A method to estimate the water storage of on-farm reservoirs by detecting slope gradients based on multi-spectral drone data
Water storage dynamics in on-farm reservoirs (OFRs) are crucial for irrigation water allocation and utilization, ensuring agricultural development sustainability. Previous studies have primarily relied on the area-storage model to estimate reservoir water storage using meter-level remotely sensed da...
Saved in:
Published in | Agricultural water management Vol. 307; p. 109241 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Water storage dynamics in on-farm reservoirs (OFRs) are crucial for irrigation water allocation and utilization, ensuring agricultural development sustainability. Previous studies have primarily relied on the area-storage model to estimate reservoir water storage using meter-level remotely sensed data, which often falls short of accurately capturing the water storage dynamics of OFRs, especially in small OFRs with steep slopes. Hence, we proposed a method to estimate the water storage of OFRs in irrigation areas by integrating multispectral drone data, high-resolution remote sensing data, and ground observations. The water surface area was extracted from multispectral drone data using a Gaussian Mixture Model (GMM) and a threshold segmentation method. Slope gradients were then obtained by identifying the maximum potential slope zone (PSZ) and utilizing high-resolution drone-based Digital Surface Models (DSMs). The dam slopes of the constructed boundaries were automatically computed considering the significant decline of slope gradients. By combining the dam slopes of the OFRs with water depth observations, we estimated the construction depth (H). Subsequently, current water depth was obtained using drone-derived Digital Surface Models (DSMs), calculating the elevation difference between drone-derived OFRs and water surface boundary. Once the OFR morphology was fully constructed, the water storage was calculated based on area-storage and depth-storage methods using the 3D volume module in Arcpy. The derived water storage agrees well with in situ observation (R2: 0.99) using slope gradients, reaching an overall accuracy of 95.2 %, with a root mean square error (RMSE) and a mean absolute error (MAE) of 2785 m3 and 1820 m3, respectively. Notably, discernible fluctuations in water storage were observed during the main irrigation phases, highlighting the essential role of OFRs in promoting equitable water resource distribution and enhancing irrigation water management. This integrated approach offers a robust solution for monitoring and managing water storage dynamics in agricultural areas.
•A comprehensive framework to monitor water storage and dynamics for on-farm reservoirs was proposed.•Integrating slope gradient with multispectral drone data improved water storage estimates, reaching 95.2 % overall accuracy.•About 50 % fluctuations in water storage during irrigation phases show the drought resilience of on-farm reservoirs. |
---|---|
AbstractList | Water storage dynamics in on-farm reservoirs (OFRs) are crucial for irrigation water allocation and utilization, ensuring agricultural development sustainability. Previous studies have primarily relied on the area-storage model to estimate reservoir water storage using meter-level remotely sensed data, which often falls short of accurately capturing the water storage dynamics of OFRs, especially in small OFRs with steep slopes. Hence, we proposed a method to estimate the water storage of OFRs in irrigation areas by integrating multispectral drone data, high-resolution remote sensing data, and ground observations. The water surface area was extracted from multispectral drone data using a Gaussian Mixture Model (GMM) and a threshold segmentation method. Slope gradients were then obtained by identifying the maximum potential slope zone (PSZ) and utilizing high-resolution drone-based Digital Surface Models (DSMs). The dam slopes of the constructed boundaries were automatically computed considering the significant decline of slope gradients. By combining the dam slopes of the OFRs with water depth observations, we estimated the construction depth (H). Subsequently, current water depth was obtained using drone-derived Digital Surface Models (DSMs), calculating the elevation difference between drone-derived OFRs and water surface boundary. Once the OFR morphology was fully constructed, the water storage was calculated based on area-storage and depth-storage methods using the 3D volume module in Arcpy. The derived water storage agrees well with in situ observation (R2: 0.99) using slope gradients, reaching an overall accuracy of 95.2 %, with a root mean square error (RMSE) and a mean absolute error (MAE) of 2785 m3 and 1820 m3, respectively. Notably, discernible fluctuations in water storage were observed during the main irrigation phases, highlighting the essential role of OFRs in promoting equitable water resource distribution and enhancing irrigation water management. This integrated approach offers a robust solution for monitoring and managing water storage dynamics in agricultural areas. Water storage dynamics in on-farm reservoirs (OFRs) are crucial for irrigation water allocation and utilization, ensuring agricultural development sustainability. Previous studies have primarily relied on the area-storage model to estimate reservoir water storage using meter-level remotely sensed data, which often falls short of accurately capturing the water storage dynamics of OFRs, especially in small OFRs with steep slopes. Hence, we proposed a method to estimate the water storage of OFRs in irrigation areas by integrating multispectral drone data, high-resolution remote sensing data, and ground observations. The water surface area was extracted from multispectral drone data using a Gaussian Mixture Model (GMM) and a threshold segmentation method. Slope gradients were then obtained by identifying the maximum potential slope zone (PSZ) and utilizing high-resolution drone-based Digital Surface Models (DSMs). The dam slopes of the constructed boundaries were automatically computed considering the significant decline of slope gradients. By combining the dam slopes of the OFRs with water depth observations, we estimated the construction depth (H). Subsequently, current water depth was obtained using drone-derived Digital Surface Models (DSMs), calculating the elevation difference between drone-derived OFRs and water surface boundary. Once the OFR morphology was fully constructed, the water storage was calculated based on area-storage and depth-storage methods using the 3D volume module in Arcpy. The derived water storage agrees well with in situ observation (R2: 0.99) using slope gradients, reaching an overall accuracy of 95.2 %, with a root mean square error (RMSE) and a mean absolute error (MAE) of 2785 m3 and 1820 m3, respectively. Notably, discernible fluctuations in water storage were observed during the main irrigation phases, highlighting the essential role of OFRs in promoting equitable water resource distribution and enhancing irrigation water management. This integrated approach offers a robust solution for monitoring and managing water storage dynamics in agricultural areas. •A comprehensive framework to monitor water storage and dynamics for on-farm reservoirs was proposed.•Integrating slope gradient with multispectral drone data improved water storage estimates, reaching 95.2 % overall accuracy.•About 50 % fluctuations in water storage during irrigation phases show the drought resilience of on-farm reservoirs. |
ArticleNumber | 109241 |
Author | Ma, Zonghan Wu, Bingfang Wang, Yixuan Zhu, Weiwei Yan, Nana |
Author_xml | – sequence: 1 givenname: Yixuan surname: Wang fullname: Wang, Yixuan organization: Key Laboratory of Remote Sensing and Digital Earth, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China – sequence: 2 givenname: Nana surname: Yan fullname: Yan, Nana email: yannn@aircas.ac.cn organization: Key Laboratory of Remote Sensing and Digital Earth, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China – sequence: 3 givenname: Weiwei surname: Zhu fullname: Zhu, Weiwei organization: Key Laboratory of Remote Sensing and Digital Earth, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China – sequence: 4 givenname: Zonghan surname: Ma fullname: Ma, Zonghan organization: Key Laboratory of Remote Sensing and Digital Earth, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China – sequence: 5 givenname: Bingfang orcidid: 0000-0001-5546-365X surname: Wu fullname: Wu, Bingfang organization: Key Laboratory of Remote Sensing and Digital Earth, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China |
BookMark | eNp9kU1rHDEMhk1JoZu0v6AX_4HZ-mvGnkMPIfQjEMglPRuNrZl4mR0vspsS6I-vky09VheBpPdB0nvJLra8IWMfpdhLIYdPhz0sv6DulVCmVUZl5Bu2k87qTimnL9hOaOs6ba15xy5LOQghjDB2x35f8yPWxxx5zRxLTUeoyOsj8sZD4qVmggV5nnneuhnoyAkL0lNOVPj0zCNWDDVtCy9rPiFfCGLCrbYmFIxNxY8_15q6cmpzBCuP1JbnESq8Z29nWAt--Juv2I-vXx5uvnd3999ub67vuqAHU7totZ5AWxGiG6Kceml6nIfRGuPGMKNTQU04WitFPw4gggq2hRPBjv00RX3Fbs_cmOHgT9SOpGefIfnXQqbFA9UUVvRTdD1ilK53yohxmMYoYUajbAzGCGgsfWYFyqUQzv94UvgXM_zBv5rhX8zwZzOa6vNZhe3Mp4TkS2hfChgTtbe0PdJ_9X8AKNaXMw |
Cites_doi | 10.1016/j.pce.2008.08.005 10.1002/wat2.1065 10.1016/j.jhydrol.2010.07.011 10.1016/j.rse.2019.111437 10.1016/j.rse.2022.113184 10.1016/j.agwat.2020.106603 10.3390/rs5126880 10.1080/01431160601075582 10.1016/j.asr.2011.01.004 10.1016/j.pce.2006.08.008 10.1016/j.jhydrol.2018.05.037 10.1016/j.pce.2021.103082 10.1049/cje.2018.09.018 10.1016/j.scitotenv.2022.160263 10.23818/limn.29.02 10.1007/s11430-014-4918-0 10.1109/TGRS.2008.2004805 10.1002/2014WR015829 10.1016/j.rse.2010.12.017 10.1016/j.jhydrol.2009.03.003 10.1016/j.pce.2005.06.011 10.1016/j.isprsjprs.2018.03.015 10.1016/j.rse.2021.112796 10.1016/S0031-3203(97)00045-9 10.1579/0044-7447-34.3.230 10.1109/JSTARS.2015.2500599 10.1016/j.agwat.2007.05.010 10.1007/s11269-007-9200-1 10.1080/01431160600606866 10.1080/01431169608948714 10.1016/j.agsy.2016.12.011 10.1016/j.rse.2020.111831 10.1016/j.agwat.2020.106694 10.1080/17538940902951401 10.1016/j.rse.2017.10.030 10.1016/j.scitotenv.2021.148083 10.1073/pnas.1011615108 10.1126/science.1185383 10.1016/j.agwat.2020.106296 10.1073/pnas.1116437108 10.1016/j.jhydrol.2009.07.032 10.1016/j.agwat.2022.108095 10.1016/j.rse.2020.112047 10.1016/j.ecolmodel.2006.09.028 10.1016/j.envsoft.2021.105095 10.1016/j.rse.2017.05.039 10.1016/j.pce.2007.04.019 10.5194/hess-23-669-2019 10.1016/j.advwatres.2021.103910 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.agwat.2024.109241 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1873-2283 |
ExternalDocumentID | oai_doaj_org_article_bd85eed185824096b9d1afe427dc440a 10_1016_j_agwat_2024_109241 S0378377424005778 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXKI AAXUO ABGRD ABJNI ABMAC ABQEM ACDAQ ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV ADVLN AEBSH AEIPS AEKER AENEX AEQOU AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLECG BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE IMUCA J1W KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SEW SPCBC SSA SSJ SSZ T5K Y6R ~02 ~G- ~KM AALCJ AAQXK AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLV HMA HVGLF HZ~ R2- RIG SEP SSH VH1 WUQ XPP ZMT EFKBS |
ID | FETCH-LOGICAL-c364t-d733ba370cd86d1b5145ef6974489cfe82c2be97710596a0c2c777780c795bbd3 |
IEDL.DBID | .~1 |
ISSN | 0378-3774 |
IngestDate | Wed Aug 27 01:31:23 EDT 2025 Tue Jul 01 05:24:17 EDT 2025 Sat Mar 15 15:42:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Water area Slope detection Water depth Remote sensing or UAV |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-d733ba370cd86d1b5145ef6974489cfe82c2be97710596a0c2c777780c795bbd3 |
ORCID | 0000-0001-5546-365X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0378377424005778 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bd85eed185824096b9d1afe427dc440a crossref_primary_10_1016_j_agwat_2024_109241 elsevier_sciencedirect_doi_10_1016_j_agwat_2024_109241 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 2025-02-00 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Agricultural water management |
PublicationYear | 2025 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Liebe, Giesen, v.d., Andreini, Steenhuis, Walter (bib30) 2009; 47 Carroll, Townshend, DiMiceli, Noojipady, Sohlberg (bib7) 2009; 2 Myint, Gober, Brazel, Grossman-Clarke, Weng (bib35) 2011; 115 Sawunyama, Senzanje, Mhizha (bib42) 2006; 31 Mancini, Dubbini, Gattelli, Stecchi, Fabbri, Gabbianelli (bib32) 2013 Liao, Chen, Chen, He, Cao, Chen, Peng, Sun, Gong (bib28) 2014; 57 McFeeters (bib34) 1996; 17 Amisigo, van de Giesen, Rogers, Andah, Friesen (bib2) 2008; 33 Godfray, Beddington, Crute, Haddad, Lawrence, Muir, Pretty, Robinson, Thomas, Toulmin (bib17) 2010; 327 Lankford, Pringle, McCosh, Shabalala, Hess, Knox (bib23) 2023; 859 Annor, van de Giesen, Liebe, van de Zaag, Tilmant, Odai (bib3) 2009; 34 Crétaux, Arsen, Calmant, Kouraev, Vuglinski, Bergé-Nguyen, Gennero, Nino, Abarca Del Rio, Cazenave, Maisongrande (bib10) 2011; 47 Ma, Xu, Liu, Yang, Yang, Wang, Li (bib31) 2020; 250 Huang, Sun, Jiang, Gao, Zong (bib20) 2018; 27 Im, Jensen, Tullis (bib21) 2008; 29 Venot, Krishnan (bib47) 2011; 4 Tseng, Shum, Kim, Wang, Zhu, Cheng (bib45) 2016; 9 Zhang, Gao, Naz (bib53) 2014; 50 Pinhati, Rodrigues, Aires de Souza (bib39) 2020; 241 Perin, Tulbure, Gaines, Reba, Yaeger (bib37) 2021; 246 Ali, Hoque, Hassan, Khair (bib1) 2007; 92 Arvor, Daher, Briand, Dufour, Rollet, Simões, Ferraz (bib4) 2018; 145 Gupta, Sortrakul (bib18) 1998; 31 Zhang, Dong, Ge (bib52) 2022; 280 Fuentes, Scalzo, Vervoort (bib13) 2021; 143 Yan, Roy, Promkhambut, Fox, Zhai (bib51) 2022; 6 Cheng, Wang, Xu, Chau (bib9) 2008; 22 Nagaraj, Proust, Todeschini, Rulli, D'Odorico (bib36) 2021; 152 Ghansah, Forkuo, Osei, Appoh, Asare, Kluste (bib15) 2018; 9 Gao (bib14) 2015; 2 Vanthof, Kelly (bib46) 2019; 235 Sanfo, Barbier, Dabiré, Vlek, Fonta, Ibrahim, Barry (bib41) 2017; 152 Zhao, Gao, Kao, Voisin, Naz (bib54) 2018; 563 Li, Gao, Zhao, Tseng (bib25) 2020; 244 Downing (bib11) 2008; 29 Wisser, Frolking, Douglas, Fekete, Schumann, Vörösmarty (bib49) 2010; 384 Li, Guo, Liu, Chen (bib26) 2010; 391 Rodrigues, Sano, Steenhuis, Passo (bib40) 2011; 26 Khandelwal, Karpatne, Marlier, Kim, Lettenmaier, Kumar (bib22) 2017; 202 Lee, Warner (bib24) 2006; 27 Liebe, van de Giesen, Andreini (bib29) 2005; 30 Huang, Ding, Gao, Téllez (bib19) 2021; 790 McDonald, Green, Balk, Fekete, Revenga, Todd, Montgomery (bib33) 2011; 108 Tilman, Balzer, Hill, Befort (bib44) 2011; 108 Li, Zhang, Chiew, Xu (bib27) 2009; 370 Perin, Tulbure, Gaines, Reba, Yaeger (bib38) 2022; 270 Chen, Lu, Luo, Pokhrel, Deb, Huang, Ran (bib8) 2018; 204 Busker, Roo, Gelati, Schwatke, Adamovic, Bisselink, Pekel, Cottam (bib5) 2019; 23 Eisenbeiß, H., 2009. UAV photogrammetry. In: ETH Zurich. Schuol, Abbaspour (bib43) 2007; 201 Ghansah, Foster, Higginbottom, Adhikari, Zwart (bib16) 2022; 125 Vörösmarty, Douglas, Green, Revenga (bib48) 2005; 34 Cao, Zhu, Cai (bib6) 2023; 277 Wu, Cui, Li, Chen, Ye, Fan, Gong (bib50) 2021; 244 Gao (10.1016/j.agwat.2024.109241_bib14) 2015; 2 Busker (10.1016/j.agwat.2024.109241_bib5) 2019; 23 Cao (10.1016/j.agwat.2024.109241_bib6) 2023; 277 Myint (10.1016/j.agwat.2024.109241_bib35) 2011; 115 Zhang (10.1016/j.agwat.2024.109241_bib52) 2022; 280 Vanthof (10.1016/j.agwat.2024.109241_bib46) 2019; 235 Tseng (10.1016/j.agwat.2024.109241_bib45) 2016; 9 Annor (10.1016/j.agwat.2024.109241_bib3) 2009; 34 Perin (10.1016/j.agwat.2024.109241_bib37) 2021; 246 Perin (10.1016/j.agwat.2024.109241_bib38) 2022; 270 Downing (10.1016/j.agwat.2024.109241_bib11) 2008; 29 Ghansah (10.1016/j.agwat.2024.109241_bib15) 2018; 9 Li (10.1016/j.agwat.2024.109241_bib26) 2010; 391 Wisser (10.1016/j.agwat.2024.109241_bib49) 2010; 384 Huang (10.1016/j.agwat.2024.109241_bib19) 2021; 790 Zhang (10.1016/j.agwat.2024.109241_bib53) 2014; 50 Liao (10.1016/j.agwat.2024.109241_bib28) 2014; 57 Amisigo (10.1016/j.agwat.2024.109241_bib2) 2008; 33 Wu (10.1016/j.agwat.2024.109241_bib50) 2021; 244 Yan (10.1016/j.agwat.2024.109241_bib51) 2022; 6 Lee (10.1016/j.agwat.2024.109241_bib24) 2006; 27 Tilman (10.1016/j.agwat.2024.109241_bib44) 2011; 108 Mancini (10.1016/j.agwat.2024.109241_bib32) 2013 Zhao (10.1016/j.agwat.2024.109241_bib54) 2018; 563 Godfray (10.1016/j.agwat.2024.109241_bib17) 2010; 327 Ma (10.1016/j.agwat.2024.109241_bib31) 2020; 250 Schuol (10.1016/j.agwat.2024.109241_bib43) 2007; 201 Carroll (10.1016/j.agwat.2024.109241_bib7) 2009; 2 Ali (10.1016/j.agwat.2024.109241_bib1) 2007; 92 10.1016/j.agwat.2024.109241_bib12 Khandelwal (10.1016/j.agwat.2024.109241_bib22) 2017; 202 Im (10.1016/j.agwat.2024.109241_bib21) 2008; 29 Liebe (10.1016/j.agwat.2024.109241_bib29) 2005; 30 Sanfo (10.1016/j.agwat.2024.109241_bib41) 2017; 152 Nagaraj (10.1016/j.agwat.2024.109241_bib36) 2021; 152 Crétaux (10.1016/j.agwat.2024.109241_bib10) 2011; 47 Cheng (10.1016/j.agwat.2024.109241_bib9) 2008; 22 Pinhati (10.1016/j.agwat.2024.109241_bib39) 2020; 241 Fuentes (10.1016/j.agwat.2024.109241_bib13) 2021; 143 McDonald (10.1016/j.agwat.2024.109241_bib33) 2011; 108 Li (10.1016/j.agwat.2024.109241_bib25) 2020; 244 Vörösmarty (10.1016/j.agwat.2024.109241_bib48) 2005; 34 McFeeters (10.1016/j.agwat.2024.109241_bib34) 1996; 17 Liebe (10.1016/j.agwat.2024.109241_bib30) 2009; 47 Chen (10.1016/j.agwat.2024.109241_bib8) 2018; 204 Lankford (10.1016/j.agwat.2024.109241_bib23) 2023; 859 Arvor (10.1016/j.agwat.2024.109241_bib4) 2018; 145 Sawunyama (10.1016/j.agwat.2024.109241_bib42) 2006; 31 Gupta (10.1016/j.agwat.2024.109241_bib18) 1998; 31 Rodrigues (10.1016/j.agwat.2024.109241_bib40) 2011; 26 Li (10.1016/j.agwat.2024.109241_bib27) 2009; 370 Ghansah (10.1016/j.agwat.2024.109241_bib16) 2022; 125 Venot (10.1016/j.agwat.2024.109241_bib47) 2011; 4 Huang (10.1016/j.agwat.2024.109241_bib20) 2018; 27 |
References_xml | – volume: 17 start-page: 1425 year: 1996 end-page: 1432 ident: bib34 article-title: The use of the normalized difference water index (NDWI) in the delineation of open water features publication-title: Int. J. Remote Sens. – volume: 31 start-page: 935 year: 2006 end-page: 943 ident: bib42 article-title: Estimation of small reservoir storage capacities in Limpopo River Basin using geographical information systems (GIS) and remotely sensed surface areas: case of Mzingwane catchment publication-title: Phys. Chem. Earth, Parts A/B/C. – reference: Eisenbeiß, H., 2009. UAV photogrammetry. In: ETH Zurich. – volume: 50 start-page: 8927 year: 2014 end-page: 8943 ident: bib53 article-title: Monitoring reservoir storage in South Asia from multisatellite remote sensing publication-title: Water Resour. Res. – volume: 790 year: 2021 ident: bib19 article-title: Check dam storage capacity calculation based on high-resolution topogrammetry: case study of the Cutou Gully, Wenchuan County, China publication-title: Sci. Total Environ. – start-page: 6880 year: 2013 end-page: 6898 ident: bib32 article-title: Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: the structure from motion approach on coastal environments publication-title: Remote Sens – volume: 115 start-page: 1145 year: 2011 end-page: 1161 ident: bib35 article-title: Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery publication-title: Remote Sens. Environ. – volume: 33 start-page: 141 year: 2008 end-page: 150 ident: bib2 article-title: Monthly streamflow prediction in the Volta Basin of West Africa: A SISO NARMAX polynomial modelling publication-title: Phys. Chem. Earth, Parts A/B/C. – volume: 26 year: 2011 ident: bib40 article-title: Estimation of small reservoir storage capacities with remote sensing in the Brazilian Savannah region publication-title: Water Resour. Manag. – volume: 235 year: 2019 ident: bib46 article-title: Water storage estimation in ungauged small reservoirs with the TanDEM-X DEM and multi-source satellite observations publication-title: Remote Sens. Environ. – volume: 34 start-page: 309 year: 2009 end-page: 315 ident: bib3 article-title: Delineation of small reservoirs using radar imagery in a semi-arid environment: a case study in the upper east region of Ghana publication-title: Phys. Chem. Earth, Parts A/B/C. – volume: 370 start-page: 155 year: 2009 end-page: 162 ident: bib27 article-title: Predicting runoff in ungauged catchments by using Xinanjiang model with MODIS leaf area index publication-title: J. Hydrol. – volume: 327 start-page: 812 year: 2010 end-page: 818 ident: bib17 article-title: Food security: the challenge of feeding 9 billion people publication-title: Science – volume: 27 start-page: 3403 year: 2006 end-page: 3412 ident: bib24 article-title: Segment based image classification publication-title: Int. J. Remote Sens. – volume: 29 start-page: 9 year: 2008 end-page: 24 ident: bib11 article-title: Emerging global role of small lakes and ponds: little things mean a lot publication-title: Limnetica – volume: 108 start-page: 6312 year: 2011 end-page: 6317 ident: bib33 article-title: Urban growth, climate change, and freshwater availability publication-title: Proc. Natl. Acad. Sci. USA – volume: 23 start-page: 669 year: 2019 end-page: 690 ident: bib5 article-title: A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry publication-title: Hydrol. Earth Syst. Sci. – volume: 391 start-page: 124 year: 2010 end-page: 132 ident: bib26 article-title: Dynamic control of flood limited water level for reservoir operation by considering inflow uncertainty publication-title: J. Hydrol. – volume: 9 start-page: 1696 year: 2016 end-page: 1709 ident: bib45 article-title: Integrating landsat imageries and digital elevation models to infer water level change in Hoover Dam publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 29 start-page: 399 year: 2008 end-page: 423 ident: bib21 article-title: Object-based change detection using correlation image analysis and image segmentation publication-title: Int. J. Remote Sens. – volume: 31 start-page: 315 year: 1998 end-page: 325 ident: bib18 article-title: A gaussian-mixture-based image segmentation algorithm publication-title: Pattern Recognit. – volume: 384 start-page: 264 year: 2010 end-page: 275 ident: bib49 article-title: The significance of local water resources captured in small reservoirs for crop production – a global-scale analysis publication-title: J. Hydrol. – volume: 277 year: 2023 ident: bib6 article-title: Hydro-agro-economic optimization for irrigated farming in an arid region: the Hetao Irrigation District, Inner Mongolia publication-title: Agric. Water Manag. – volume: 34 start-page: 230 year: 2005 end-page: 236 ident: bib48 article-title: Geospatial indicators of emerging water stress: an application to Africa publication-title: AMBIO – volume: 4 start-page: 316 year: 2011 end-page: 324 ident: bib47 article-title: Discursive framing: debates over small reservoirs in the Rural South publication-title: Water Altern. – volume: 47 start-page: 1497 year: 2011 end-page: 1507 ident: bib10 article-title: SOLS: A lake database to monitor in the near real time water level and storage variations from remote sensing data publication-title: Adv. Space Res. – volume: 201 start-page: 301 year: 2007 end-page: 311 ident: bib43 article-title: Using monthly weather statistics to generate daily data in a SWAT model application to West Africa publication-title: Ecol. Modell. – volume: 204 start-page: 197 year: 2018 end-page: 211 ident: bib8 article-title: Detecting irrigation extent, frequency, and timing in a heterogeneous arid agricultural region using MODIS time series, Landsat imagery, and ancillary data publication-title: Remote Sens. Environ. – volume: 152 start-page: 80 year: 2017 end-page: 89 ident: bib41 article-title: Rainfall variability adaptation strategies: an ex-ante assessment of supplemental irrigation from farm ponds in southern Burkina Faso publication-title: Agric. Syst. – volume: 244 year: 2020 ident: bib25 article-title: A high-resolution bathymetry dataset for global reservoirs using multi-source satellite imagery and altimetry publication-title: Remote Sens. Environ. – volume: 250 year: 2020 ident: bib31 article-title: Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets publication-title: Remote Sens. Environ. – volume: 152 year: 2021 ident: bib36 article-title: A new dataset of global irrigation areas from 2001 to 2015 publication-title: Adv. Water Resour. – volume: 241 year: 2020 ident: bib39 article-title: Modelling the impact of on-farm reservoirs on dry season water availability in an agricultural catchment area of the Brazilian savannah publication-title: Agric. Water Manag. – volume: 6 year: 2022 ident: bib51 article-title: Automated extraction of aquaculture ponds from Sentinel-2 seasonal imagery – a validated case study in central Thailand publication-title: Sci. Remote Sens. – volume: 563 start-page: 22 year: 2018 end-page: 32 ident: bib54 article-title: A modeling framework for evaluating the drought resilience of a surface water supply system under non-stationarity publication-title: J. Hydrol. – volume: 125 year: 2022 ident: bib16 article-title: Monitoring spatial-temporal variations of surface areas of small reservoirs in Ghana's Upper East Region using Sentinel-2 satellite imagery and machine learning publication-title: Phys. Chem. Earth, Parts A/B/C. – volume: 859 year: 2023 ident: bib23 article-title: Irrigation area, efficiency and water storage mediate the drought resilience of irrigated agriculture in a semi-arid catchment publication-title: Sci. Total Environ. – volume: 108 start-page: 20260 year: 2011 end-page: 20264 ident: bib44 article-title: Global food demand and the sustainable intensification of agriculture publication-title: Proc. Natl. Acad. Sci. USA – volume: 57 start-page: 2305 year: 2014 end-page: 2316 ident: bib28 article-title: High-resolution remote sensing mapping of global land water publication-title: Sci. China Earth Sci. – volume: 246 year: 2021 ident: bib37 article-title: On-farm reservoir monitoring using Landsat inundation datasets publication-title: Agric. Water Manag. – volume: 143 year: 2021 ident: bib13 article-title: Volume and uncertainty estimates of on-farm reservoirs using surface reflectance and LiDAR data publication-title: Environ. Model. Softw. – volume: 27 start-page: 1316 year: 2018 end-page: 1321 ident: bib20 article-title: GF-2 Satellite 1m/4m camera design and in-orbit commissioning publication-title: Chin. J. Electron. – volume: 22 start-page: 895 year: 2008 end-page: 909 ident: bib9 article-title: Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos publication-title: Water Resour. Manag. – volume: 92 start-page: 151 year: 2007 end-page: 161 ident: bib1 article-title: Effects of deficit irrigation on yield, water productivity, and economic returns of wheat publication-title: Agric. Water Manag. – volume: 47 start-page: 1536 year: 2009 end-page: 1547 ident: bib30 article-title: Suitability and limitations of ENVISAT ASAR for monitoring small reservoirs in a semiarid area publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 270 year: 2022 ident: bib38 article-title: A multi-sensor satellite imagery approach to monitor on-farm reservoirs publication-title: Remote Sens. Environ. – volume: 244 year: 2021 ident: bib50 article-title: Calculation framework for agricultural irrigation water consumption in multi-source irrigation systems publication-title: Agric. Water Manag. – volume: 9 start-page: 107 year: 2018 end-page: 115 ident: bib15 article-title: Mapping the spatial distribution of small reservoirs in the White Volta Sub-basin of Ghana publication-title: Remote Sens. Appl.: Soc. Environ. – volume: 2 start-page: 147 year: 2015 end-page: 157 ident: bib14 article-title: Satellite remote sensing of large lakes and reservoirs: from elevation and area to storage publication-title: WIREs Water – volume: 202 start-page: 113 year: 2017 end-page: 128 ident: bib22 article-title: An approach for global monitoring of surface water extent variations in reservoirs using MODIS data publication-title: Remote Sens. Environ. – volume: 30 start-page: 448 year: 2005 end-page: 454 ident: bib29 article-title: Estimation of small reservoir storage capacities in a semi-arid environment: a case study in the Upper East Region of Ghana publication-title: Phys. Chem. Earth, Parts A/B/C. – volume: 2 start-page: 291 year: 2009 end-page: 308 ident: bib7 article-title: A new global raster water mask at 250m resolution publication-title: Int. J. Digit. Earth – volume: 280 year: 2022 ident: bib52 article-title: IrriMap_CN: annual irrigation maps across China in 2000–2019 based on satellite observations, environmental variables, and machine learning publication-title: Remote Sens. Environ. – volume: 145 start-page: 225 year: 2018 end-page: 237 ident: bib4 article-title: Monitoring thirty years of small water reservoirs proliferation in the southern Brazilian Amazon with Landsat time series publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 34 start-page: 309 year: 2009 ident: 10.1016/j.agwat.2024.109241_bib3 article-title: Delineation of small reservoirs using radar imagery in a semi-arid environment: a case study in the upper east region of Ghana publication-title: Phys. Chem. Earth, Parts A/B/C. doi: 10.1016/j.pce.2008.08.005 – volume: 2 start-page: 147 year: 2015 ident: 10.1016/j.agwat.2024.109241_bib14 article-title: Satellite remote sensing of large lakes and reservoirs: from elevation and area to storage publication-title: WIREs Water doi: 10.1002/wat2.1065 – volume: 391 start-page: 124 year: 2010 ident: 10.1016/j.agwat.2024.109241_bib26 article-title: Dynamic control of flood limited water level for reservoir operation by considering inflow uncertainty publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.07.011 – volume: 235 year: 2019 ident: 10.1016/j.agwat.2024.109241_bib46 article-title: Water storage estimation in ungauged small reservoirs with the TanDEM-X DEM and multi-source satellite observations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111437 – volume: 6 year: 2022 ident: 10.1016/j.agwat.2024.109241_bib51 article-title: Automated extraction of aquaculture ponds from Sentinel-2 seasonal imagery – a validated case study in central Thailand publication-title: Sci. Remote Sens. – volume: 280 year: 2022 ident: 10.1016/j.agwat.2024.109241_bib52 article-title: IrriMap_CN: annual irrigation maps across China in 2000–2019 based on satellite observations, environmental variables, and machine learning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113184 – volume: 244 year: 2021 ident: 10.1016/j.agwat.2024.109241_bib50 article-title: Calculation framework for agricultural irrigation water consumption in multi-source irrigation systems publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2020.106603 – start-page: 6880 year: 2013 ident: 10.1016/j.agwat.2024.109241_bib32 article-title: Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: the structure from motion approach on coastal environments publication-title: Remote Sens doi: 10.3390/rs5126880 – volume: 29 start-page: 399 year: 2008 ident: 10.1016/j.agwat.2024.109241_bib21 article-title: Object-based change detection using correlation image analysis and image segmentation publication-title: Int. J. Remote Sens. doi: 10.1080/01431160601075582 – volume: 47 start-page: 1497 year: 2011 ident: 10.1016/j.agwat.2024.109241_bib10 article-title: SOLS: A lake database to monitor in the near real time water level and storage variations from remote sensing data publication-title: Adv. Space Res. doi: 10.1016/j.asr.2011.01.004 – volume: 31 start-page: 935 year: 2006 ident: 10.1016/j.agwat.2024.109241_bib42 article-title: Estimation of small reservoir storage capacities in Limpopo River Basin using geographical information systems (GIS) and remotely sensed surface areas: case of Mzingwane catchment publication-title: Phys. Chem. Earth, Parts A/B/C. doi: 10.1016/j.pce.2006.08.008 – volume: 563 start-page: 22 year: 2018 ident: 10.1016/j.agwat.2024.109241_bib54 article-title: A modeling framework for evaluating the drought resilience of a surface water supply system under non-stationarity publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.05.037 – volume: 26 year: 2011 ident: 10.1016/j.agwat.2024.109241_bib40 article-title: Estimation of small reservoir storage capacities with remote sensing in the Brazilian Savannah region publication-title: Water Resour. Manag. – volume: 125 year: 2022 ident: 10.1016/j.agwat.2024.109241_bib16 article-title: Monitoring spatial-temporal variations of surface areas of small reservoirs in Ghana's Upper East Region using Sentinel-2 satellite imagery and machine learning publication-title: Phys. Chem. Earth, Parts A/B/C. doi: 10.1016/j.pce.2021.103082 – volume: 27 start-page: 1316 year: 2018 ident: 10.1016/j.agwat.2024.109241_bib20 article-title: GF-2 Satellite 1m/4m camera design and in-orbit commissioning publication-title: Chin. J. Electron. doi: 10.1049/cje.2018.09.018 – volume: 859 year: 2023 ident: 10.1016/j.agwat.2024.109241_bib23 article-title: Irrigation area, efficiency and water storage mediate the drought resilience of irrigated agriculture in a semi-arid catchment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.160263 – volume: 29 start-page: 9 year: 2008 ident: 10.1016/j.agwat.2024.109241_bib11 article-title: Emerging global role of small lakes and ponds: little things mean a lot publication-title: Limnetica doi: 10.23818/limn.29.02 – ident: 10.1016/j.agwat.2024.109241_bib12 – volume: 9 start-page: 107 year: 2018 ident: 10.1016/j.agwat.2024.109241_bib15 article-title: Mapping the spatial distribution of small reservoirs in the White Volta Sub-basin of Ghana publication-title: Remote Sens. Appl.: Soc. Environ. – volume: 4 start-page: 316 year: 2011 ident: 10.1016/j.agwat.2024.109241_bib47 article-title: Discursive framing: debates over small reservoirs in the Rural South publication-title: Water Altern. – volume: 57 start-page: 2305 year: 2014 ident: 10.1016/j.agwat.2024.109241_bib28 article-title: High-resolution remote sensing mapping of global land water publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-014-4918-0 – volume: 47 start-page: 1536 year: 2009 ident: 10.1016/j.agwat.2024.109241_bib30 article-title: Suitability and limitations of ENVISAT ASAR for monitoring small reservoirs in a semiarid area publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.2004805 – volume: 50 start-page: 8927 year: 2014 ident: 10.1016/j.agwat.2024.109241_bib53 article-title: Monitoring reservoir storage in South Asia from multisatellite remote sensing publication-title: Water Resour. Res. doi: 10.1002/2014WR015829 – volume: 115 start-page: 1145 year: 2011 ident: 10.1016/j.agwat.2024.109241_bib35 article-title: Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.12.017 – volume: 370 start-page: 155 year: 2009 ident: 10.1016/j.agwat.2024.109241_bib27 article-title: Predicting runoff in ungauged catchments by using Xinanjiang model with MODIS leaf area index publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.03.003 – volume: 30 start-page: 448 year: 2005 ident: 10.1016/j.agwat.2024.109241_bib29 article-title: Estimation of small reservoir storage capacities in a semi-arid environment: a case study in the Upper East Region of Ghana publication-title: Phys. Chem. Earth, Parts A/B/C. doi: 10.1016/j.pce.2005.06.011 – volume: 145 start-page: 225 year: 2018 ident: 10.1016/j.agwat.2024.109241_bib4 article-title: Monitoring thirty years of small water reservoirs proliferation in the southern Brazilian Amazon with Landsat time series publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.03.015 – volume: 270 year: 2022 ident: 10.1016/j.agwat.2024.109241_bib38 article-title: A multi-sensor satellite imagery approach to monitor on-farm reservoirs publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112796 – volume: 31 start-page: 315 year: 1998 ident: 10.1016/j.agwat.2024.109241_bib18 article-title: A gaussian-mixture-based image segmentation algorithm publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(97)00045-9 – volume: 34 start-page: 230 year: 2005 ident: 10.1016/j.agwat.2024.109241_bib48 article-title: Geospatial indicators of emerging water stress: an application to Africa publication-title: AMBIO doi: 10.1579/0044-7447-34.3.230 – volume: 9 start-page: 1696 year: 2016 ident: 10.1016/j.agwat.2024.109241_bib45 article-title: Integrating landsat imageries and digital elevation models to infer water level change in Hoover Dam publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2015.2500599 – volume: 92 start-page: 151 year: 2007 ident: 10.1016/j.agwat.2024.109241_bib1 article-title: Effects of deficit irrigation on yield, water productivity, and economic returns of wheat publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2007.05.010 – volume: 22 start-page: 895 year: 2008 ident: 10.1016/j.agwat.2024.109241_bib9 article-title: Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos publication-title: Water Resour. Manag. doi: 10.1007/s11269-007-9200-1 – volume: 27 start-page: 3403 year: 2006 ident: 10.1016/j.agwat.2024.109241_bib24 article-title: Segment based image classification publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600606866 – volume: 17 start-page: 1425 year: 1996 ident: 10.1016/j.agwat.2024.109241_bib34 article-title: The use of the normalized difference water index (NDWI) in the delineation of open water features publication-title: Int. J. Remote Sens. doi: 10.1080/01431169608948714 – volume: 152 start-page: 80 year: 2017 ident: 10.1016/j.agwat.2024.109241_bib41 article-title: Rainfall variability adaptation strategies: an ex-ante assessment of supplemental irrigation from farm ponds in southern Burkina Faso publication-title: Agric. Syst. doi: 10.1016/j.agsy.2016.12.011 – volume: 244 year: 2020 ident: 10.1016/j.agwat.2024.109241_bib25 article-title: A high-resolution bathymetry dataset for global reservoirs using multi-source satellite imagery and altimetry publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111831 – volume: 246 year: 2021 ident: 10.1016/j.agwat.2024.109241_bib37 article-title: On-farm reservoir monitoring using Landsat inundation datasets publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2020.106694 – volume: 2 start-page: 291 year: 2009 ident: 10.1016/j.agwat.2024.109241_bib7 article-title: A new global raster water mask at 250m resolution publication-title: Int. J. Digit. Earth doi: 10.1080/17538940902951401 – volume: 204 start-page: 197 year: 2018 ident: 10.1016/j.agwat.2024.109241_bib8 article-title: Detecting irrigation extent, frequency, and timing in a heterogeneous arid agricultural region using MODIS time series, Landsat imagery, and ancillary data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.10.030 – volume: 790 year: 2021 ident: 10.1016/j.agwat.2024.109241_bib19 article-title: Check dam storage capacity calculation based on high-resolution topogrammetry: case study of the Cutou Gully, Wenchuan County, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.148083 – volume: 108 start-page: 6312 year: 2011 ident: 10.1016/j.agwat.2024.109241_bib33 article-title: Urban growth, climate change, and freshwater availability publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1011615108 – volume: 327 start-page: 812 year: 2010 ident: 10.1016/j.agwat.2024.109241_bib17 article-title: Food security: the challenge of feeding 9 billion people publication-title: Science doi: 10.1126/science.1185383 – volume: 241 year: 2020 ident: 10.1016/j.agwat.2024.109241_bib39 article-title: Modelling the impact of on-farm reservoirs on dry season water availability in an agricultural catchment area of the Brazilian savannah publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2020.106296 – volume: 108 start-page: 20260 year: 2011 ident: 10.1016/j.agwat.2024.109241_bib44 article-title: Global food demand and the sustainable intensification of agriculture publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1116437108 – volume: 384 start-page: 264 year: 2010 ident: 10.1016/j.agwat.2024.109241_bib49 article-title: The significance of local water resources captured in small reservoirs for crop production – a global-scale analysis publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.07.032 – volume: 277 year: 2023 ident: 10.1016/j.agwat.2024.109241_bib6 article-title: Hydro-agro-economic optimization for irrigated farming in an arid region: the Hetao Irrigation District, Inner Mongolia publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2022.108095 – volume: 250 year: 2020 ident: 10.1016/j.agwat.2024.109241_bib31 article-title: Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112047 – volume: 201 start-page: 301 year: 2007 ident: 10.1016/j.agwat.2024.109241_bib43 article-title: Using monthly weather statistics to generate daily data in a SWAT model application to West Africa publication-title: Ecol. Modell. doi: 10.1016/j.ecolmodel.2006.09.028 – volume: 143 year: 2021 ident: 10.1016/j.agwat.2024.109241_bib13 article-title: Volume and uncertainty estimates of on-farm reservoirs using surface reflectance and LiDAR data publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2021.105095 – volume: 202 start-page: 113 year: 2017 ident: 10.1016/j.agwat.2024.109241_bib22 article-title: An approach for global monitoring of surface water extent variations in reservoirs using MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.05.039 – volume: 33 start-page: 141 year: 2008 ident: 10.1016/j.agwat.2024.109241_bib2 article-title: Monthly streamflow prediction in the Volta Basin of West Africa: A SISO NARMAX polynomial modelling publication-title: Phys. Chem. Earth, Parts A/B/C. doi: 10.1016/j.pce.2007.04.019 – volume: 23 start-page: 669 year: 2019 ident: 10.1016/j.agwat.2024.109241_bib5 article-title: A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-23-669-2019 – volume: 152 year: 2021 ident: 10.1016/j.agwat.2024.109241_bib36 article-title: A new dataset of global irrigation areas from 2001 to 2015 publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2021.103910 |
SSID | ssj0004047 |
Score | 2.4287436 |
Snippet | Water storage dynamics in on-farm reservoirs (OFRs) are crucial for irrigation water allocation and utilization, ensuring agricultural development... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 109241 |
SubjectTerms | Remote sensing or UAV Slope detection Water area Water depth |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJz2IT1xfzMGjwW6atulxFWUR9OTC3kqei6JbiVUR_PFO0lbWi17ssa8JMyXfF_rlG0JOUqeEZFbSjMuScplIKuRI08zykqlCOBV7A97c5pMpv55ls6VWX0ET1toDt4k7U0ZkOI8jrAgEnzJXpRlJZzkrjOY8idQIMa9fTPU7IhNe9B5DUc0l5-8ySCcZDwZKjI9-4FC061-CoyWIudog6x03hHE7pk2yYhdbZG08950_ht0mn2Noez5DU0MwyEDCaQFJHGBg6yFoHXGGgNpBvaBO-icI-4v8W33vX0B9gLHhrwHiFbw81s8W5j5qvhq8iHhm8CmIGkMat2B6HI7x9cJCUJLukOnV5d3FhHYNFKhOc95QU6SpkmmRaCNyM1JIjjLrclxCcFFqZwXTTFlkgIFk5TLRTBd4iEQXZaaUSXfJYIEx9ghwpE3CIL8TqeFZaYTEhU7icHJ0QiLFGZLTPp3Vc-uTUfUCsocqZr8K2a_a7A_JeUj5963B5DqewNJXXemrv0o_JHlfsKrjCy0PwFfd_xZ9_z-iH5BVFnoBRwX3IRk0_tUeIUFp1HH8Fr8AyQvl6g priority: 102 providerName: Directory of Open Access Journals |
Title | A method to estimate the water storage of on-farm reservoirs by detecting slope gradients based on multi-spectral drone data |
URI | https://dx.doi.org/10.1016/j.agwat.2024.109241 https://doaj.org/article/bd85eed185824096b9d1afe427dc440a |
Volume | 307 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9QwDI5Wuxc4IJ5ieIxy4EiYTuo26XFY7WoAsRdYaW9VnqNBMB1lCwgJ8dux03YfFw70mDpN5ET2Z_WzzdirMlptZDCiAtMIMIUR2iydqAI00iodbe4N-PGsXp_D-4vq4oAdT7kwRKscbf9g07O1HkcWozYX--128akoFUZXGNoBZVQqSvgFUHTL3_y5pnlAkZuMkbAg6anyUOZ4mc1PQ4RKCVRWScLylnfKRfxvOKkbjuf0Prs3Ika-Gjb1gB2E3UN2d7VJY9WM8Ij9XvGhEzTvO05lMxCGBo7QjuPCIXFiQKLd4F3k3U5Ek75xyjpKP7ptuuT2F_eB_iWgF-OXX7t94JuUmWA9vkQv53EWz8xDkRMzE27Hp24XOPFLH7Pz05PPx2sxtlUQrqyhF16VpTWlKpzXtV9ahExViDUGFqAbF4OWTtqAuJCgV20KJ53CRxdONZW1vnzCDne4xlPGAcGU9oj6dOmharw2GP4UEU1m1AaBz4y9ntTZ7ofqGe1EK_vSZu23pP120P6MvSWVX4lS6es80KVNO559a72u0LEjztB48k1tG780MYBU3gEUZsbq6cDaWzcJP7X91-rP_nfic3ZHUlfgzOV-wQ779D28RKjS23m-i3N2tHr3YX02zwH_XxhJ6n4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED6kztB2KJo-UPeRcMhYwjJFSdToBg2cl5ckQDaCT8NBaxmMkqJAf3yPlJQmS4dopEiROBJ3H6HvvgPYz70WijlFC65qylWmqFBTQwvHa6Yr4XWqDXi2KOeX_PiquNqCgyEXJtIqe9_f-fTkrfuWSW_NyWa1mpxneYW3K7za8ZhRWYlnsB3VqYoRbM-OTuaLf-mRWaozFvvTOGAQH0o0L7X8pSKnkvGorMT49FGASjr-D-LUg9hz-Bpe9aCRzLp17cCWW7-Bl7Nl6IUz3Fv4MyNdMWjSNiQqZyASdQTRHcGJXSCRBImugzSeNGvqVfhJYuJRuGtW4Ybo38S6-DsBAxm5-dFsHFmGRAZr8SUGOoujSCIf0pSbGXA5NjRrRyLF9B1cHn6_OJjTvrICNXnJW2qrPNcqrzJjRWmnGlFT4XyJdwsuauOdYIZph9Awoq9SZYaZCh-RmaoutLb5exitcY4PQDjiKWER-Inc8qK2QuENKPPoNb1QiH3G8HUwp9x0AhpyYJZdy2R9Ga0vO-uP4Vs0-X3XqH6dGpqwlP32S21FgbEdoYbAza9LXdup8o6zyhrOMzWGctgw-egw4adW_5v941MH7sHz-cXZqTw9Wpx8ghcsFglO1O7PMGrDrfuCyKXVu_3J_AuhG-w6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+to+estimate+the+water+storage+of+on-farm+reservoirs+by+detecting+slope+gradients+based+on+multi-spectral+drone+data&rft.jtitle=Agricultural+water+management&rft.au=Wang%2C+Yixuan&rft.au=Yan%2C+Nana&rft.au=Zhu%2C+Weiwei&rft.au=Ma%2C+Zonghan&rft.date=2025-02-01&rft.pub=Elsevier+B.V&rft.issn=0378-3774&rft.volume=307&rft_id=info:doi/10.1016%2Fj.agwat.2024.109241&rft.externalDocID=S0378377424005778 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3774&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3774&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3774&client=summon |