Application of a novel numerical simulation to biochemical reaction systems
Recent advancements in omics and single-cell analysis highlight the necessity of numerical methods for managing the complexity of biological data. This paper introduces a simulation program for biochemical reaction systems based on the natural number simulation (NNS) method. This novel approach ensu...
Saved in:
Published in | Frontiers in cell and developmental biology Vol. 12; p. 1351974 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent advancements in omics and single-cell analysis highlight the necessity of numerical methods for managing the complexity of biological data. This paper introduces a simulation program for biochemical reaction systems based on the natural number simulation (NNS) method. This novel approach ensures the equitable treatment of all molecular entities, such as DNA, proteins, H
2
O, and hydrogen ions (H
+
), in biological systems. Central to NNS is its use of stoichiometric formulas, simplifying the modeling process and facilitating efficient and accurate simulations of diverse biochemical reactions. The advantage of this method is its ability to manage all molecules uniformly, ensuring a balanced representation in simulations. Detailed in Python, NNS is adept at simulating various reactions, ranging from water ionization to Michaelis–Menten kinetics and complex gene-based systems, making it an effective tool for scientific and engineering research. |
---|---|
AbstractList | Recent advancements in omics and single-cell analysis highlight the necessity of numerical methods for managing the complexity of biological data. This paper introduces a simulation program for biochemical reaction systems based on the natural number simulation (NNS) method. This novel approach ensures the equitable treatment of all molecular entities, such as DNA, proteins, H2O, and hydrogen ions (H+), in biological systems. Central to NNS is its use of stoichiometric formulas, simplifying the modeling process and facilitating efficient and accurate simulations of diverse biochemical reactions. The advantage of this method is its ability to manage all molecules uniformly, ensuring a balanced representation in simulations. Detailed in Python, NNS is adept at simulating various reactions, ranging from water ionization to Michaelis-Menten kinetics and complex gene-based systems, making it an effective tool for scientific and engineering research.Recent advancements in omics and single-cell analysis highlight the necessity of numerical methods for managing the complexity of biological data. This paper introduces a simulation program for biochemical reaction systems based on the natural number simulation (NNS) method. This novel approach ensures the equitable treatment of all molecular entities, such as DNA, proteins, H2O, and hydrogen ions (H+), in biological systems. Central to NNS is its use of stoichiometric formulas, simplifying the modeling process and facilitating efficient and accurate simulations of diverse biochemical reactions. The advantage of this method is its ability to manage all molecules uniformly, ensuring a balanced representation in simulations. Detailed in Python, NNS is adept at simulating various reactions, ranging from water ionization to Michaelis-Menten kinetics and complex gene-based systems, making it an effective tool for scientific and engineering research. Recent advancements in omics and single-cell analysis highlight the necessity of numerical methods for managing the complexity of biological data. This paper introduces a simulation program for biochemical reaction systems based on the natural number simulation (NNS) method. This novel approach ensures the equitable treatment of all molecular entities, such as DNA, proteins, H 2 O, and hydrogen ions (H + ), in biological systems. Central to NNS is its use of stoichiometric formulas, simplifying the modeling process and facilitating efficient and accurate simulations of diverse biochemical reactions. The advantage of this method is its ability to manage all molecules uniformly, ensuring a balanced representation in simulations. Detailed in Python, NNS is adept at simulating various reactions, ranging from water ionization to Michaelis–Menten kinetics and complex gene-based systems, making it an effective tool for scientific and engineering research. Recent advancements in omics and single-cell analysis highlight the necessity of numerical methods for managing the complexity of biological data. This paper introduces a simulation program for biochemical reaction systems based on the natural number simulation (NNS) method. This novel approach ensures the equitable treatment of all molecular entities, such as DNA, proteins, H O, and hydrogen ions (H ), in biological systems. Central to NNS is its use of stoichiometric formulas, simplifying the modeling process and facilitating efficient and accurate simulations of diverse biochemical reactions. The advantage of this method is its ability to manage all molecules uniformly, ensuring a balanced representation in simulations. Detailed in Python, NNS is adept at simulating various reactions, ranging from water ionization to Michaelis-Menten kinetics and complex gene-based systems, making it an effective tool for scientific and engineering research. Recent advancements in omics and single-cell analysis highlight the necessity of numerical methods for managing the complexity of biological data. This paper introduces a simulation program for biochemical reaction systems based on the natural number simulation (NNS) method. This novel approach ensures the equitable treatment of all molecular entities, such as DNA, proteins, H2O, and hydrogen ions (H+), in biological systems. Central to NNS is its use of stoichiometric formulas, simplifying the modeling process and facilitating efficient and accurate simulations of diverse biochemical reactions. The advantage of this method is its ability to manage all molecules uniformly, ensuring a balanced representation in simulations. Detailed in Python, NNS is adept at simulating various reactions, ranging from water ionization to Michaelis–Menten kinetics and complex gene-based systems, making it an effective tool for scientific and engineering research. |
Author | Sato, Takashi |
Author_xml | – sequence: 1 givenname: Takashi surname: Sato fullname: Sato, Takashi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39310225$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkUtPwzAQhC0EolD6BzigHLm02OtHkiNCPCqQuIDEzXLsDaRK4mInSPx70qQgTuudHY2lb07JYetbJOSc0RXnWX5VWqzrFVAQK8Yly1NxQE4AcrVUXLwd_nvPyCLGDaWUgUxlxo_JjOecUQB5Qh6vt9u6sqarfJv4MjFJ67-wTtq-wTDodRKrpq-ne-eTovL2A5vxEtDYUY_fscMmnpGj0tQRF_s5J693ty83D8un5_v1zfXT0nIluqVV0tg0ZSzlQqCC1BrHaYmFkWVmgYkckAI6AQ5BloIbRiXLVKaEc8gZn5P1lOu82ehtqBoTvrU3lR4FH961CV1la9TOogOVFZJnhcBywFRgCmgMDkvB3JB1OWVtg__sMXa6qeIOrWnR91EPnLKBlgIxWC_21r5o0P19_AtzMMBksMHHGLD8szCqd6XpsTS9K03vS-M_98OLEA |
Cites_doi | 10.1038/s41467-022-35031-9 10.1016/j.csbj.2014.10.003 10.1007/s12551-020-00665-w 10.1016/j.xpro.2023.102651 10.1007/978-1-4614-0478-1 10.1016/j.jbi.2011.02.002 10.1093/bioinformatics/btac084 10.1093/bioinformatics/btae374 10.1093/hesc/9780198788652.001.0001 10.1021/j100540a008 10.1371/journal.pcbi.1000005 10.1101/2023.08.10.552732 10.3390/e18020046 10.3390/e22060627 10.1093/bioinformatics/bth378 10.1371/journal.pcbi.1010734 10.1093/bib/bbl043 10.1038/nchembio.98 10.1016/j.biosystems.2021.104531 10.3233/FI-2018-1680 10.1038/s12276-024-01186-2 10.1063/5.0127585 10.3390/e22121335 10.1093/bioinformatics/btr466 10.1201/9780429283321 10.1093/bioinformatics/btn010 10.1186/1752-0509-3-84 10.1016/j.crmeth.2023.100547 10.1016/j.str.2019.01.003 10.1142/8333 10.3389/fbioe.2015.00154 10.3390/genes14071330 10.1002/j.1538-7305.1948.tb01338.x 10.1038/s41580-023-00615-w 10.1103/PhysRevResearch.4.043223 10.4236/am.2021.125031 10.1093/nar/gkac331 10.1038/ncomms13806 |
ContentType | Journal Article |
Copyright | Copyright © 2024 Sato. |
Copyright_xml | – notice: Copyright © 2024 Sato. |
DBID | AAYXX CITATION NPM 7X8 DOA |
DOI | 10.3389/fcell.2024.1351974 |
DatabaseName | CrossRef PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2296-634X |
ExternalDocumentID | oai_doaj_org_article_dced268b538b4ef197be72eaaeef1b1d 39310225 10_3389_fcell_2024_1351974 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RPM IPNFZ NPM RIG 7X8 |
ID | FETCH-LOGICAL-c364t-c65ac77117344e627cad30feba5f8c21492e02ed42de25f43a105186864dde313 |
IEDL.DBID | M48 |
ISSN | 2296-634X |
IngestDate | Wed Aug 27 01:31:05 EDT 2025 Thu Jul 10 19:12:15 EDT 2025 Thu Apr 03 07:07:11 EDT 2025 Tue Jul 01 03:48:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | feedback biochemical reaction system allosteric entropy feedforward Michaelis-Menten numerical simulation algorithm |
Language | English |
License | Copyright © 2024 Sato. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-c65ac77117344e627cad30feba5f8c21492e02ed42de25f43a105186864dde313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fcell.2024.1351974 |
PMID | 39310225 |
PQID | 3108393624 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dced268b538b4ef197be72eaaeef1b1d proquest_miscellaneous_3108393624 pubmed_primary_39310225 crossref_primary_10_3389_fcell_2024_1351974 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in cell and developmental biology |
PublicationTitleAlternate | Front Cell Dev Biol |
PublicationYear | 2024 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Khodayari (B20) 2016; 7 Shaikh (B34) 2022; 50 Brinkrolf (B7) 2021; 210 Macía (B27) 2009; 3 Székely (B36) 2014; 12 Watson (B40) 2014 Alon (B2) 2019 Kremling (B21) 2008; 24 Ullah (B38) 2011 Baysoy (B4) 2024; 24 Machado (B26) 2015; 3 Nelson (B29) 2021 Huizing (B19) 2022; 38 Wodak (B41) 2019; 27 Le (B22) 2011; 27 Gillespie (B15) 1977; 81 Gunawan (B17) 2023; 3 Massimino (B28) 2023; 14 Rohr (B31) 2018; 160 Adriaans (B1) 2008 Gilbert (B14) 2006; 7 Roach (B30) 2020; 22 Shannon (B35) 1948; 27 B33 Ferrazzi (B12) 2011; 44 Wagle (B39) 2024; 40 Blinov (B6) 2004; 20 Chanda (B9) 2020; 22 Gholami (B13) 2021; 12 Himeoka (B18) 2022; 4 Lim (B23) 2023; 56 Liu (B25) 2023; 4 Craig (B10) 2021 Ben-Naim (B5) 2012 Eaton (B11) 2022; 157 Lin (B24) 2022; 13 Browning (B8) 2022; 18 Goodey (B16) 2008; 4 Baez (B3) 2016; 18 Ruths (B32) 2008; 4 Uda (B37) 2020; 12 |
References_xml | – volume: 13 start-page: 7705 year: 2022 ident: B24 article-title: Clustering of single-cell multi-omics data with a multimodal deep learning method publication-title: Nat. Commun. doi: 10.1038/s41467-022-35031-9 – volume: 12 start-page: 14 year: 2014 ident: B36 article-title: Stochastic simulation in systems biology publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2014.10.003 – volume: 12 start-page: 377 year: 2020 ident: B37 article-title: Application of information theory in systems biology publication-title: Biophys. Rev. doi: 10.1007/s12551-020-00665-w – volume: 4 start-page: 102651 year: 2023 ident: B25 article-title: Protocol for biomodel engineering of unilevel to multilevel biological models using colored Petri nets publication-title: STAR Protoc. doi: 10.1016/j.xpro.2023.102651 – volume-title: Stochastic approaches for systems biology year: 2011 ident: B38 doi: 10.1007/978-1-4614-0478-1 – volume: 44 start-page: 565 year: 2011 ident: B12 article-title: Inferring cell cycle feedback regulation from gene expression data publication-title: J. Biomed. Inf. doi: 10.1016/j.jbi.2011.02.002 – volume: 38 start-page: 2169 year: 2022 ident: B19 article-title: Optimal transport improves cell–cell similarity inference in single-cell omics data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac084 – volume: 40 start-page: btae374 year: 2024 ident: B39 article-title: Interpretable deep learning in single-cell omics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btae374 – volume-title: Principles of genome function year: 2021 ident: B10 article-title: Molecular biology doi: 10.1093/hesc/9780198788652.001.0001 – volume: 81 start-page: 2340 year: 1977 ident: B15 article-title: Exact stochastic simulation of coupled chemical reactions publication-title: J. Phys. Chem. doi: 10.1021/j100540a008 – volume: 4 start-page: e1000005 year: 2008 ident: B32 article-title: The signaling Petri net-based simulator: a non-parametric strategy for characterizing the dynamics of cell-specific signaling networks publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1000005 – ident: B33 doi: 10.1101/2023.08.10.552732 – volume: 18 start-page: 46 year: 2016 ident: B3 article-title: Relative entropy in biological systems publication-title: Entropy doi: 10.3390/e18020046 – volume: 22 start-page: 627 year: 2020 ident: B9 article-title: Information theory in computational biology: where we stand today publication-title: Entropy (Basel) doi: 10.3390/e22060627 – volume: 20 start-page: 3289 year: 2004 ident: B6 article-title: BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth378 – volume: 18 start-page: e1010734 year: 2022 ident: B8 article-title: Efficient inference and identifiability analysis for differential equation models with random parameters publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1010734 – volume: 7 start-page: 339 year: 2006 ident: B14 article-title: Computational methodologies for modelling, analysis and simulation of signalling networks publication-title: Brief. Bioinform. doi: 10.1093/bib/bbl043 – volume: 4 start-page: 474 year: 2008 ident: B16 article-title: Allosteric regulation and catalysis emerge via a common route publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.98 – volume: 210 start-page: 104531 year: 2021 ident: B7 article-title: VANESA: an open-source hybrid functional Petri net modeling and simulation environment in systems biology publication-title: Biosystems doi: 10.1016/j.biosystems.2021.104531 – volume: 160 start-page: 181 year: 2018 ident: B31 article-title: Discrete-time leap method for stochastic simulation publication-title: Fundam. Inf. doi: 10.3233/FI-2018-1680 – volume: 56 start-page: 515 year: 2023 ident: B23 article-title: Advances in single-cell omics and multiomics for high-resolution molecular profiling publication-title: Exp. Mol. Med. doi: 10.1038/s12276-024-01186-2 – volume: 157 start-page: 184104 year: 2022 ident: B11 article-title: A retrospective on statistical mechanical models for hemoglobin allostery publication-title: J. Chem. Phys. doi: 10.1063/5.0127585 – volume: 22 start-page: 1335 year: 2020 ident: B30 article-title: Use and abuse of entropy in biology: a case for caliber publication-title: Entropy (Basel) doi: 10.3390/e22121335 – volume: 27 start-page: 2767 year: 2011 ident: B22 article-title: NetDS: a cytoscape plugin to analyze the robustness of dynamics and feedforward/feedback loop structures of biological networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr466 – volume-title: An introduction to system biology year: 2019 ident: B2 doi: 10.1201/9780429283321 – volume: 24 start-page: 704 year: 2008 ident: B21 article-title: A feed-forward loop guarantees robust behavior in Escherichia coli carbohydrate uptake publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn010 – volume: 3 start-page: 84 year: 2009 ident: B27 article-title: Specialized or flexible feed-forward loop motifs: a question of topology publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-3-84 – volume: 3 start-page: 100547 year: 2023 ident: B17 article-title: An introduction to representation learning for single-cell data analysis publication-title: Cell Rep. Methods doi: 10.1016/j.crmeth.2023.100547 – volume: 27 start-page: 566 year: 2019 ident: B41 article-title: Allostery in its many disguises: from theory to applications publication-title: Structure doi: 10.1016/j.str.2019.01.003 – volume-title: Lehninger principles of biochemistry year: 2021 ident: B29 – volume-title: Molecular biology of the gene year: 2014 ident: B40 – volume-title: Entropy and the second law: interpretation and misss-interpretationsss teaneck year: 2012 ident: B5 doi: 10.1142/8333 – volume: 3 start-page: 154 year: 2015 ident: B26 article-title: Modeling the contribution of allosteric regulation for flux control in the central carbon metabolism of E. coli publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2015.00154 – volume: 14 start-page: 1330 year: 2023 ident: B28 article-title: Single-cell analysis in the omics era: technologies and applications in cancer publication-title: Genes doi: 10.3390/genes14071330 – volume: 27 start-page: 379 year: 1948 ident: B35 article-title: A mathematical theory of communication publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1948.tb01338.x – volume: 24 start-page: 696 year: 2024 ident: B4 article-title: The technological landscape and applicatons of single-cell multi-omics publication-title: Nat. Rev. Mol. cell Biol. doi: 10.1038/s41580-023-00615-w – volume: 4 start-page: 043233 year: 2022 ident: B18 article-title: Emergence of growth and dormancy from a kinetic model of the Escherichia coli central carbon metabolism. Phys. Rev publication-title: Research doi: 10.1103/PhysRevResearch.4.043223 – volume-title: Handbook of philosophy of information year: 2008 ident: B1 – volume: 12 start-page: 449 year: 2021 ident: B13 article-title: Reducing stochastic discrete models of biochemical networks publication-title: Appl. Math. doi: 10.4236/am.2021.125031 – volume: 50 start-page: W108 year: 2022 ident: B34 article-title: BioSimulators: a central registry of simulation engines and services for recommending specific tools publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac331 – volume: 7 start-page: 13806 year: 2016 ident: B20 article-title: A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains publication-title: Nat. Commun. doi: 10.1038/ncomms13806 |
SSID | ssj0001257583 |
Score | 2.243013 |
Snippet | Recent advancements in omics and single-cell analysis highlight the necessity of numerical methods for managing the complexity of biological data. This paper... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 1351974 |
SubjectTerms | algorithm biochemical reaction system feedback feedforward Michaelis-Menten numerical simulation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIb-uLCN5kbfPabI9VLEXRk4XeQpJNoFB3xbaC_95Jsq31IF48blg22Zkk800e34fQFURsAvNimXVNz2SceRNkXooMhlIhdW6EjXernp7z4Yg_jMV4TeornAlL9MDJcJ3SupLmhYGBabjzpCeNk9Rp7eDBkDLMvhDz1pKptLoCMKRg6ZYMZGG9jg8L4ZAPUn4TRekk_xGJImH_7ygzRpvBDtpuYCLup-btog1X7aHNJBz5uY8e-9_7zrj2WOOq_nBTXC3SBswUzyavjTAXntfYTIIwVmQGwIAS410GnEicZwdoNLh_uRtmjSxCZlnO55nNhbZSEiIZ5y6n0uqSdb0zWvjCUkh5qOtSV3JaOio8ZxowVGDFzznMZYywQ9Sq6sodIyyst8TnwguteUGsMY4TYnvwBe1lydroemki9ZbYLxRkDcGgKhpUBYOqxqBtdBusuHozMFfHAvCnavyp_vJnG10ufaCgp4dKdOXqxUwBEAU0Bx0LKjpKzllVBeUhdRUn_9GEU7QVfisttJyh1vx94c4BeszNRexlX_pN2Y8 priority: 102 providerName: Directory of Open Access Journals |
Title | Application of a novel numerical simulation to biochemical reaction systems |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39310225 https://www.proquest.com/docview/3108393624 https://doaj.org/article/dced268b538b4ef197be72eaaeef1b1d |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5aEbyIb-ujRPAmq80m2WwPIiqWotSTBW8hySYi1F3tQ-y_d5JsFUFvHjdsdjZfHvNNQuZD6Bg8NoF1sUjauqMTRp32Mi95AlMpFyrT3IS7Vf37rDdgt4_8cQHN5Y5qAMe_hnZeT2owGp5-vM0uYMKf-4gT_O2Z83vcEOql7DTozQm2iJbAMwmvaNCv6X7ccwFyktN4d-aPqj_8U0jj_zf3DD6ou4ZWa_KIL2Nvr6MFW26g5SgnOdtEd5ffp9G4cljhsnq3Q1xO47HMEI-fX2q5LjypsH72clkhXwAG7hhuOOCY2nm8hQbdm4frXlKLJSSGZmySmIwrIwQhgjJms1QYVdC2s1pxl5sUAqHUtlNbsLSwKXeMKmBWPld-xmCFo4Ruo0ZZlXYXYW6cIS7jjivFcmK0towQ04EvKCcK2kQnc4jka8yJISGW8IDKAKj0gMoa0Ca68ih-venzWYeCavQk6-khC2OLNMs1LL-aWQf1tBVgTll40KRooqN5H0gY_96IKm01HUugp8DxYLiBoZ3YOV-moNwHtHzvP35hH634ZsXtlwPUmIym9hAIyUS3QiDfCmPtE_SS4dw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+a+novel+numerical+simulation+to+biochemical+reaction+systems&rft.jtitle=Frontiers+in+cell+and+developmental+biology&rft.au=Takashi+Sato&rft.date=2024&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-634X&rft.volume=12&rft_id=info:doi/10.3389%2Ffcell.2024.1351974&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dced268b538b4ef197be72eaaeef1b1d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-634X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-634X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-634X&client=summon |