Transferable Utility Cooperative Differential Games with Continuous Updating Using Pontryagin Maximum Principle
We consider a class of cooperative differential games with continuous updating making use of the Pontryagin maximum principle. It is assumed that at each moment, players have or use information about the game structure defined in a closed time interval of a fixed duration. Over time, information abo...
Saved in:
Published in | Mathematics (Basel) Vol. 9; no. 2; p. 163 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider a class of cooperative differential games with continuous updating making use of the Pontryagin maximum principle. It is assumed that at each moment, players have or use information about the game structure defined in a closed time interval of a fixed duration. Over time, information about the game structure will be updated. The subject of the current paper is to construct players’ cooperative strategies, their cooperative trajectory, the characteristic function, and the cooperative solution for this class of differential games with continuous updating, particularly by using Pontryagin’s maximum principle as the optimality conditions. In order to demonstrate this method’s novelty, we propose to compare cooperative strategies, trajectories, characteristic functions, and corresponding Shapley values for a classic (initial) differential game and a differential game with continuous updating. Our approach provides a means of more profound modeling of conflict controlled processes. In a particular example, we demonstrate that players’ behavior is braver at the beginning of the game with continuous updating because they lack the information for the whole game, and they are “intrinsically time-inconsistent”. In contrast, in the initial model, the players are more cautious, which implies they dare not emit too much pollution at first. |
---|---|
AbstractList | We consider a class of cooperative differential games with continuous updating making use of the Pontryagin maximum principle. It is assumed that at each moment, players have or use information about the game structure defined in a closed time interval of a fixed duration. Over time, information about the game structure will be updated. The subject of the current paper is to construct players’ cooperative strategies, their cooperative trajectory, the characteristic function, and the cooperative solution for this class of differential games with continuous updating, particularly by using Pontryagin’s maximum principle as the optimality conditions. In order to demonstrate this method’s novelty, we propose to compare cooperative strategies, trajectories, characteristic functions, and corresponding Shapley values for a classic (initial) differential game and a differential game with continuous updating. Our approach provides a means of more profound modeling of conflict controlled processes. In a particular example, we demonstrate that players’ behavior is braver at the beginning of the game with continuous updating because they lack the information for the whole game, and they are “intrinsically time-inconsistent”. In contrast, in the initial model, the players are more cautious, which implies they dare not emit too much pollution at first. |
Author | Petrosian, Ovanes Gao, Hongwei Tur, Anna Zhou, Jiangjing |
Author_xml | – sequence: 1 givenname: Jiangjing surname: Zhou fullname: Zhou, Jiangjing – sequence: 2 givenname: Anna orcidid: 0000-0003-1296-1231 surname: Tur fullname: Tur, Anna – sequence: 3 givenname: Ovanes orcidid: 0000-0001-7908-2261 surname: Petrosian fullname: Petrosian, Ovanes – sequence: 4 givenname: Hongwei surname: Gao fullname: Gao, Hongwei |
BookMark | eNptkUFP3DAQha2KSgXKqX_AEke07cT2JvERLRSQqMqBPVsTx168SuxgO9D99_WyrYSq-mBbb773NJo5IUc-eEPIlwq-ci7h24j5SQKDquYfyDFjrFk0RT969_9EzlLaQjmy4q2QxyQ8RvTJmojdYOg6u8HlHV2FMBUpuxdDr5wtZeOzw4He4GgSfXX5qTBF8nOYE11PfWH9hq7T_n4olbjDjfP0B_5y4zzSh-i8dtNgPpOPFodkzv68p2T9_fpxdbu4_3lzt7q8X2hei7zoG1x2TQ9LbAViyzRj0grssLOWQ9_rCqxtliChYWBbDjUypsH2xhQjWH5K7g65fcCtmqIbMe5UQKfehBA3CmN2ejBKCwlcyyUTTIq2s9jWpjJG6F5aBCtK1vkha4rheTYpq22Yoy_tKyaatpasbmWhqgOlY0gpGqu0y2Us-2GgG1QFar8m9W5NxXPxj-dvp_-jfwPpjph8 |
CitedBy_id | crossref_primary_10_1038_s41598_024_63234_1 crossref_primary_10_4018_IJFSA_292462 crossref_primary_10_1155_2022_5314322 crossref_primary_10_1155_2022_6979075 |
Cites_doi | 10.1016/S0005-1098(01)00174-1 10.3934/jdg.2020020 10.2307/2554642 10.1109/9.57020 10.1016/j.mathsocsci.2016.03.008 10.1023/B:JOTA.0000043990.32923.ac 10.3390/math7121239 10.1134/S0005117917090120 10.1137/1.9781611971132 10.1109/CDC.1982.268433 10.1109/TAC.2014.2336992 10.1007/978-3-319-92988-0_11 10.1007/b138145 10.2139/ssrn.3130025 10.1016/0022-247X(86)90152-6 10.1007/978-3-030-33394-2_14 10.1007/978-3-030-22629-9_45 10.1007/BF02071061 10.1109/STAB.2016.7541187 10.1007/s10957-016-1009-8 10.1007/978-3-030-58657-7_22 10.1007/978-3-030-49988-4_15 10.1109/TAC.1979.1101949 10.1109/TAC.1977.1101619 10.1115/1.3426735 10.1007/BF01263279 10.1016/S0165-1889(01)00053-7 |
ContentType | Journal Article |
Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math9020163 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) (Open Access) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_c4903c95242948bfa86e1ee4cd9fa0f4 10_3390_math9020163 |
GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c364t-d7a5b7d05a84aa82c229f4ababff30ddc10ff75090720f8306a22c0fdeea5b0f3 |
IEDL.DBID | DOA |
ISSN | 2227-7390 |
IngestDate | Wed Aug 27 01:30:44 EDT 2025 Fri Jul 25 11:54:28 EDT 2025 Tue Jul 01 02:57:58 EDT 2025 Thu Apr 24 22:55:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-d7a5b7d05a84aa82c229f4ababff30ddc10ff75090720f8306a22c0fdeea5b0f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1296-1231 0000-0001-7908-2261 |
OpenAccessLink | https://doaj.org/article/c4903c95242948bfa86e1ee4cd9fa0f4 |
PQID | 2478692689 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c4903c95242948bfa86e1ee4cd9fa0f4 proquest_journals_2478692689 crossref_citationtrail_10_3390_math9020163 crossref_primary_10_3390_math9020163 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Shapley (ref_38) 1953; 28 Petrosian (ref_12) 2020; 1275 Gromova (ref_35) 2017; 78 Petrosjan (ref_37) 2003; 27 Petrosian (ref_11) 2020; 1275 ref_33 ref_32 Leitmann (ref_40) 1973; 95 Bemporad (ref_22) 2002; 38 ref_19 ref_18 ref_39 ref_16 Petrosian (ref_10) 2019; 1090 Petrosian (ref_5) 2017; 172 Chander (ref_36) 1997; 26 Long (ref_41) 1992; 37 Mayne (ref_26) 1990; 35 Wang (ref_15) 2020; 7 Reddy (ref_34) 2016; 82 Shaw (ref_27) 1979; 24 ref_24 Muthoo (ref_31) 1996; 63 Carlson (ref_1) 2004; 123 Petrosjan (ref_2) 1997; 3 Hempel (ref_23) 2015; 60 Petrosian (ref_3) 2016; 18 ref_21 Kwon (ref_25) 1977; 22 ref_20 Petrosian (ref_4) 2016; 4 Kuchkarov (ref_13) 2019; 11548 Petrosian (ref_17) 2020; 7 ref_29 Vasin (ref_28) 2017; 9 ref_9 ref_8 ref_7 Kuchkarov (ref_14) 2020; 12095 Tolwinski (ref_30) 1986; 119 ref_6 |
References_xml | – volume: 3 start-page: 165 year: 1997 ident: ref_2 article-title: Agreeable Solutions in Differential Games publication-title: Int. J. Math. Game Theory Algebra – volume: 9 start-page: 27 year: 2017 ident: ref_28 article-title: Game-theoretic model of agreement on limitation of transboundary atmospheric pollution publication-title: Matematicheskaya Teoriya Igr Prilozheniya – volume: 7 start-page: 291 year: 2020 ident: ref_17 article-title: Optimal Control and Inverse Optimal Control with Continuous Updating for Human Behavior Modeling (to be published) publication-title: IFAC-PapersOnLine – ident: ref_32 – volume: 38 start-page: 3 year: 2002 ident: ref_22 article-title: The explicit linear quadratic regulator for constrained systems publication-title: Automatica doi: 10.1016/S0005-1098(01)00174-1 – volume: 1275 start-page: 256 year: 2020 ident: ref_11 article-title: Cooperative differential games with continuous updating using Hamilton–Jacobi–Bellman equation publication-title: Optim. Methods Softw. – volume: 7 start-page: 291 year: 2020 ident: ref_15 article-title: On class of non-transferable utility cooperative differential games with continuous updating publication-title: J. Dyn. Games doi: 10.3934/jdg.2020020 – volume: 63 start-page: 164 year: 1996 ident: ref_31 article-title: A Course in Game Theory publication-title: Economica doi: 10.2307/2554642 – volume: 35 start-page: 814 year: 1990 ident: ref_26 article-title: Receding horizon control of nonlinear systems publication-title: IEEE Trans. Automat. Control doi: 10.1109/9.57020 – volume: 82 start-page: 18 year: 2016 ident: ref_34 article-title: A friendly computable characteristic function publication-title: Math. Soc. Sci. doi: 10.1016/j.mathsocsci.2016.03.008 – volume: 123 start-page: 27 year: 2004 ident: ref_1 article-title: An Extension of the Coordinate Transformation Method for Open-Loop Nash Equilibria publication-title: J. Optim. Theory Appl. doi: 10.1023/B:JOTA.0000043990.32923.ac – volume: 4 start-page: 18 year: 2016 ident: ref_4 article-title: Looking Forward Approach in Cooperative Differential Games with infinite-horizon publication-title: Vestnik St.-Peterbg. Univ. Ser. – ident: ref_16 – ident: ref_9 doi: 10.3390/math7121239 – volume: 78 start-page: 1680 year: 2017 ident: ref_35 article-title: On an approach to constructing a characteristic function in cooperative differential games publication-title: Automat. Remote Control doi: 10.1134/S0005117917090120 – ident: ref_39 doi: 10.1137/1.9781611971132 – ident: ref_21 – ident: ref_24 doi: 10.1109/CDC.1982.268433 – volume: 60 start-page: 1064 year: 2015 ident: ref_23 article-title: Inverse Parametric Optimization With an Application to Hybrid System Control publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2014.2336992 – volume: 18 start-page: 1 year: 2016 ident: ref_3 article-title: Looking Forward Approach in Cooperative Differential Games publication-title: Int. Game Theory Rev. – ident: ref_8 doi: 10.1007/978-3-319-92988-0_11 – ident: ref_18 doi: 10.1007/b138145 – ident: ref_7 doi: 10.2139/ssrn.3130025 – ident: ref_29 – ident: ref_33 – volume: 119 start-page: 182 year: 1986 ident: ref_30 article-title: Cooperative equilibria in differential games publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(86)90152-6 – volume: 1090 start-page: 178 year: 2019 ident: ref_10 article-title: Hamilton-Jacobi-Bellman Equations for Non-cooperative Differential Games with Continuous Updating publication-title: Commun. Comput. Inform. Sci. doi: 10.1007/978-3-030-33394-2_14 – volume: 11548 start-page: 635 year: 2019 ident: ref_13 article-title: On class of linear quadratic non-cooperative differential games with continuous updating publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-030-22629-9_45 – volume: 37 start-page: 283 year: 1992 ident: ref_41 article-title: Pollution control: A differential game approach publication-title: Ann. Operat. Res. doi: 10.1007/BF02071061 – ident: ref_6 doi: 10.1109/STAB.2016.7541187 – volume: 172 start-page: 328 year: 2017 ident: ref_5 article-title: Looking Forward Approach in Cooperative Differential Games with Uncertain-Stochastic Dynamics publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-016-1009-8 – volume: 28 start-page: 307 year: 1953 ident: ref_38 article-title: A value for n-persons games publication-title: Ann. Math. Stud. – volume: 1275 start-page: 256 year: 2020 ident: ref_12 article-title: Pontryagin’s Maximum Principle for Non-cooperative Differential Games with Continuous Updating publication-title: Commu. Comput. Inform. Sci. doi: 10.1007/978-3-030-58657-7_22 – volume: 12095 start-page: 212 year: 2020 ident: ref_14 article-title: Open-Loop Based Strategies for Autonomous Linear Quadratic Game Models with Continuous Updating publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-030-49988-4_15 – ident: ref_19 – volume: 24 start-page: 108 year: 1979 ident: ref_27 article-title: Nonlinear control of linear multivariable systems via state-dependent feedback gains publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.1979.1101949 – volume: 22 start-page: 838 year: 1977 ident: ref_25 article-title: A modified quadratic cost problem and feedback stabilization of a linear system publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.1977.1101619 – ident: ref_20 – volume: 95 start-page: 356 year: 1973 ident: ref_40 article-title: Some Sufficiency Conditions for Pareto-Optimal Control publication-title: J. Dyn. Syst. Meas. Control doi: 10.1115/1.3426735 – volume: 26 start-page: 379 year: 1997 ident: ref_36 article-title: The core of an economy with multilateral environmental externalities publication-title: Int. J. Game Theory doi: 10.1007/BF01263279 – volume: 27 start-page: 381 year: 2003 ident: ref_37 article-title: Time-consistent Shapley value allocation of pollution cost reduction publication-title: J. Econom. Dyn. Control doi: 10.1016/S0165-1889(01)00053-7 |
SSID | ssj0000913849 |
Score | 2.1740768 |
Snippet | We consider a class of cooperative differential games with continuous updating making use of the Pontryagin maximum principle. It is assumed that at each... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 163 |
SubjectTerms | Characteristic functions cooperative differential game Decision making Differential games differential games with continuous updating Game theory Hamiltonian Mathematical functions Maximum principle open-loop Nash equilibrium Players Pollution Pontryagin maximum principle δ-characteristic function |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbt5tIeQvqi2yRFh5wCJlpJlqVTyDsENiyhC7mZ0SsNJPZ2H5D8-2i82m1KS6-2BGakmflmPPMNIXvguNVMmSJhDVdIEKoAn4yhsNYFBwngO-wdHl6ry7G8ui1vc8JtlssqVzaxM9S-dZgjP-Cy0spwpc3h5FeBU6Pw72oeofGWbCQTrHWPbByfXY9u1lkWZL3U0iwb80SK7w8SDvxpEkYaKPGHK-oY-_8yyJ2XOd8imxke0qPleX4gb0LzkbwfrrlVZ59I27mXGKbY9ETHcyxufaYnbTsJSxZvepqHniTlfaAXWAZLMd1KkYnqvlmkWJ-OJ9jW0NzRrmSAjrBg_RkHFtEhPN0_Lh7paJWF_0zG52c_Ti6LPDahcELJeeErKG3lWQlaAmjuODdRggUbo2DeuwGLEYECqziLOsUMwLlj0YeQNrIovpBe0zbhK6ECuAkeDOdgZeDcJrxVQqys0zZapfpkfyXB2mVOcRxt8VCn2ALFXb8Sd5_srRdPllQa_152jEexXoL8192DdnpXZ3WqnTRMOFMmgGFk-hbQKgxCkM6bCCzKPtlZHWSdlXJW_75C3_7_epu841i60mVadkhvPl2E3YQ95vZ7vmAv67zfFA priority: 102 providerName: ProQuest |
Title | Transferable Utility Cooperative Differential Games with Continuous Updating Using Pontryagin Maximum Principle |
URI | https://www.proquest.com/docview/2478692689 https://doaj.org/article/c4903c95242948bfa86e1ee4cd9fa0f4 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fSyMxEA6n96IPh56KVa_kwSdhMU2y2eTRX1WESjks-LZMsokKui3awvnfO8luS8UDX3xdZtllMpn5Zpj5hpBDcNxqpkyGWMNlEoTKoEJnKKx13gECfBdnhwc36mokr-_yu6VVX7EnrKEHbhR37KRhwpkcQ4mR2gbQyve8l64yAVhITKAY85aSqeSDTU9oaZqBPIF5_THivweD2KinxIcQlJj6PzniFF36G-RXCwvpSfM7m-SHr3-T9cGCU_V1i4xTWAn-JQ470dE0NrW-0bPxeOIb9m563i47wUv7RC9j-yuNZVYaGage6xnm-HQ0ieMM9T1NrQJ0GBvV3-KiIjqAf4_Ps2c6nFfft8mof3F7dpW16xIyJ5ScZlUBuS0qloOWAJo7zk2QYMGGIFhVuR4LIQIEVnAWNOYKwLljofIeX2RB7JDVelz7XUIFcOMrMJyDlZ5zizgrh1BYhydgleqQo7kGS9dyiceVFk8l5hRR3eWSujvkcCE8aSg0_i92Go9iIRJ5r9MDtIaytYbyK2vokIP5QZbtZXwtuSy0Mlxps_cd39gnazw2tqQ6zAFZnb7M_B9EJlPbJSu6f9klP08vboZ_u8kk3wGD0ukW |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFNdKMWHckGK6rUdJz4gBG23W9qteuhKvYXxq1Rqk2Ufgv1T_Y315LGAQNx6jZ0ompnMfJ7MfEPINlhucqZ0ErGGTSQIlYCLzlAYY72FCPAt9g6PTtRwLL-cp-dr5KbrhcGyys4n1o7aVRZz5DtcZrnSXOX64-R7glOj8O9qN0KjMYsjv_wRj2yzD4d7Ub_vOB_sn-0Ok3aqQGKFkvPEZZCazLEUcgmQc8u5DhIMmBAEc872WQgYR1nGWcgjpAbOLQvO-3gjCyI-9x65L0WM5NiZPjhY5XSQYzOXumkDjOtsJ6LObzoisr4SfwS-ej7AX-6_jmmDJ-RxC0bpp8Z6npI1Xz4jj0YrJtfZc1LVwSz4KbZY0fEcS2mXdLeqJr7hDKd77YiV6Cqu6AEW3VJM7lLkvbosF9ViRscTbKIoL2hdoEBPsTx-ieOR6Ah-Xl4vrulpl_N_QcZ3Is6XZL2sSr9BqACuvQPNORjpOTcR3aUQMmNzE4xSPfK-k2BhWwZzHKRxVcSTDIq7-E3cPbK92jxpiDv-ve0zqmK1Bdm26wvV9KJoP97CSs2E1WmEM1rGd4Fc-b730jodgAXZI5udIovWBcyKXwb76v_Lb8mD4dnouDg-PDl6TR5yLJqpczybZH0-Xfg3EfXMzVZtapR8vWvbvgU5LBxl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggMpLLLTgQ7kgReu1HSc-INR2u7SUXa0QK_UWbMculdpk2Ydg_xq_rp48FhCIW6-JE0Uzk5nP429mAPa1ZSalUkUBa9hIaC4jnQdnyI2xzuoA8C3WDo_G8mQqPpzH51vws62FQVpl6xMrR52XFnPkPSaSVComU9XzDS1iMhi-m32LcIIUnrS24zRqEzlz6-9h-7Z4ezoIun7N2PD489FJ1EwYiCyXYhnliY5NktNYp0LrlFnGlBfaaOM9p3lu-9R7jKk0YdSnAV5rxiz1uXPhQep5eO8d2E5wV9SB7cPj8eTTJsODHTdToeqiQM4V7QUM-lUFfNaX_I8wWE0L-CsYVBFuuAMPGmhKDmpbeghbrngE90ebvq6Lx1BWoc27ORZckekSibVrclSWM1d3ECeDZuBKcBxX5D1ScAmmegl2wbosVuVqQaYzLKkoLkhFVyATJMuvcVgSGekfl9erazJpTwCewPRWBPoUOkVZuGdAuGbK5Voxpo1wjJmA9WLtE2NT442UXXjTSjCzTT9zHKtxlYV9DYo7-03cXdjfLJ7VbTz-vewQVbFZgr23qwvl_CJrfuXMCkW5VXEAN0qEb9GpdH3nhM2V19SLLuy2iswah7DIfpnv8__ffgV3g11nH0_HZy_gHkMGTZXw2YXOcr5yewECLc3LxtYIfLlt874BprUh9w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transferable+Utility+Cooperative+Differential+Games+with+Continuous+Updating+Using+Pontryagin+Maximum+Principle&rft.jtitle=Mathematics+%28Basel%29&rft.au=Zhou%2C+Jiangjing&rft.au=Tur%2C+Anna&rft.au=Petrosian%2C+Ovanes&rft.au=Gao%2C+Hongwei&rft.date=2021-01-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=9&rft.issue=2&rft.spage=163&rft_id=info:doi/10.3390%2Fmath9020163&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math9020163 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |