Application of a novel numerical simulation to biochemical reaction systems

Recent advancements in omics and single-cell analysis highlight the necessity of numerical methods for managing the complexity of biological data. This paper introduces a simulation program for biochemical reaction systems based on the natural number simulation (NNS) method. This novel approach ensu...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in cell and developmental biology Vol. 12; p. 1351974
Main Author Sato, Takashi
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent advancements in omics and single-cell analysis highlight the necessity of numerical methods for managing the complexity of biological data. This paper introduces a simulation program for biochemical reaction systems based on the natural number simulation (NNS) method. This novel approach ensures the equitable treatment of all molecular entities, such as DNA, proteins, H 2 O, and hydrogen ions (H + ), in biological systems. Central to NNS is its use of stoichiometric formulas, simplifying the modeling process and facilitating efficient and accurate simulations of diverse biochemical reactions. The advantage of this method is its ability to manage all molecules uniformly, ensuring a balanced representation in simulations. Detailed in Python, NNS is adept at simulating various reactions, ranging from water ionization to Michaelis–Menten kinetics and complex gene-based systems, making it an effective tool for scientific and engineering research.
AbstractList Recent advancements in omics and single-cell analysis highlight the necessity of numerical methods for managing the complexity of biological data. This paper introduces a simulation program for biochemical reaction systems based on the natural number simulation (NNS) method. This novel approach ensures the equitable treatment of all molecular entities, such as DNA, proteins, H2O, and hydrogen ions (H+), in biological systems. Central to NNS is its use of stoichiometric formulas, simplifying the modeling process and facilitating efficient and accurate simulations of diverse biochemical reactions. The advantage of this method is its ability to manage all molecules uniformly, ensuring a balanced representation in simulations. Detailed in Python, NNS is adept at simulating various reactions, ranging from water ionization to Michaelis-Menten kinetics and complex gene-based systems, making it an effective tool for scientific and engineering research.Recent advancements in omics and single-cell analysis highlight the necessity of numerical methods for managing the complexity of biological data. This paper introduces a simulation program for biochemical reaction systems based on the natural number simulation (NNS) method. This novel approach ensures the equitable treatment of all molecular entities, such as DNA, proteins, H2O, and hydrogen ions (H+), in biological systems. Central to NNS is its use of stoichiometric formulas, simplifying the modeling process and facilitating efficient and accurate simulations of diverse biochemical reactions. The advantage of this method is its ability to manage all molecules uniformly, ensuring a balanced representation in simulations. Detailed in Python, NNS is adept at simulating various reactions, ranging from water ionization to Michaelis-Menten kinetics and complex gene-based systems, making it an effective tool for scientific and engineering research.
Recent advancements in omics and single-cell analysis highlight the necessity of numerical methods for managing the complexity of biological data. This paper introduces a simulation program for biochemical reaction systems based on the natural number simulation (NNS) method. This novel approach ensures the equitable treatment of all molecular entities, such as DNA, proteins, H 2 O, and hydrogen ions (H + ), in biological systems. Central to NNS is its use of stoichiometric formulas, simplifying the modeling process and facilitating efficient and accurate simulations of diverse biochemical reactions. The advantage of this method is its ability to manage all molecules uniformly, ensuring a balanced representation in simulations. Detailed in Python, NNS is adept at simulating various reactions, ranging from water ionization to Michaelis–Menten kinetics and complex gene-based systems, making it an effective tool for scientific and engineering research.
Recent advancements in omics and single-cell analysis highlight the necessity of numerical methods for managing the complexity of biological data. This paper introduces a simulation program for biochemical reaction systems based on the natural number simulation (NNS) method. This novel approach ensures the equitable treatment of all molecular entities, such as DNA, proteins, H O, and hydrogen ions (H ), in biological systems. Central to NNS is its use of stoichiometric formulas, simplifying the modeling process and facilitating efficient and accurate simulations of diverse biochemical reactions. The advantage of this method is its ability to manage all molecules uniformly, ensuring a balanced representation in simulations. Detailed in Python, NNS is adept at simulating various reactions, ranging from water ionization to Michaelis-Menten kinetics and complex gene-based systems, making it an effective tool for scientific and engineering research.
Recent advancements in omics and single-cell analysis highlight the necessity of numerical methods for managing the complexity of biological data. This paper introduces a simulation program for biochemical reaction systems based on the natural number simulation (NNS) method. This novel approach ensures the equitable treatment of all molecular entities, such as DNA, proteins, H2O, and hydrogen ions (H+), in biological systems. Central to NNS is its use of stoichiometric formulas, simplifying the modeling process and facilitating efficient and accurate simulations of diverse biochemical reactions. The advantage of this method is its ability to manage all molecules uniformly, ensuring a balanced representation in simulations. Detailed in Python, NNS is adept at simulating various reactions, ranging from water ionization to Michaelis–Menten kinetics and complex gene-based systems, making it an effective tool for scientific and engineering research.
Author Sato, Takashi
Author_xml – sequence: 1
  givenname: Takashi
  surname: Sato
  fullname: Sato, Takashi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39310225$$D View this record in MEDLINE/PubMed
BookMark eNpNkUtPwzAQhC0EolD6BzigHLm02OtHkiNCPCqQuIDEzXLsDaRK4mInSPx70qQgTuudHY2lb07JYetbJOSc0RXnWX5VWqzrFVAQK8Yly1NxQE4AcrVUXLwd_nvPyCLGDaWUgUxlxo_JjOecUQB5Qh6vt9u6sqarfJv4MjFJ67-wTtq-wTDodRKrpq-ne-eTovL2A5vxEtDYUY_fscMmnpGj0tQRF_s5J693ty83D8un5_v1zfXT0nIluqVV0tg0ZSzlQqCC1BrHaYmFkWVmgYkckAI6AQ5BloIbRiXLVKaEc8gZn5P1lOu82ehtqBoTvrU3lR4FH961CV1la9TOogOVFZJnhcBywFRgCmgMDkvB3JB1OWVtg__sMXa6qeIOrWnR91EPnLKBlgIxWC_21r5o0P19_AtzMMBksMHHGLD8szCqd6XpsTS9K03vS-M_98OLEA
Cites_doi 10.1038/s41467-022-35031-9
10.1016/j.csbj.2014.10.003
10.1007/s12551-020-00665-w
10.1016/j.xpro.2023.102651
10.1007/978-1-4614-0478-1
10.1016/j.jbi.2011.02.002
10.1093/bioinformatics/btac084
10.1093/bioinformatics/btae374
10.1093/hesc/9780198788652.001.0001
10.1021/j100540a008
10.1371/journal.pcbi.1000005
10.1101/2023.08.10.552732
10.3390/e18020046
10.3390/e22060627
10.1093/bioinformatics/bth378
10.1371/journal.pcbi.1010734
10.1093/bib/bbl043
10.1038/nchembio.98
10.1016/j.biosystems.2021.104531
10.3233/FI-2018-1680
10.1038/s12276-024-01186-2
10.1063/5.0127585
10.3390/e22121335
10.1093/bioinformatics/btr466
10.1201/9780429283321
10.1093/bioinformatics/btn010
10.1186/1752-0509-3-84
10.1016/j.crmeth.2023.100547
10.1016/j.str.2019.01.003
10.1142/8333
10.3389/fbioe.2015.00154
10.3390/genes14071330
10.1002/j.1538-7305.1948.tb01338.x
10.1038/s41580-023-00615-w
10.1103/PhysRevResearch.4.043223
10.4236/am.2021.125031
10.1093/nar/gkac331
10.1038/ncomms13806
ContentType Journal Article
Copyright Copyright © 2024 Sato.
Copyright_xml – notice: Copyright © 2024 Sato.
DBID AAYXX
CITATION
NPM
7X8
DOA
DOI 10.3389/fcell.2024.1351974
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2296-634X
ExternalDocumentID oai_doaj_org_article_dced268b538b4ef197be72eaaeef1b1d
39310225
10_3389_fcell_2024_1351974
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
IPNFZ
NPM
RIG
7X8
ID FETCH-LOGICAL-c364t-c65ac77117344e627cad30feba5f8c21492e02ed42de25f43a105186864dde313
IEDL.DBID M48
ISSN 2296-634X
IngestDate Wed Aug 27 01:31:05 EDT 2025
Thu Jul 10 19:12:15 EDT 2025
Thu Apr 03 07:07:11 EDT 2025
Tue Jul 01 03:48:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords feedback
biochemical reaction system
allosteric
entropy
feedforward
Michaelis-Menten
numerical simulation
algorithm
Language English
License Copyright © 2024 Sato.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-c65ac77117344e627cad30feba5f8c21492e02ed42de25f43a105186864dde313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fcell.2024.1351974
PMID 39310225
PQID 3108393624
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_dced268b538b4ef197be72eaaeef1b1d
proquest_miscellaneous_3108393624
pubmed_primary_39310225
crossref_primary_10_3389_fcell_2024_1351974
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in cell and developmental biology
PublicationTitleAlternate Front Cell Dev Biol
PublicationYear 2024
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Khodayari (B20) 2016; 7
Shaikh (B34) 2022; 50
Brinkrolf (B7) 2021; 210
Macía (B27) 2009; 3
Székely (B36) 2014; 12
Watson (B40) 2014
Alon (B2) 2019
Kremling (B21) 2008; 24
Ullah (B38) 2011
Baysoy (B4) 2024; 24
Machado (B26) 2015; 3
Nelson (B29) 2021
Huizing (B19) 2022; 38
Wodak (B41) 2019; 27
Le (B22) 2011; 27
Gillespie (B15) 1977; 81
Gunawan (B17) 2023; 3
Massimino (B28) 2023; 14
Rohr (B31) 2018; 160
Adriaans (B1) 2008
Gilbert (B14) 2006; 7
Roach (B30) 2020; 22
Shannon (B35) 1948; 27
B33
Ferrazzi (B12) 2011; 44
Wagle (B39) 2024; 40
Blinov (B6) 2004; 20
Chanda (B9) 2020; 22
Gholami (B13) 2021; 12
Himeoka (B18) 2022; 4
Lim (B23) 2023; 56
Liu (B25) 2023; 4
Craig (B10) 2021
Ben-Naim (B5) 2012
Eaton (B11) 2022; 157
Lin (B24) 2022; 13
Browning (B8) 2022; 18
Goodey (B16) 2008; 4
Baez (B3) 2016; 18
Ruths (B32) 2008; 4
Uda (B37) 2020; 12
References_xml – volume: 13
  start-page: 7705
  year: 2022
  ident: B24
  article-title: Clustering of single-cell multi-omics data with a multimodal deep learning method
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35031-9
– volume: 12
  start-page: 14
  year: 2014
  ident: B36
  article-title: Stochastic simulation in systems biology
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2014.10.003
– volume: 12
  start-page: 377
  year: 2020
  ident: B37
  article-title: Application of information theory in systems biology
  publication-title: Biophys. Rev.
  doi: 10.1007/s12551-020-00665-w
– volume: 4
  start-page: 102651
  year: 2023
  ident: B25
  article-title: Protocol for biomodel engineering of unilevel to multilevel biological models using colored Petri nets
  publication-title: STAR Protoc.
  doi: 10.1016/j.xpro.2023.102651
– volume-title: Stochastic approaches for systems biology
  year: 2011
  ident: B38
  doi: 10.1007/978-1-4614-0478-1
– volume: 44
  start-page: 565
  year: 2011
  ident: B12
  article-title: Inferring cell cycle feedback regulation from gene expression data
  publication-title: J. Biomed. Inf.
  doi: 10.1016/j.jbi.2011.02.002
– volume: 38
  start-page: 2169
  year: 2022
  ident: B19
  article-title: Optimal transport improves cell–cell similarity inference in single-cell omics data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac084
– volume: 40
  start-page: btae374
  year: 2024
  ident: B39
  article-title: Interpretable deep learning in single-cell omics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btae374
– volume-title: Principles of genome function
  year: 2021
  ident: B10
  article-title: Molecular biology
  doi: 10.1093/hesc/9780198788652.001.0001
– volume: 81
  start-page: 2340
  year: 1977
  ident: B15
  article-title: Exact stochastic simulation of coupled chemical reactions
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100540a008
– volume: 4
  start-page: e1000005
  year: 2008
  ident: B32
  article-title: The signaling Petri net-based simulator: a non-parametric strategy for characterizing the dynamics of cell-specific signaling networks
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000005
– ident: B33
  doi: 10.1101/2023.08.10.552732
– volume: 18
  start-page: 46
  year: 2016
  ident: B3
  article-title: Relative entropy in biological systems
  publication-title: Entropy
  doi: 10.3390/e18020046
– volume: 22
  start-page: 627
  year: 2020
  ident: B9
  article-title: Information theory in computational biology: where we stand today
  publication-title: Entropy (Basel)
  doi: 10.3390/e22060627
– volume: 20
  start-page: 3289
  year: 2004
  ident: B6
  article-title: BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth378
– volume: 18
  start-page: e1010734
  year: 2022
  ident: B8
  article-title: Efficient inference and identifiability analysis for differential equation models with random parameters
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1010734
– volume: 7
  start-page: 339
  year: 2006
  ident: B14
  article-title: Computational methodologies for modelling, analysis and simulation of signalling networks
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbl043
– volume: 4
  start-page: 474
  year: 2008
  ident: B16
  article-title: Allosteric regulation and catalysis emerge via a common route
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.98
– volume: 210
  start-page: 104531
  year: 2021
  ident: B7
  article-title: VANESA: an open-source hybrid functional Petri net modeling and simulation environment in systems biology
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2021.104531
– volume: 160
  start-page: 181
  year: 2018
  ident: B31
  article-title: Discrete-time leap method for stochastic simulation
  publication-title: Fundam. Inf.
  doi: 10.3233/FI-2018-1680
– volume: 56
  start-page: 515
  year: 2023
  ident: B23
  article-title: Advances in single-cell omics and multiomics for high-resolution molecular profiling
  publication-title: Exp. Mol. Med.
  doi: 10.1038/s12276-024-01186-2
– volume: 157
  start-page: 184104
  year: 2022
  ident: B11
  article-title: A retrospective on statistical mechanical models for hemoglobin allostery
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0127585
– volume: 22
  start-page: 1335
  year: 2020
  ident: B30
  article-title: Use and abuse of entropy in biology: a case for caliber
  publication-title: Entropy (Basel)
  doi: 10.3390/e22121335
– volume: 27
  start-page: 2767
  year: 2011
  ident: B22
  article-title: NetDS: a cytoscape plugin to analyze the robustness of dynamics and feedforward/feedback loop structures of biological networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr466
– volume-title: An introduction to system biology
  year: 2019
  ident: B2
  doi: 10.1201/9780429283321
– volume: 24
  start-page: 704
  year: 2008
  ident: B21
  article-title: A feed-forward loop guarantees robust behavior in Escherichia coli carbohydrate uptake
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn010
– volume: 3
  start-page: 84
  year: 2009
  ident: B27
  article-title: Specialized or flexible feed-forward loop motifs: a question of topology
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-3-84
– volume: 3
  start-page: 100547
  year: 2023
  ident: B17
  article-title: An introduction to representation learning for single-cell data analysis
  publication-title: Cell Rep. Methods
  doi: 10.1016/j.crmeth.2023.100547
– volume: 27
  start-page: 566
  year: 2019
  ident: B41
  article-title: Allostery in its many disguises: from theory to applications
  publication-title: Structure
  doi: 10.1016/j.str.2019.01.003
– volume-title: Lehninger principles of biochemistry
  year: 2021
  ident: B29
– volume-title: Molecular biology of the gene
  year: 2014
  ident: B40
– volume-title: Entropy and the second law: interpretation and misss-interpretationsss teaneck
  year: 2012
  ident: B5
  doi: 10.1142/8333
– volume: 3
  start-page: 154
  year: 2015
  ident: B26
  article-title: Modeling the contribution of allosteric regulation for flux control in the central carbon metabolism of E. coli
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2015.00154
– volume: 14
  start-page: 1330
  year: 2023
  ident: B28
  article-title: Single-cell analysis in the omics era: technologies and applications in cancer
  publication-title: Genes
  doi: 10.3390/genes14071330
– volume: 27
  start-page: 379
  year: 1948
  ident: B35
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– volume: 24
  start-page: 696
  year: 2024
  ident: B4
  article-title: The technological landscape and applicatons of single-cell multi-omics
  publication-title: Nat. Rev. Mol. cell Biol.
  doi: 10.1038/s41580-023-00615-w
– volume: 4
  start-page: 043233
  year: 2022
  ident: B18
  article-title: Emergence of growth and dormancy from a kinetic model of the Escherichia coli central carbon metabolism. Phys. Rev
  publication-title: Research
  doi: 10.1103/PhysRevResearch.4.043223
– volume-title: Handbook of philosophy of information
  year: 2008
  ident: B1
– volume: 12
  start-page: 449
  year: 2021
  ident: B13
  article-title: Reducing stochastic discrete models of biochemical networks
  publication-title: Appl. Math.
  doi: 10.4236/am.2021.125031
– volume: 50
  start-page: W108
  year: 2022
  ident: B34
  article-title: BioSimulators: a central registry of simulation engines and services for recommending specific tools
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac331
– volume: 7
  start-page: 13806
  year: 2016
  ident: B20
  article-title: A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13806
SSID ssj0001257583
Score 2.243013
Snippet Recent advancements in omics and single-cell analysis highlight the necessity of numerical methods for managing the complexity of biological data. This paper...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 1351974
SubjectTerms algorithm
biochemical reaction system
feedback
feedforward
Michaelis-Menten
numerical simulation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIb-uLCN5kbfPabI9VLEXRk4XeQpJNoFB3xbaC_95Jsq31IF48blg22Zkk800e34fQFURsAvNimXVNz2SceRNkXooMhlIhdW6EjXernp7z4Yg_jMV4TeornAlL9MDJcJ3SupLmhYGBabjzpCeNk9Rp7eDBkDLMvhDz1pKptLoCMKRg6ZYMZGG9jg8L4ZAPUn4TRekk_xGJImH_7ygzRpvBDtpuYCLup-btog1X7aHNJBz5uY8e-9_7zrj2WOOq_nBTXC3SBswUzyavjTAXntfYTIIwVmQGwIAS410GnEicZwdoNLh_uRtmjSxCZlnO55nNhbZSEiIZ5y6n0uqSdb0zWvjCUkh5qOtSV3JaOio8ZxowVGDFzznMZYywQ9Sq6sodIyyst8TnwguteUGsMY4TYnvwBe1lydroemki9ZbYLxRkDcGgKhpUBYOqxqBtdBusuHozMFfHAvCnavyp_vJnG10ufaCgp4dKdOXqxUwBEAU0Bx0LKjpKzllVBeUhdRUn_9GEU7QVfisttJyh1vx94c4BeszNRexlX_pN2Y8
  priority: 102
  providerName: Directory of Open Access Journals
Title Application of a novel numerical simulation to biochemical reaction systems
URI https://www.ncbi.nlm.nih.gov/pubmed/39310225
https://www.proquest.com/docview/3108393624
https://doaj.org/article/dced268b538b4ef197be72eaaeef1b1d
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5aEbyIb-ujRPAmq80m2WwPIiqWotSTBW8hySYi1F3tQ-y_d5JsFUFvHjdsdjZfHvNNQuZD6Bg8NoF1sUjauqMTRp32Mi95AlMpFyrT3IS7Vf37rDdgt4_8cQHN5Y5qAMe_hnZeT2owGp5-vM0uYMKf-4gT_O2Z83vcEOql7DTozQm2iJbAMwmvaNCv6X7ccwFyktN4d-aPqj_8U0jj_zf3DD6ou4ZWa_KIL2Nvr6MFW26g5SgnOdtEd5ffp9G4cljhsnq3Q1xO47HMEI-fX2q5LjypsH72clkhXwAG7hhuOOCY2nm8hQbdm4frXlKLJSSGZmySmIwrIwQhgjJms1QYVdC2s1pxl5sUAqHUtlNbsLSwKXeMKmBWPld-xmCFo4Ruo0ZZlXYXYW6cIS7jjivFcmK0towQ04EvKCcK2kQnc4jka8yJISGW8IDKAKj0gMoa0Ca68ih-venzWYeCavQk6-khC2OLNMs1LL-aWQf1tBVgTll40KRooqN5H0gY_96IKm01HUugp8DxYLiBoZ3YOV-moNwHtHzvP35hH634ZsXtlwPUmIym9hAIyUS3QiDfCmPtE_SS4dw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+a+novel+numerical+simulation+to+biochemical+reaction+systems&rft.jtitle=Frontiers+in+cell+and+developmental+biology&rft.au=Takashi+Sato&rft.date=2024&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-634X&rft.volume=12&rft_id=info:doi/10.3389%2Ffcell.2024.1351974&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dced268b538b4ef197be72eaaeef1b1d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-634X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-634X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-634X&client=summon