqxtliChYWBbDjUypsH2xhQjWH5K7g65fcCtmqIbMe5UQKfehBA3CmN2ejBKCwlcyyUTTIq2s9jWpjJG6F5aBCtK1vkha4rheTYpq22Yoy_tKyaatpasbmWhqgOlY0gpGqu0y2Us-2GgG1QFar8m9W5NxXPxj-dvp_-jfwPpjph8
CitedBy_id crossref_primary_10_1038_s41598_024_63234_1
crossref_primary_10_4018_IJFSA_292462
crossref_primary_10_1155_2022_5314322
crossref_primary_10_1155_2022_6979075
Cites_doi 10.1016/S0005-1098(01)00174-1
10.3934/jdg.2020020
10.2307/2554642
10.1109/9.57020
10.1016/j.mathsocsci.2016.03.008
10.1023/B:JOTA.0000043990.32923.ac
10.3390/math7121239
10.1134/S0005117917090120
10.1137/1.9781611971132
10.1109/CDC.1982.268433
10.1109/TAC.2014.2336992
10.1007/978-3-319-92988-0_11
10.1007/b138145
10.2139/ssrn.3130025
10.1016/0022-247X(86)90152-6
10.1007/978-3-030-33394-2_14
10.1007/978-3-030-22629-9_45
10.1007/BF02071061
10.1109/STAB.2016.7541187
10.1007/s10957-016-1009-8
10.1007/978-3-030-58657-7_22
10.1007/978-3-030-49988-4_15
10.1109/TAC.1979.1101949
10.1109/TAC.1977.1101619
10.1115/1.3426735
10.1007/BF01263279
10.1016/S0165-1889(01)00053-7
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math9020163
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ) (Open Access)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_c4903c95242948bfa86e1ee4cd9fa0f4
10_3390_math9020163
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c364t-d7a5b7d05a84aa82c229f4ababff30ddc10ff75090720f8306a22c0fdeea5b0f3
IEDL.DBID DOA
ISSN 2227-7390
IngestDate Wed Aug 27 01:30:44 EDT 2025
Fri Jul 25 11:54:28 EDT 2025
Tue Jul 01 02:57:58 EDT 2025
Thu Apr 24 22:55:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-d7a5b7d05a84aa82c229f4ababff30ddc10ff75090720f8306a22c0fdeea5b0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1296-1231
0000-0001-7908-2261
OpenAccessLink https://doaj.org/article/c4903c95242948bfa86e1ee4cd9fa0f4
PQID 2478692689
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_c4903c95242948bfa86e1ee4cd9fa0f4
proquest_journals_2478692689
crossref_citationtrail_10_3390_math9020163
crossref_primary_10_3390_math9020163
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Shapley (ref_38) 1953; 28
Petrosian (ref_12) 2020; 1275
Gromova (ref_35) 2017; 78
Petrosjan (ref_37) 2003; 27
Petrosian (ref_11) 2020; 1275
ref_33
ref_32
Leitmann (ref_40) 1973; 95
Bemporad (ref_22) 2002; 38
ref_19
ref_18
ref_39
ref_16
Petrosian (ref_10) 2019; 1090
Petrosian (ref_5) 2017; 172
Chander (ref_36) 1997; 26
Long (ref_41) 1992; 37
Mayne (ref_26) 1990; 35
Wang (ref_15) 2020; 7
Reddy (ref_34) 2016; 82
Shaw (ref_27) 1979; 24
ref_24
Muthoo (ref_31) 1996; 63
Carlson (ref_1) 2004; 123
Petrosjan (ref_2) 1997; 3
Hempel (ref_23) 2015; 60
Petrosian (ref_3) 2016; 18
ref_21
Kwon (ref_25) 1977; 22
ref_20
Petrosian (ref_4) 2016; 4
Kuchkarov (ref_13) 2019; 11548
Petrosian (ref_17) 2020; 7
ref_29
Vasin (ref_28) 2017; 9
ref_9
ref_8
ref_7
Kuchkarov (ref_14) 2020; 12095
Tolwinski (ref_30) 1986; 119
ref_6
References_xml – volume: 3
  start-page: 165
  year: 1997
  ident: ref_2
  article-title: Agreeable Solutions in Differential Games
  publication-title: Int. J. Math. Game Theory Algebra
– volume: 9
  start-page: 27
  year: 2017
  ident: ref_28
  article-title: Game-theoretic model of agreement on limitation of transboundary atmospheric pollution
  publication-title: Matematicheskaya Teoriya Igr Prilozheniya
– volume: 7
  start-page: 291
  year: 2020
  ident: ref_17
  article-title: Optimal Control and Inverse Optimal Control with Continuous Updating for Human Behavior Modeling (to be published)
  publication-title: IFAC-PapersOnLine
– ident: ref_32
– volume: 38
  start-page: 3
  year: 2002
  ident: ref_22
  article-title: The explicit linear quadratic regulator for constrained systems
  publication-title: Automatica
  doi: 10.1016/S0005-1098(01)00174-1
– volume: 1275
  start-page: 256
  year: 2020
  ident: ref_11
  article-title: Cooperative differential games with continuous updating using Hamilton–Jacobi–Bellman equation
  publication-title: Optim. Methods Softw.
– volume: 7
  start-page: 291
  year: 2020
  ident: ref_15
  article-title: On class of non-transferable utility cooperative differential games with continuous updating
  publication-title: J. Dyn. Games
  doi: 10.3934/jdg.2020020
– volume: 63
  start-page: 164
  year: 1996
  ident: ref_31
  article-title: A Course in Game Theory
  publication-title: Economica
  doi: 10.2307/2554642
– volume: 35
  start-page: 814
  year: 1990
  ident: ref_26
  article-title: Receding horizon control of nonlinear systems
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/9.57020
– volume: 82
  start-page: 18
  year: 2016
  ident: ref_34
  article-title: A friendly computable characteristic function
  publication-title: Math. Soc. Sci.
  doi: 10.1016/j.mathsocsci.2016.03.008
– volume: 123
  start-page: 27
  year: 2004
  ident: ref_1
  article-title: An Extension of the Coordinate Transformation Method for Open-Loop Nash Equilibria
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/B:JOTA.0000043990.32923.ac
– volume: 4
  start-page: 18
  year: 2016
  ident: ref_4
  article-title: Looking Forward Approach in Cooperative Differential Games with infinite-horizon
  publication-title: Vestnik St.-Peterbg. Univ. Ser.
– ident: ref_16
– ident: ref_9
  doi: 10.3390/math7121239
– volume: 78
  start-page: 1680
  year: 2017
  ident: ref_35
  article-title: On an approach to constructing a characteristic function in cooperative differential games
  publication-title: Automat. Remote Control
  doi: 10.1134/S0005117917090120
– ident: ref_39
  doi: 10.1137/1.9781611971132
– ident: ref_21
– ident: ref_24
  doi: 10.1109/CDC.1982.268433
– volume: 60
  start-page: 1064
  year: 2015
  ident: ref_23
  article-title: Inverse Parametric Optimization With an Application to Hybrid System Control
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2014.2336992
– volume: 18
  start-page: 1
  year: 2016
  ident: ref_3
  article-title: Looking Forward Approach in Cooperative Differential Games
  publication-title: Int. Game Theory Rev.
– ident: ref_8
  doi: 10.1007/978-3-319-92988-0_11
– ident: ref_18
  doi: 10.1007/b138145
– ident: ref_7
  doi: 10.2139/ssrn.3130025
– ident: ref_29
– ident: ref_33
– volume: 119
  start-page: 182
  year: 1986
  ident: ref_30
  article-title: Cooperative equilibria in differential games
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(86)90152-6
– volume: 1090
  start-page: 178
  year: 2019
  ident: ref_10
  article-title: Hamilton-Jacobi-Bellman Equations for Non-cooperative Differential Games with Continuous Updating
  publication-title: Commun. Comput. Inform. Sci.
  doi: 10.1007/978-3-030-33394-2_14
– volume: 11548
  start-page: 635
  year: 2019
  ident: ref_13
  article-title: On class of linear quadratic non-cooperative differential games with continuous updating
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-030-22629-9_45
– volume: 37
  start-page: 283
  year: 1992
  ident: ref_41
  article-title: Pollution control: A differential game approach
  publication-title: Ann. Operat. Res.
  doi: 10.1007/BF02071061
– ident: ref_6
  doi: 10.1109/STAB.2016.7541187
– volume: 172
  start-page: 328
  year: 2017
  ident: ref_5
  article-title: Looking Forward Approach in Cooperative Differential Games with Uncertain-Stochastic Dynamics
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-016-1009-8
– volume: 28
  start-page: 307
  year: 1953
  ident: ref_38
  article-title: A value for n-persons games
  publication-title: Ann. Math. Stud.
– volume: 1275
  start-page: 256
  year: 2020
  ident: ref_12
  article-title: Pontryagin’s Maximum Principle for Non-cooperative Differential Games with Continuous Updating
  publication-title: Commu. Comput. Inform. Sci.
  doi: 10.1007/978-3-030-58657-7_22
– volume: 12095
  start-page: 212
  year: 2020
  ident: ref_14
  article-title: Open-Loop Based Strategies for Autonomous Linear Quadratic Game Models with Continuous Updating
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-030-49988-4_15
– ident: ref_19
– volume: 24
  start-page: 108
  year: 1979
  ident: ref_27
  article-title: Nonlinear control of linear multivariable systems via state-dependent feedback gains
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.1979.1101949
– volume: 22
  start-page: 838
  year: 1977
  ident: ref_25
  article-title: A modified quadratic cost problem and feedback stabilization of a linear system
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.1977.1101619
– ident: ref_20
– volume: 95
  start-page: 356
  year: 1973
  ident: ref_40
  article-title: Some Sufficiency Conditions for Pareto-Optimal Control
  publication-title: J. Dyn. Syst. Meas. Control
  doi: 10.1115/1.3426735
– volume: 26
  start-page: 379
  year: 1997
  ident: ref_36
  article-title: The core of an economy with multilateral environmental externalities
  publication-title: Int. J. Game Theory
  doi: 10.1007/BF01263279
– volume: 27
  start-page: 381
  year: 2003
  ident: ref_37
  article-title: Time-consistent Shapley value allocation of pollution cost reduction
  publication-title: J. Econom. Dyn. Control
  doi: 10.1016/S0165-1889(01)00053-7
SSID ssj0000913849
Score 2.1740768
Snippet We consider a class of cooperative differential games with continuous updating making use of the Pontryagin maximum principle. It is assumed that at each...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 163
SubjectTerms Characteristic functions
cooperative differential game
Decision making
Differential games
differential games with continuous updating
Game theory
Hamiltonian
Mathematical functions
Maximum principle
open-loop Nash equilibrium
Players
Pollution
Pontryagin maximum principle
δ-characteristic function
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbt5tIeQvqi2yRFh5wCJlpJlqVTyDsENiyhC7mZ0SsNJPZ2H5D8-2i82m1KS6-2BGakmflmPPMNIXvguNVMmSJhDVdIEKoAn4yhsNYFBwngO-wdHl6ry7G8ui1vc8JtlssqVzaxM9S-dZgjP-Cy0spwpc3h5FeBU6Pw72oeofGWbCQTrHWPbByfXY9u1lkWZL3U0iwb80SK7w8SDvxpEkYaKPGHK-oY-_8yyJ2XOd8imxke0qPleX4gb0LzkbwfrrlVZ59I27mXGKbY9ETHcyxufaYnbTsJSxZvepqHniTlfaAXWAZLMd1KkYnqvlmkWJ-OJ9jW0NzRrmSAjrBg_RkHFtEhPN0_Lh7paJWF_0zG52c_Ti6LPDahcELJeeErKG3lWQlaAmjuODdRggUbo2DeuwGLEYECqziLOsUMwLlj0YeQNrIovpBe0zbhK6ECuAkeDOdgZeDcJrxVQqys0zZapfpkfyXB2mVOcRxt8VCn2ALFXb8Sd5_srRdPllQa_152jEexXoL8192DdnpXZ3WqnTRMOFMmgGFk-hbQKgxCkM6bCCzKPtlZHWSdlXJW_75C3_7_epu841i60mVadkhvPl2E3YQ95vZ7vmAv67zfFA
  priority: 102
  providerName: ProQuest
Title Transferable Utility Cooperative Differential Games with Continuous Updating Using Pontryagin Maximum Principle
URI https://www.proquest.com/docview/2478692689
https://doaj.org/article/c4903c95242948bfa86e1ee4cd9fa0f4
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fSyMxEA6n96IPh56KVa_kwSdhMU2y2eTRX1WESjks-LZMsokKui3awvnfO8luS8UDX3xdZtllMpn5Zpj5hpBDcNxqpkyGWMNlEoTKoEJnKKx13gECfBdnhwc36mokr-_yu6VVX7EnrKEHbhR37KRhwpkcQ4mR2gbQyve8l64yAVhITKAY85aSqeSDTU9oaZqBPIF5_THivweD2KinxIcQlJj6PzniFF36G-RXCwvpSfM7m-SHr3-T9cGCU_V1i4xTWAn-JQ470dE0NrW-0bPxeOIb9m563i47wUv7RC9j-yuNZVYaGage6xnm-HQ0ieMM9T1NrQJ0GBvV3-KiIjqAf4_Ps2c6nFfft8mof3F7dpW16xIyJ5ScZlUBuS0qloOWAJo7zk2QYMGGIFhVuR4LIQIEVnAWNOYKwLljofIeX2RB7JDVelz7XUIFcOMrMJyDlZ5zizgrh1BYhydgleqQo7kGS9dyiceVFk8l5hRR3eWSujvkcCE8aSg0_i92Go9iIRJ5r9MDtIaytYbyK2vokIP5QZbtZXwtuSy0Mlxps_cd39gnazw2tqQ6zAFZnb7M_B9EJlPbJSu6f9klP08vboZ_u8kk3wGD0ukW
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFNdKMWHckGK6rUdJz4gBG23W9qteuhKvYXxq1Rqk2Ufgv1T_Y315LGAQNx6jZ0ompnMfJ7MfEPINlhucqZ0ErGGTSQIlYCLzlAYY72FCPAt9g6PTtRwLL-cp-dr5KbrhcGyys4n1o7aVRZz5DtcZrnSXOX64-R7glOj8O9qN0KjMYsjv_wRj2yzD4d7Ub_vOB_sn-0Ok3aqQGKFkvPEZZCazLEUcgmQc8u5DhIMmBAEc872WQgYR1nGWcgjpAbOLQvO-3gjCyI-9x65L0WM5NiZPjhY5XSQYzOXumkDjOtsJ6LObzoisr4SfwS-ej7AX-6_jmmDJ-RxC0bpp8Z6npI1Xz4jj0YrJtfZc1LVwSz4KbZY0fEcS2mXdLeqJr7hDKd77YiV6Cqu6AEW3VJM7lLkvbosF9ViRscTbKIoL2hdoEBPsTx-ieOR6Ah-Xl4vrulpl_N_QcZ3Is6XZL2sSr9BqACuvQPNORjpOTcR3aUQMmNzE4xSPfK-k2BhWwZzHKRxVcSTDIq7-E3cPbK92jxpiDv-ve0zqmK1Bdm26wvV9KJoP97CSs2E1WmEM1rGd4Fc-b730jodgAXZI5udIovWBcyKXwb76v_Lb8mD4dnouDg-PDl6TR5yLJqpczybZH0-Xfg3EfXMzVZtapR8vWvbvgU5LBxl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggMpLLLTgQ7kgReu1HSc-INR2u7SUXa0QK_UWbMculdpk2Ydg_xq_rp48FhCIW6-JE0Uzk5nP429mAPa1ZSalUkUBa9hIaC4jnQdnyI2xzuoA8C3WDo_G8mQqPpzH51vws62FQVpl6xMrR52XFnPkPSaSVComU9XzDS1iMhi-m32LcIIUnrS24zRqEzlz6-9h-7Z4ezoIun7N2PD489FJ1EwYiCyXYhnliY5NktNYp0LrlFnGlBfaaOM9p3lu-9R7jKk0YdSnAV5rxiz1uXPhQep5eO8d2E5wV9SB7cPj8eTTJsODHTdToeqiQM4V7QUM-lUFfNaX_I8wWE0L-CsYVBFuuAMPGmhKDmpbeghbrngE90ebvq6Lx1BWoc27ORZckekSibVrclSWM1d3ECeDZuBKcBxX5D1ScAmmegl2wbosVuVqQaYzLKkoLkhFVyATJMuvcVgSGekfl9erazJpTwCewPRWBPoUOkVZuGdAuGbK5Voxpo1wjJmA9WLtE2NT442UXXjTSjCzTT9zHKtxlYV9DYo7-03cXdjfLJ7VbTz-vewQVbFZgr23qwvl_CJrfuXMCkW5VXEAN0qEb9GpdH3nhM2V19SLLuy2iswah7DIfpnv8__ffgV3g11nH0_HZy_gHkMGTZXw2YXOcr5yewECLc3LxtYIfLlt874BprUh9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transferable+Utility+Cooperative+Differential+Games+with+Continuous+Updating+Using+Pontryagin+Maximum+Principle&rft.jtitle=Mathematics+%28Basel%29&rft.au=Zhou%2C+Jiangjing&rft.au=Tur%2C+Anna&rft.au=Petrosian%2C+Ovanes&rft.au=Gao%2C+Hongwei&rft.date=2021-01-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=9&rft.issue=2&rft.spage=163&rft_id=info:doi/10.3390%2Fmath9020163&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math9020163
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon