Numerical investigation of the drag reduction effect in turbulent channel flow by superhydrophobic grooved surfaces

Superhydrophobic surfaces (SHSs) are considered to be a promising technology for achieving skin-friction drag reduction. Development of more efficient techniques for simulating the turbulent boundary layer on SHSs continues to be a subject of interest. In this study, numerical simulations were carri...

Full description

Saved in:
Bibliographic Details
Published inFlow (Cambridge, England) Vol. 3
Main Authors Safari, Ali, Saidi, Mohammad Hassan, Salavatidezfouli, Sajad, Yao, Shuhuai
Format Journal Article
LanguageEnglish
Published Cambridge Cambridge University Press 15.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Superhydrophobic surfaces (SHSs) are considered to be a promising technology for achieving skin-friction drag reduction. Development of more efficient techniques for simulating the turbulent boundary layer on SHSs continues to be a subject of interest. In this study, numerical simulations were carried out to capture near-wall behaviours due to the effect of the SHS on wall-bounded flows. To achieve this, high- to intermediate-fidelity turbulence models including Reynolds-averaged Navier–Stokes, detached eddy simulation and large eddy simulation were utilized. With regard to slip conditions, the well-known Navier slip velocity method was used over the SHS. For validating the numerical solutions, the slip velocity and skin friction over the SHS were compared with the experimental output. Results showed that the velocity profile and Reynolds stresses on the SHS were comparable to the reported results. Then, the developed models were further extended to investigate the drag reduction effect of SHSs with rectangular grooves. The subsequent results showed that the combination of superhydrophobicity and rectangular grooves led to a better performance with a maximum drag reduction of 46.1%. This is due to the surface slip caused by the SHS and the secondary vortex effect created by the grooves. Our results revealed that Reynolds stresses of the slippery grooved surface were higher than those of the case in which a shear-free condition was employed for the grooved surface. More importantly, the numerical results indicate the previous assumption of the shear-free condition is inaccurate for the geometrically simplified grooved SHSs. Therefore, geometry modifications rather than an overly simplified shear-free boundary condition should be applied in computational fluid dynamics simulations for SHSs with grooves or other complex structures.
AbstractList Superhydrophobic surfaces (SHSs) are considered to be a promising technology for achieving skin-friction drag reduction. Development of more efficient techniques for simulating the turbulent boundary layer on SHSs continues to be a subject of interest. In this study, numerical simulations were carried out to capture near-wall behaviours due to the effect of the SHS on wall-bounded flows. To achieve this, high- to intermediate-fidelity turbulence models including Reynolds-averaged Navier–Stokes, detached eddy simulation and large eddy simulation were utilized. With regard to slip conditions, the well-known Navier slip velocity method was used over the SHS. For validating the numerical solutions, the slip velocity and skin friction over the SHS were compared with the experimental output. Results showed that the velocity profile and Reynolds stresses on the SHS were comparable to the reported results. Then, the developed models were further extended to investigate the drag reduction effect of SHSs with rectangular grooves. The subsequent results showed that the combination of superhydrophobicity and rectangular grooves led to a better performance with a maximum drag reduction of 46.1%. This is due to the surface slip caused by the SHS and the secondary vortex effect created by the grooves. Our results revealed that Reynolds stresses of the slippery grooved surface were higher than those of the case in which a shear-free condition was employed for the grooved surface. More importantly, the numerical results indicate the previous assumption of the shear-free condition is inaccurate for the geometrically simplified grooved SHSs. Therefore, geometry modifications rather than an overly simplified shear-free boundary condition should be applied in computational fluid dynamics simulations for SHSs with grooves or other complex structures.
ArticleNumber E27
Author Yao, Shuhuai
Safari, Ali
Saidi, Mohammad Hassan
Salavatidezfouli, Sajad
Author_xml – sequence: 1
  givenname: Ali
  orcidid: 0000-0002-1665-3394
  surname: Safari
  fullname: Safari, Ali
– sequence: 2
  givenname: Mohammad Hassan
  surname: Saidi
  fullname: Saidi, Mohammad Hassan
– sequence: 3
  givenname: Sajad
  surname: Salavatidezfouli
  fullname: Salavatidezfouli, Sajad
– sequence: 4
  givenname: Shuhuai
  orcidid: 0000-0001-7059-4092
  surname: Yao
  fullname: Yao, Shuhuai
BookMark eNptUU1rGzEQFSGFpElO_QOCHotdfa20OpbQj0BoL81ZzEojW2azciVtiv9913YLpfQ0w5v33gxvXpPLKU9IyBvO1pxx8z6OeS2YkGveX5BroaVcKdHZy7_6K3JX644xJoxVXa-uSf06P2NJHkaaphesLW2gpTzRHGnbIg0FNrRgmP0JxRjRt4VK21yGecSpUb-FacKRLvt_0uFA67zHsj2EkvfbPCRPNyXnFwzLoETwWG_Jqwhjxbvf9YY8ffr4_f7L6vHb54f7D48rL7VqK98BxiABNLDokVmrtTUs9kMXGUqBnZJaeDGglYZb33stgCsOPvAQA5c35OHsGzLs3L6kZygHlyG5E5DLxkFpyY_opLYiYpBWqahsL6wdBgNCWQMyaBUXr7dnr33JP-YlJ7fLc5mW853otTJGdaZfWPzM8iXXWjA6n9opz1YgjY4zd3yVW6Jyx1c5ftS8-0fz59L_sX8BFMyZeQ
CitedBy_id crossref_primary_10_1016_j_expthermflusci_2024_111341
crossref_primary_10_1063_5_0177898
crossref_primary_10_1063_5_0237722
crossref_primary_10_1016_j_porgcoat_2024_108865
crossref_primary_10_1016_j_surfcoat_2024_131181
Cites_doi 10.1063/1.5124245
10.1017/flo.2021.17
10.1142/p878
10.1115/GTINDIA2019-2525
10.1146/annurev-fluid-121108-145504
10.1017/jfm.2021.1094
10.1063/1.5000729
10.1016/j.cej.2015.03.020
10.1016/j.oceaneng.2020.107995
10.1115/1.1990201
10.1016/j.surfcoat.2021.127406
10.1146/annurev-fluid-121108-145558
10.1038/s41586-021-03658-1
10.1103/PhysRevLett.114.014501
10.1016/j.compfluid.2019.01.022
10.1140/epje/i2018-11703-y
10.1063/5.0067279
10.1017/jfm.2016.450
10.1016/j.ijheatmasstransfer.2009.09.033
10.1016/j.egypro.2018.08.047
10.1017/CBO9780511840531
10.1017/jfm.2019.419
10.1016/j.apsusc.2020.145754
10.1017/jfm.2018.210
10.1016/B978-0-12-820774-1.00010-0
10.1007/978-94-007-4786-9_21
10.1016/j.energy.2017.02.117
10.1016/j.compfluid.2013.03.006
10.3390/en10122116
10.1016/j.applthermaleng.2017.11.039
10.1016/j.ijft.2021.100077
10.18869/acadpub.jafm.73.242.27724
10.1016/j.ijft.2020.100053
10.1063/1.4819144
10.1063/5.0056952
10.1063/1.4791602
10.1063/1.5090514
10.1145/166117.166151
10.1063/1.1755723
10.2478/IJNAOE-2013-0107
10.1016/j.powtec.2018.01.025
10.1063/1.4719780
ContentType Journal Article
Copyright The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.1017/flo.2023.18
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Open Access资源_DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2633-4259
ExternalDocumentID oai_doaj_org_article_3692fed3944f498299bb7a2497a3d64f
10_1017_flo_2023_18
GroupedDBID 09C
09E
0R~
AANRG
AASVR
AAYXX
ABGDZ
ABXHF
ACAJB
ACDLN
ACZWT
ADDNB
ADKIL
ADVJH
AEUYN
AFKRA
AFZFC
AGABE
AGBYD
AGJUD
AHRGI
AKMAY
ALMA_UNASSIGNED_HOLDINGS
AQJOH
ARAPS
BENPR
BGLVJ
BHPHI
BKSAR
BLZWO
CCPQU
CCQAD
CITATION
CJCSC
GROUPED_DOAJ
HCIFZ
IKXGN
IPYYG
M~E
NQS
OK1
PCBAR
PHGZM
PHGZT
RCA
ROL
WFFJZ
8FE
8FG
ARCSS
DWQXO
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c364t-c5aefd3aa6a0fce09966970f8b5f0e32e54362c2be93719c8c62a141acd1dfd13
IEDL.DBID DOA
ISSN 2633-4259
IngestDate Wed Aug 27 01:24:08 EDT 2025
Fri Jul 25 03:23:25 EDT 2025
Tue Jul 01 03:29:09 EDT 2025
Thu Apr 24 22:58:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-c5aefd3aa6a0fce09966970f8b5f0e32e54362c2be93719c8c62a141acd1dfd13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7059-4092
0000-0002-1665-3394
OpenAccessLink https://doaj.org/article/3692fed3944f498299bb7a2497a3d64f
PQID 2864774578
PQPubID 5528236
ParticipantIDs doaj_primary_oai_doaj_org_article_3692fed3944f498299bb7a2497a3d64f
proquest_journals_2864774578
crossref_citationtrail_10_1017_flo_2023_18
crossref_primary_10_1017_flo_2023_18
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-15
PublicationDateYYYYMMDD 2023-09-15
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-15
  day: 15
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Flow (Cambridge, England)
PublicationYear 2023
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Wilcox (S2633425923000181_ref44) 1998; 2
S2633425923000181_ref21
S2633425923000181_ref43
S2633425923000181_ref20
S2633425923000181_ref42
S2633425923000181_ref41
S2633425923000181_ref40
S2633425923000181_ref46
S2633425923000181_ref24
S2633425923000181_ref45
S2633425923000181_ref23
S2633425923000181_ref22
S2633425923000181_ref29
S2633425923000181_ref28
S2633425923000181_ref27
S2633425923000181_ref26
Rowin (S2633425923000181_ref33) 2020; 32
S2633425923000181_ref1
S2633425923000181_ref2
S2633425923000181_ref3
S2633425923000181_ref32
S2633425923000181_ref10
S2633425923000181_ref4
S2633425923000181_ref31
S2633425923000181_ref5
Menter (S2633425923000181_ref25) 2003; 4
S2633425923000181_ref30
S2633425923000181_ref6
S2633425923000181_ref7
S2633425923000181_ref36
S2633425923000181_ref14
S2633425923000181_ref13
S2633425923000181_ref35
S2633425923000181_ref12
S2633425923000181_ref11
S2633425923000181_ref18
S2633425923000181_ref39
S2633425923000181_ref17
S2633425923000181_ref38
S2633425923000181_ref16
S2633425923000181_ref15
S2633425923000181_ref37
Saadat-Bakhsh (S2633425923000181_ref34) 2017; 10
S2633425923000181_ref19
S2633425923000181_ref8
S2633425923000181_ref9
References_xml – ident: S2633425923000181_ref46
  doi: 10.1063/1.5124245
– volume: 4
  start-page: 625
  year: 2003
  ident: S2633425923000181_ref25
  article-title: Ten years of industrial experience with the SST turbulence model
  publication-title: Turbulence, Heat and Mass Transfer
– ident: S2633425923000181_ref11
  doi: 10.1017/flo.2021.17
– ident: S2633425923000181_ref36
  doi: 10.1142/p878
– ident: S2633425923000181_ref43
  doi: 10.1115/GTINDIA2019-2525
– ident: S2633425923000181_ref6
  doi: 10.1146/annurev-fluid-121108-145504
– ident: S2633425923000181_ref14
  doi: 10.1017/jfm.2021.1094
– ident: S2633425923000181_ref17
  doi: 10.1063/1.5000729
– ident: S2633425923000181_ref5
  doi: 10.1016/j.cej.2015.03.020
– ident: S2633425923000181_ref41
  doi: 10.1016/j.oceaneng.2020.107995
– volume: 2
  volume-title: Turbulence modeling for CFD
  year: 1998
  ident: S2633425923000181_ref44
– ident: S2633425923000181_ref7
  doi: 10.1115/1.1990201
– ident: S2633425923000181_ref30
  doi: 10.1016/j.surfcoat.2021.127406
– ident: S2633425923000181_ref32
  doi: 10.1146/annurev-fluid-121108-145558
– ident: S2633425923000181_ref9
  doi: 10.1038/s41586-021-03658-1
– ident: S2633425923000181_ref40
  doi: 10.1103/PhysRevLett.114.014501
– ident: S2633425923000181_ref10
  doi: 10.1016/j.compfluid.2019.01.022
– ident: S2633425923000181_ref21
  doi: 10.1140/epje/i2018-11703-y
– ident: S2633425923000181_ref16
  doi: 10.1063/5.0067279
– ident: S2633425923000181_ref23
  doi: 10.1017/jfm.2016.450
– ident: S2633425923000181_ref18
  doi: 10.1016/j.ijheatmasstransfer.2009.09.033
– ident: S2633425923000181_ref15
– ident: S2633425923000181_ref20
  doi: 10.1016/j.egypro.2018.08.047
– ident: S2633425923000181_ref29
  doi: 10.1017/CBO9780511840531
– ident: S2633425923000181_ref1
  doi: 10.1017/jfm.2019.419
– ident: S2633425923000181_ref27
  doi: 10.1016/j.apsusc.2020.145754
– ident: S2633425923000181_ref12
  doi: 10.1017/jfm.2018.210
– ident: S2633425923000181_ref39
  doi: 10.1016/B978-0-12-820774-1.00010-0
– ident: S2633425923000181_ref37
  doi: 10.1007/978-94-007-4786-9_21
– ident: S2633425923000181_ref42
  doi: 10.1016/j.energy.2017.02.117
– ident: S2633425923000181_ref13
  doi: 10.1016/j.compfluid.2013.03.006
– ident: S2633425923000181_ref22
  doi: 10.3390/en10122116
– ident: S2633425923000181_ref8
  doi: 10.1016/j.applthermaleng.2017.11.039
– ident: S2633425923000181_ref19
  doi: 10.1016/j.ijft.2021.100077
– volume: 10
  start-page: 1363
  year: 2017
  ident: S2633425923000181_ref34
  article-title: On the mechanism of drag reduction in fully-developed turbulent channel flow with a streamwise microfeatured superhydrophobic wall
  publication-title: Journal of Applied Fluid Mechanics
  doi: 10.18869/acadpub.jafm.73.242.27724
– ident: S2633425923000181_ref38
  doi: 10.1016/j.ijft.2020.100053
– ident: S2633425923000181_ref28
  doi: 10.1063/1.4819144
– volume: 32
  start-page: 7
  year: 2020
  ident: S2633425923000181_ref33
  article-title: Effect of Reynolds number on turbulent channel flow over a superhydrophobic surface
  publication-title: Physics of Fluids
– ident: S2633425923000181_ref45
  doi: 10.1063/5.0056952
– ident: S2633425923000181_ref2
  doi: 10.1063/1.4791602
– ident: S2633425923000181_ref31
  doi: 10.1063/1.5090514
– ident: S2633425923000181_ref4
  doi: 10.1145/166117.166151
– ident: S2633425923000181_ref26
  doi: 10.1063/1.1755723
– ident: S2633425923000181_ref24
  doi: 10.2478/IJNAOE-2013-0107
– ident: S2633425923000181_ref35
  doi: 10.1016/j.powtec.2018.01.025
– ident: S2633425923000181_ref3
  doi: 10.1063/1.4719780
SSID ssj0002794584
Score 2.2847328
Snippet Superhydrophobic surfaces (SHSs) are considered to be a promising technology for achieving skin-friction drag reduction. Development of more efficient...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
SubjectTerms Boundary conditions
Boundary layers
Channel flow
Computational fluid dynamics
Cost control
Detached eddy simulation
Drag reduction
Energy consumption
Fluid dynamics
Fluid flow
Free boundaries
Friction
Friction drag
Friction reduction
Grooved surfaces
Grooves
Hydrodynamics
Hydrophobic surfaces
Hydrophobicity
Interfaces
Investigations
Large eddy simulation
LES
Methods
Numerical analysis
Reynolds averaged Navier-Stokes method
Shear
Shear stress
Simulation
Skin friction
Slip velocity
Stresses
Superhydrophobic surfaces
Turbulence models
Turbulent boundary layer
Turbulent channel flow
Turbulent flow
Velocity
Velocity distribution
Vortices
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fSxwxEA6tvrQPUqvFs1by4FNhdTfJ7iZPpRZFCj1EKvgW8vMUjt1z787if9-Z3dwpKL4tyTxkk8l8k2TmG0KOWGScO15lHOA8Azy2mWHKZVIGX6pc-dgXm_gzri6uxe-b8iZduM1TWOXKJvaG2rcO78hPmMSUSQEK9mN2n2HVKHxdTSU03pNNMMESDl-bp2fjy6v1LQsDdQOITYl5yBUdp5jyx_gxlvl4BkU9Y_8Lg9yjzPknspXcQ_pzWM9t8i40n8nHZ6SBO2Q-Xg6vLFN690SS0Ta0jRS8Oeo7M6EdMrL2rUPABohSABe7RJChmO3bhCmFUf6j9pHOl7PQ3T76rp3dtvbO0Qn40w_BQ0cXMWZrl1yfn_39dZGl0gkZzLtYZK40IXpuTGXy6EKOpxpV51HaMuaBs1AKQC7HbEA-POWkq5gpRGGcL3z0Bf9CNpq2CXuEqjzCGdMXwcKHKKRivrJKKF_yWtnSjcj31Sxql3jFsbzFVA8BZLWGn9E45bqQI3K0Fp4NdBqvi53icqxFkAO7b2i7iU5bSvNKsRg8ZvZGoSTgqrW1geNkbbivRByRg9Vi6rQx5_pJjfbf7v5KPuBgMDSkKA_IxqJbhm_gfyzsYVKy_1ee3hs
  priority: 102
  providerName: ProQuest
Title Numerical investigation of the drag reduction effect in turbulent channel flow by superhydrophobic grooved surfaces
URI https://www.proquest.com/docview/2864774578
https://doaj.org/article/3692fed3944f498299bb7a2497a3d64f
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEF9a-2IfpNqKZ_XYB58KaZPdTbL7qOVOETxKqeDbsp9-cCRH7k7xpX-7M0nUAwVffAlhM5DN7GR-O-zMbwg5YJFx7niRcIDzBPDYJoYpl0gZfK5S5WPbbOJsUpyci9OL_GKl1RfmhHX0wJ3ifvFCsRg81m9GoSR4T2tLA0FDabgvRETvC5i3EkzdtMdpCg8A-4I85IiOUyz1Y_wntvdYgaCWqf-FI27RZfyFbPTbQnrYTWeTfAjVFvm8Qhb4lcwny-50ZUqvn8kx6orWkcIujvrGXNIGmVjb0S5RA0QpgIpdIrhQrPKtwpTCLO-ovafz5Sw0V_e-qWdXtb129BL20bfBw4MmYq7WN3I-Hv37fZL0LRMS0LdYJC43IXpuTGHS6EKK0Ywq0yhtHtPAWcgFIJZjNiAPnnLSFcxkIjPOZz76jG-Ttaquwg6hKo0QW_osWLgRmVTMF1YJ5XNeKpu7AfnxqEXtej5xbGsx1V3iWKnhYzSqXGdyQA6ehGcdjcbrYke4HE8iyH3dDoBF6N4i9FsWMSB7j4up-x9yrpnEilsB_mn3Pd7xnazjlDFxJMv3yNqiWYZ92J0s7JB8lOPjIfl0NJr8-TtszRKuZ_9HD8ZN6Fs
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFPdPsCHckEKJLbz8AFV5bFsabunVurN-LmttEqW7C7V_il-Y2fy2FYCcestckaRY4_nG9sz3xCyzwLj3PIs4gDnEeCxiTSTNioK71IZSxeaYhOn42x0Ln5cpBcb5E-fC4Nhlb1NbAy1qyyekX9kBaZMClCwg9mvCKtG4e1qX0KjVYtjv7qGLdv809FXmN93jA2_nX0ZRV1VgQi6JBaRTbUPjmud6ThYH6PDL_M4FCYNsefMpwKMumXGI1WctIXNmE5Eoq1LXHAJh-8-IA8F5xJXVDH8vj7TYaDcAOhdGiAyU4cpJhgy_gGLitwBvqY-wF_mv8G04TPytHNG6WGrPc_Jhi9fkCd3KApfkvl42d7pTOnVLSVHVdIqUPAdqav1hNbI_9q0tuEhIEoByswSIY1ibnHppxR6eU3Nis6XM19frlxdzS4rc2XpBLz3397BizpghNgrcn4vQ_qabJZV6bcIlXGAHa1LvIEHkRSSucxIIV3Kc2lSOyDv-1FUtmMxx2IaU9WGq-UKfkbhkKukGJD9tfCsJe_4t9hnnI61CDJuNw1VPVHdAlY8kyx4h3nEQcgCUNyYXMPmNdfcZSIMyG4_maozA3N1q7Tb_3_9ljwanZ2eqJOj8fEOeYwdw6CUJN0lm4t66ffA81mYN426UfLzvvX7BnplGuA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwQDzVpQV8KBek0MR2Hj4gRGlXLYVVhajUm_FzW2mVbLO7VPvX-HXM5LGtBOLWW2SPIseezDe2Z74hZJcFxrnlWcQBziPAYxNpJm1UFN6lMpYuNMUmvo2zozPx5Tw93yC_-1wYDKvsbWJjqF1l8Yx8jxWYMilAwfZCFxZxejD6OLuKsIIU3rT25TRaFTnxq2vYvs0_HB_AWr9lbHT44_NR1FUYiGB4YhHZVPvguNaZjoP1MTr_Mo9DYdIQe858KsDAW2Y80sZJW9iM6UQk2rrEBZdweO89spnDrigekM39w_Hp9_UJDwNVB3jvkgKRpzpMMd2Q8fdYYuQWDDbVAv4CgwbhRo_Jo841pZ9aXXpCNnz5lDy8RVj4jMzHy_aGZ0ovbwg6qpJWgYInSV2tJ7RGNtimtQ0WAVEKwGaWCHAUM41LP6UwymtqVnS-nPn6YuXqanZRmUtLJ-DL__IOOuqA8WLPydmdTOoLMiir0m8RKuMA-1uXeAMPIikkc5mRQrqU59Kkdkje9bOobMdpjqU1pqoNXssVfIzCKVdJMSS7a-FZS-Xxb7F9XI61CPJvNw1VPVHd76x4JlnwDrOKg5AFYLoxuYatbK65y0QYkp1-MVVnFObqRoVf_r_7DbkPuq2-Ho9PtskDHBdGqCTpDhks6qV_BW7Qwrzu9I2Sn3et4n8A69Ygcg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+of+the+drag+reduction+effect+in+turbulent+channel+flow+by+superhydrophobic+grooved+surfaces&rft.jtitle=Flow+%28Cambridge%2C+England%29&rft.au=Safari%2C+Ali&rft.au=Saidi%2C+Mohammad+Hassan&rft.au=Salavatidezfouli%2C+Sajad&rft.au=Yao%2C+Shuhuai&rft.date=2023-09-15&rft.issn=2633-4259&rft.eissn=2633-4259&rft.volume=3&rft_id=info:doi/10.1017%2Fflo.2023.18&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_flo_2023_18
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2633-4259&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2633-4259&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2633-4259&client=summon