Numerical investigation of the drag reduction effect in turbulent channel flow by superhydrophobic grooved surfaces
Superhydrophobic surfaces (SHSs) are considered to be a promising technology for achieving skin-friction drag reduction. Development of more efficient techniques for simulating the turbulent boundary layer on SHSs continues to be a subject of interest. In this study, numerical simulations were carri...
Saved in:
Published in | Flow (Cambridge, England) Vol. 3 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Cambridge University Press
15.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Superhydrophobic surfaces (SHSs) are considered to be a promising technology for achieving skin-friction drag reduction. Development of more efficient techniques for simulating the turbulent boundary layer on SHSs continues to be a subject of interest. In this study, numerical simulations were carried out to capture near-wall behaviours due to the effect of the SHS on wall-bounded flows. To achieve this, high- to intermediate-fidelity turbulence models including Reynolds-averaged Navier–Stokes, detached eddy simulation and large eddy simulation were utilized. With regard to slip conditions, the well-known Navier slip velocity method was used over the SHS. For validating the numerical solutions, the slip velocity and skin friction over the SHS were compared with the experimental output. Results showed that the velocity profile and Reynolds stresses on the SHS were comparable to the reported results. Then, the developed models were further extended to investigate the drag reduction effect of SHSs with rectangular grooves. The subsequent results showed that the combination of superhydrophobicity and rectangular grooves led to a better performance with a maximum drag reduction of 46.1%. This is due to the surface slip caused by the SHS and the secondary vortex effect created by the grooves. Our results revealed that Reynolds stresses of the slippery grooved surface were higher than those of the case in which a shear-free condition was employed for the grooved surface. More importantly, the numerical results indicate the previous assumption of the shear-free condition is inaccurate for the geometrically simplified grooved SHSs. Therefore, geometry modifications rather than an overly simplified shear-free boundary condition should be applied in computational fluid dynamics simulations for SHSs with grooves or other complex structures. |
---|---|
AbstractList | Superhydrophobic surfaces (SHSs) are considered to be a promising technology for achieving skin-friction drag reduction. Development of more efficient techniques for simulating the turbulent boundary layer on SHSs continues to be a subject of interest. In this study, numerical simulations were carried out to capture near-wall behaviours due to the effect of the SHS on wall-bounded flows. To achieve this, high- to intermediate-fidelity turbulence models including Reynolds-averaged Navier–Stokes, detached eddy simulation and large eddy simulation were utilized. With regard to slip conditions, the well-known Navier slip velocity method was used over the SHS. For validating the numerical solutions, the slip velocity and skin friction over the SHS were compared with the experimental output. Results showed that the velocity profile and Reynolds stresses on the SHS were comparable to the reported results. Then, the developed models were further extended to investigate the drag reduction effect of SHSs with rectangular grooves. The subsequent results showed that the combination of superhydrophobicity and rectangular grooves led to a better performance with a maximum drag reduction of 46.1%. This is due to the surface slip caused by the SHS and the secondary vortex effect created by the grooves. Our results revealed that Reynolds stresses of the slippery grooved surface were higher than those of the case in which a shear-free condition was employed for the grooved surface. More importantly, the numerical results indicate the previous assumption of the shear-free condition is inaccurate for the geometrically simplified grooved SHSs. Therefore, geometry modifications rather than an overly simplified shear-free boundary condition should be applied in computational fluid dynamics simulations for SHSs with grooves or other complex structures. |
ArticleNumber | E27 |
Author | Yao, Shuhuai Safari, Ali Saidi, Mohammad Hassan Salavatidezfouli, Sajad |
Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0002-1665-3394 surname: Safari fullname: Safari, Ali – sequence: 2 givenname: Mohammad Hassan surname: Saidi fullname: Saidi, Mohammad Hassan – sequence: 3 givenname: Sajad surname: Salavatidezfouli fullname: Salavatidezfouli, Sajad – sequence: 4 givenname: Shuhuai orcidid: 0000-0001-7059-4092 surname: Yao fullname: Yao, Shuhuai |
BookMark | eNptUU1rGzEQFSGFpElO_QOCHotdfa20OpbQj0BoL81ZzEojW2azciVtiv9913YLpfQ0w5v33gxvXpPLKU9IyBvO1pxx8z6OeS2YkGveX5BroaVcKdHZy7_6K3JX644xJoxVXa-uSf06P2NJHkaaphesLW2gpTzRHGnbIg0FNrRgmP0JxRjRt4VK21yGecSpUb-FacKRLvt_0uFA67zHsj2EkvfbPCRPNyXnFwzLoETwWG_Jqwhjxbvf9YY8ffr4_f7L6vHb54f7D48rL7VqK98BxiABNLDokVmrtTUs9kMXGUqBnZJaeDGglYZb33stgCsOPvAQA5c35OHsGzLs3L6kZygHlyG5E5DLxkFpyY_opLYiYpBWqahsL6wdBgNCWQMyaBUXr7dnr33JP-YlJ7fLc5mW853otTJGdaZfWPzM8iXXWjA6n9opz1YgjY4zd3yVW6Jyx1c5ftS8-0fz59L_sX8BFMyZeQ |
CitedBy_id | crossref_primary_10_1016_j_expthermflusci_2024_111341 crossref_primary_10_1063_5_0177898 crossref_primary_10_1063_5_0237722 crossref_primary_10_1016_j_porgcoat_2024_108865 crossref_primary_10_1016_j_surfcoat_2024_131181 |
Cites_doi | 10.1063/1.5124245 10.1017/flo.2021.17 10.1142/p878 10.1115/GTINDIA2019-2525 10.1146/annurev-fluid-121108-145504 10.1017/jfm.2021.1094 10.1063/1.5000729 10.1016/j.cej.2015.03.020 10.1016/j.oceaneng.2020.107995 10.1115/1.1990201 10.1016/j.surfcoat.2021.127406 10.1146/annurev-fluid-121108-145558 10.1038/s41586-021-03658-1 10.1103/PhysRevLett.114.014501 10.1016/j.compfluid.2019.01.022 10.1140/epje/i2018-11703-y 10.1063/5.0067279 10.1017/jfm.2016.450 10.1016/j.ijheatmasstransfer.2009.09.033 10.1016/j.egypro.2018.08.047 10.1017/CBO9780511840531 10.1017/jfm.2019.419 10.1016/j.apsusc.2020.145754 10.1017/jfm.2018.210 10.1016/B978-0-12-820774-1.00010-0 10.1007/978-94-007-4786-9_21 10.1016/j.energy.2017.02.117 10.1016/j.compfluid.2013.03.006 10.3390/en10122116 10.1016/j.applthermaleng.2017.11.039 10.1016/j.ijft.2021.100077 10.18869/acadpub.jafm.73.242.27724 10.1016/j.ijft.2020.100053 10.1063/1.4819144 10.1063/5.0056952 10.1063/1.4791602 10.1063/1.5090514 10.1145/166117.166151 10.1063/1.1755723 10.2478/IJNAOE-2013-0107 10.1016/j.powtec.2018.01.025 10.1063/1.4719780 |
ContentType | Journal Article |
Copyright | The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG AEUYN AFKRA ARAPS BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO HCIFZ P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
DOI | 10.1017/flo.2023.18 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Open Access资源_DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2633-4259 |
ExternalDocumentID | oai_doaj_org_article_3692fed3944f498299bb7a2497a3d64f 10_1017_flo_2023_18 |
GroupedDBID | 09C 09E 0R~ AANRG AASVR AAYXX ABGDZ ABXHF ACAJB ACDLN ACZWT ADDNB ADKIL ADVJH AEUYN AFKRA AFZFC AGABE AGBYD AGJUD AHRGI AKMAY ALMA_UNASSIGNED_HOLDINGS AQJOH ARAPS BENPR BGLVJ BHPHI BKSAR BLZWO CCPQU CCQAD CITATION CJCSC GROUPED_DOAJ HCIFZ IKXGN IPYYG M~E NQS OK1 PCBAR PHGZM PHGZT RCA ROL WFFJZ 8FE 8FG ARCSS DWQXO P62 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c364t-c5aefd3aa6a0fce09966970f8b5f0e32e54362c2be93719c8c62a141acd1dfd13 |
IEDL.DBID | DOA |
ISSN | 2633-4259 |
IngestDate | Wed Aug 27 01:24:08 EDT 2025 Fri Jul 25 03:23:25 EDT 2025 Tue Jul 01 03:29:09 EDT 2025 Thu Apr 24 22:58:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-c5aefd3aa6a0fce09966970f8b5f0e32e54362c2be93719c8c62a141acd1dfd13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7059-4092 0000-0002-1665-3394 |
OpenAccessLink | https://doaj.org/article/3692fed3944f498299bb7a2497a3d64f |
PQID | 2864774578 |
PQPubID | 5528236 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3692fed3944f498299bb7a2497a3d64f proquest_journals_2864774578 crossref_citationtrail_10_1017_flo_2023_18 crossref_primary_10_1017_flo_2023_18 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-15 |
PublicationDateYYYYMMDD | 2023-09-15 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Flow (Cambridge, England) |
PublicationYear | 2023 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | Wilcox (S2633425923000181_ref44) 1998; 2 S2633425923000181_ref21 S2633425923000181_ref43 S2633425923000181_ref20 S2633425923000181_ref42 S2633425923000181_ref41 S2633425923000181_ref40 S2633425923000181_ref46 S2633425923000181_ref24 S2633425923000181_ref45 S2633425923000181_ref23 S2633425923000181_ref22 S2633425923000181_ref29 S2633425923000181_ref28 S2633425923000181_ref27 S2633425923000181_ref26 Rowin (S2633425923000181_ref33) 2020; 32 S2633425923000181_ref1 S2633425923000181_ref2 S2633425923000181_ref3 S2633425923000181_ref32 S2633425923000181_ref10 S2633425923000181_ref4 S2633425923000181_ref31 S2633425923000181_ref5 Menter (S2633425923000181_ref25) 2003; 4 S2633425923000181_ref30 S2633425923000181_ref6 S2633425923000181_ref7 S2633425923000181_ref36 S2633425923000181_ref14 S2633425923000181_ref13 S2633425923000181_ref35 S2633425923000181_ref12 S2633425923000181_ref11 S2633425923000181_ref18 S2633425923000181_ref39 S2633425923000181_ref17 S2633425923000181_ref38 S2633425923000181_ref16 S2633425923000181_ref15 S2633425923000181_ref37 Saadat-Bakhsh (S2633425923000181_ref34) 2017; 10 S2633425923000181_ref19 S2633425923000181_ref8 S2633425923000181_ref9 |
References_xml | – ident: S2633425923000181_ref46 doi: 10.1063/1.5124245 – volume: 4 start-page: 625 year: 2003 ident: S2633425923000181_ref25 article-title: Ten years of industrial experience with the SST turbulence model publication-title: Turbulence, Heat and Mass Transfer – ident: S2633425923000181_ref11 doi: 10.1017/flo.2021.17 – ident: S2633425923000181_ref36 doi: 10.1142/p878 – ident: S2633425923000181_ref43 doi: 10.1115/GTINDIA2019-2525 – ident: S2633425923000181_ref6 doi: 10.1146/annurev-fluid-121108-145504 – ident: S2633425923000181_ref14 doi: 10.1017/jfm.2021.1094 – ident: S2633425923000181_ref17 doi: 10.1063/1.5000729 – ident: S2633425923000181_ref5 doi: 10.1016/j.cej.2015.03.020 – ident: S2633425923000181_ref41 doi: 10.1016/j.oceaneng.2020.107995 – volume: 2 volume-title: Turbulence modeling for CFD year: 1998 ident: S2633425923000181_ref44 – ident: S2633425923000181_ref7 doi: 10.1115/1.1990201 – ident: S2633425923000181_ref30 doi: 10.1016/j.surfcoat.2021.127406 – ident: S2633425923000181_ref32 doi: 10.1146/annurev-fluid-121108-145558 – ident: S2633425923000181_ref9 doi: 10.1038/s41586-021-03658-1 – ident: S2633425923000181_ref40 doi: 10.1103/PhysRevLett.114.014501 – ident: S2633425923000181_ref10 doi: 10.1016/j.compfluid.2019.01.022 – ident: S2633425923000181_ref21 doi: 10.1140/epje/i2018-11703-y – ident: S2633425923000181_ref16 doi: 10.1063/5.0067279 – ident: S2633425923000181_ref23 doi: 10.1017/jfm.2016.450 – ident: S2633425923000181_ref18 doi: 10.1016/j.ijheatmasstransfer.2009.09.033 – ident: S2633425923000181_ref15 – ident: S2633425923000181_ref20 doi: 10.1016/j.egypro.2018.08.047 – ident: S2633425923000181_ref29 doi: 10.1017/CBO9780511840531 – ident: S2633425923000181_ref1 doi: 10.1017/jfm.2019.419 – ident: S2633425923000181_ref27 doi: 10.1016/j.apsusc.2020.145754 – ident: S2633425923000181_ref12 doi: 10.1017/jfm.2018.210 – ident: S2633425923000181_ref39 doi: 10.1016/B978-0-12-820774-1.00010-0 – ident: S2633425923000181_ref37 doi: 10.1007/978-94-007-4786-9_21 – ident: S2633425923000181_ref42 doi: 10.1016/j.energy.2017.02.117 – ident: S2633425923000181_ref13 doi: 10.1016/j.compfluid.2013.03.006 – ident: S2633425923000181_ref22 doi: 10.3390/en10122116 – ident: S2633425923000181_ref8 doi: 10.1016/j.applthermaleng.2017.11.039 – ident: S2633425923000181_ref19 doi: 10.1016/j.ijft.2021.100077 – volume: 10 start-page: 1363 year: 2017 ident: S2633425923000181_ref34 article-title: On the mechanism of drag reduction in fully-developed turbulent channel flow with a streamwise microfeatured superhydrophobic wall publication-title: Journal of Applied Fluid Mechanics doi: 10.18869/acadpub.jafm.73.242.27724 – ident: S2633425923000181_ref38 doi: 10.1016/j.ijft.2020.100053 – ident: S2633425923000181_ref28 doi: 10.1063/1.4819144 – volume: 32 start-page: 7 year: 2020 ident: S2633425923000181_ref33 article-title: Effect of Reynolds number on turbulent channel flow over a superhydrophobic surface publication-title: Physics of Fluids – ident: S2633425923000181_ref45 doi: 10.1063/5.0056952 – ident: S2633425923000181_ref2 doi: 10.1063/1.4791602 – ident: S2633425923000181_ref31 doi: 10.1063/1.5090514 – ident: S2633425923000181_ref4 doi: 10.1145/166117.166151 – ident: S2633425923000181_ref26 doi: 10.1063/1.1755723 – ident: S2633425923000181_ref24 doi: 10.2478/IJNAOE-2013-0107 – ident: S2633425923000181_ref35 doi: 10.1016/j.powtec.2018.01.025 – ident: S2633425923000181_ref3 doi: 10.1063/1.4719780 |
SSID | ssj0002794584 |
Score | 2.2847328 |
Snippet | Superhydrophobic surfaces (SHSs) are considered to be a promising technology for achieving skin-friction drag reduction. Development of more efficient... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
SubjectTerms | Boundary conditions Boundary layers Channel flow Computational fluid dynamics Cost control Detached eddy simulation Drag reduction Energy consumption Fluid dynamics Fluid flow Free boundaries Friction Friction drag Friction reduction Grooved surfaces Grooves Hydrodynamics Hydrophobic surfaces Hydrophobicity Interfaces Investigations Large eddy simulation LES Methods Numerical analysis Reynolds averaged Navier-Stokes method Shear Shear stress Simulation Skin friction Slip velocity Stresses Superhydrophobic surfaces Turbulence models Turbulent boundary layer Turbulent channel flow Turbulent flow Velocity Velocity distribution Vortices |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fSxwxEA6tvrQPUqvFs1by4FNhdTfJ7iZPpRZFCj1EKvgW8vMUjt1z787if9-Z3dwpKL4tyTxkk8l8k2TmG0KOWGScO15lHOA8Azy2mWHKZVIGX6pc-dgXm_gzri6uxe-b8iZduM1TWOXKJvaG2rcO78hPmMSUSQEK9mN2n2HVKHxdTSU03pNNMMESDl-bp2fjy6v1LQsDdQOITYl5yBUdp5jyx_gxlvl4BkU9Y_8Lg9yjzPknspXcQ_pzWM9t8i40n8nHZ6SBO2Q-Xg6vLFN690SS0Ta0jRS8Oeo7M6EdMrL2rUPABohSABe7RJChmO3bhCmFUf6j9pHOl7PQ3T76rp3dtvbO0Qn40w_BQ0cXMWZrl1yfn_39dZGl0gkZzLtYZK40IXpuTGXy6EKOpxpV51HaMuaBs1AKQC7HbEA-POWkq5gpRGGcL3z0Bf9CNpq2CXuEqjzCGdMXwcKHKKRivrJKKF_yWtnSjcj31Sxql3jFsbzFVA8BZLWGn9E45bqQI3K0Fp4NdBqvi53icqxFkAO7b2i7iU5bSvNKsRg8ZvZGoSTgqrW1geNkbbivRByRg9Vi6rQx5_pJjfbf7v5KPuBgMDSkKA_IxqJbhm_gfyzsYVKy_1ee3hs priority: 102 providerName: ProQuest |
Title | Numerical investigation of the drag reduction effect in turbulent channel flow by superhydrophobic grooved surfaces |
URI | https://www.proquest.com/docview/2864774578 https://doaj.org/article/3692fed3944f498299bb7a2497a3d64f |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEF9a-2IfpNqKZ_XYB58KaZPdTbL7qOVOETxKqeDbsp9-cCRH7k7xpX-7M0nUAwVffAlhM5DN7GR-O-zMbwg5YJFx7niRcIDzBPDYJoYpl0gZfK5S5WPbbOJsUpyci9OL_GKl1RfmhHX0wJ3ifvFCsRg81m9GoSR4T2tLA0FDabgvRETvC5i3EkzdtMdpCg8A-4I85IiOUyz1Y_wntvdYgaCWqf-FI27RZfyFbPTbQnrYTWeTfAjVFvm8Qhb4lcwny-50ZUqvn8kx6orWkcIujvrGXNIGmVjb0S5RA0QpgIpdIrhQrPKtwpTCLO-ovafz5Sw0V_e-qWdXtb129BL20bfBw4MmYq7WN3I-Hv37fZL0LRMS0LdYJC43IXpuTGHS6EKK0Ywq0yhtHtPAWcgFIJZjNiAPnnLSFcxkIjPOZz76jG-Ttaquwg6hKo0QW_osWLgRmVTMF1YJ5XNeKpu7AfnxqEXtej5xbGsx1V3iWKnhYzSqXGdyQA6ehGcdjcbrYke4HE8iyH3dDoBF6N4i9FsWMSB7j4up-x9yrpnEilsB_mn3Pd7xnazjlDFxJMv3yNqiWYZ92J0s7JB8lOPjIfl0NJr8-TtszRKuZ_9HD8ZN6Fs |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFPdPsCHckEKJLbz8AFV5bFsabunVurN-LmttEqW7C7V_il-Y2fy2FYCcestckaRY4_nG9sz3xCyzwLj3PIs4gDnEeCxiTSTNioK71IZSxeaYhOn42x0Ln5cpBcb5E-fC4Nhlb1NbAy1qyyekX9kBaZMClCwg9mvCKtG4e1qX0KjVYtjv7qGLdv809FXmN93jA2_nX0ZRV1VgQi6JBaRTbUPjmud6ThYH6PDL_M4FCYNsefMpwKMumXGI1WctIXNmE5Eoq1LXHAJh-8-IA8F5xJXVDH8vj7TYaDcAOhdGiAyU4cpJhgy_gGLitwBvqY-wF_mv8G04TPytHNG6WGrPc_Jhi9fkCd3KApfkvl42d7pTOnVLSVHVdIqUPAdqav1hNbI_9q0tuEhIEoByswSIY1ibnHppxR6eU3Nis6XM19frlxdzS4rc2XpBLz3397BizpghNgrcn4vQ_qabJZV6bcIlXGAHa1LvIEHkRSSucxIIV3Kc2lSOyDv-1FUtmMxx2IaU9WGq-UKfkbhkKukGJD9tfCsJe_4t9hnnI61CDJuNw1VPVHdAlY8kyx4h3nEQcgCUNyYXMPmNdfcZSIMyG4_maozA3N1q7Tb_3_9ljwanZ2eqJOj8fEOeYwdw6CUJN0lm4t66ffA81mYN426UfLzvvX7BnplGuA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwQDzVpQV8KBek0MR2Hj4gRGlXLYVVhajUm_FzW2mVbLO7VPvX-HXM5LGtBOLWW2SPIseezDe2Z74hZJcFxrnlWcQBziPAYxNpJm1UFN6lMpYuNMUmvo2zozPx5Tw93yC_-1wYDKvsbWJjqF1l8Yx8jxWYMilAwfZCFxZxejD6OLuKsIIU3rT25TRaFTnxq2vYvs0_HB_AWr9lbHT44_NR1FUYiGB4YhHZVPvguNaZjoP1MTr_Mo9DYdIQe858KsDAW2Y80sZJW9iM6UQk2rrEBZdweO89spnDrigekM39w_Hp9_UJDwNVB3jvkgKRpzpMMd2Q8fdYYuQWDDbVAv4CgwbhRo_Jo841pZ9aXXpCNnz5lDy8RVj4jMzHy_aGZ0ovbwg6qpJWgYInSV2tJ7RGNtimtQ0WAVEKwGaWCHAUM41LP6UwymtqVnS-nPn6YuXqanZRmUtLJ-DL__IOOuqA8WLPydmdTOoLMiir0m8RKuMA-1uXeAMPIikkc5mRQrqU59Kkdkje9bOobMdpjqU1pqoNXssVfIzCKVdJMSS7a-FZS-Xxb7F9XI61CPJvNw1VPVHd76x4JlnwDrOKg5AFYLoxuYatbK65y0QYkp1-MVVnFObqRoVf_r_7DbkPuq2-Ho9PtskDHBdGqCTpDhks6qV_BW7Qwrzu9I2Sn3et4n8A69Ygcg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+of+the+drag+reduction+effect+in+turbulent+channel+flow+by+superhydrophobic+grooved+surfaces&rft.jtitle=Flow+%28Cambridge%2C+England%29&rft.au=Safari%2C+Ali&rft.au=Saidi%2C+Mohammad+Hassan&rft.au=Salavatidezfouli%2C+Sajad&rft.au=Yao%2C+Shuhuai&rft.date=2023-09-15&rft.issn=2633-4259&rft.eissn=2633-4259&rft.volume=3&rft_id=info:doi/10.1017%2Fflo.2023.18&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_flo_2023_18 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2633-4259&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2633-4259&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2633-4259&client=summon |