Two-Layer-Graph Clustering for Real-Time 3D LiDAR Point Cloud Segmentation
The perception system has become a topic of great importance for autonomous vehicles, as high accuracy and real-time performance can ensure safety in complex urban scenarios. Clustering is a fundamental step for parsing point cloud due to the extensive input data (over 100,000 points) of a wide vari...
Saved in:
Published in | Applied sciences Vol. 10; no. 23; p. 8534 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The perception system has become a topic of great importance for autonomous vehicles, as high accuracy and real-time performance can ensure safety in complex urban scenarios. Clustering is a fundamental step for parsing point cloud due to the extensive input data (over 100,000 points) of a wide variety of complex objects. It is still challenging to achieve high precision real-time performance with limited vehicle-mounted computing resources, which need to balance the accuracy and processing time. We propose a method based on a Two-Layer-Graph (TLG) structure, which can be applied in a real autonomous vehicle under urban scenarios. TLG can describe the point clouds hierarchically, we use a range graph to represent point clouds and a set graph for point cloud sets, which reduce both processing time and memory consumption. In the range graph, Euclidean distance and the angle of the sensor position with two adjacent vectors (calculated from continuing points to different direction) are used as the segmentation standard, which use the local concave features to distinguish different objects close to each other. In the set graph, we use the start and end position to express the whole set of continuous points concisely, and an improved Breadth-First-Search (BFS) algorithm is designed to update categories of point cloud sets between different channels. This method is evaluated on real vehicles and major datasets. The results show that TLG succeeds in providing a real-time performance (less than 20 ms per frame), and a high segmentation accuracy rate (93.64%) for traffic objects in the road of urban scenarios. |
---|---|
AbstractList | The perception system has become a topic of great importance for autonomous vehicles, as high accuracy and real-time performance can ensure safety in complex urban scenarios. Clustering is a fundamental step for parsing point cloud due to the extensive input data (over 100,000 points) of a wide variety of complex objects. It is still challenging to achieve high precision real-time performance with limited vehicle-mounted computing resources, which need to balance the accuracy and processing time. We propose a method based on a Two-Layer-Graph (TLG) structure, which can be applied in a real autonomous vehicle under urban scenarios. TLG can describe the point clouds hierarchically, we use a range graph to represent point clouds and a set graph for point cloud sets, which reduce both processing time and memory consumption. In the range graph, Euclidean distance and the angle of the sensor position with two adjacent vectors (calculated from continuing points to different direction) are used as the segmentation standard, which use the local concave features to distinguish different objects close to each other. In the set graph, we use the start and end position to express the whole set of continuous points concisely, and an improved Breadth-First-Search (BFS) algorithm is designed to update categories of point cloud sets between different channels. This method is evaluated on real vehicles and major datasets. The results show that TLG succeeds in providing a real-time performance (less than 20 ms per frame), and a high segmentation accuracy rate (93.64%) for traffic objects in the road of urban scenarios. |
Author | Liang, Huawei Lin, Linglong Huang, Weixin Yang, Haozhe Xu, Fengyu Wang, Zhiling |
Author_xml | – sequence: 1 givenname: Haozhe surname: Yang fullname: Yang, Haozhe – sequence: 2 givenname: Zhiling surname: Wang fullname: Wang, Zhiling – sequence: 3 givenname: Linglong orcidid: 0000-0002-0941-2402 surname: Lin fullname: Lin, Linglong – sequence: 4 givenname: Huawei surname: Liang fullname: Liang, Huawei – sequence: 5 givenname: Weixin surname: Huang fullname: Huang, Weixin – sequence: 6 givenname: Fengyu surname: Xu fullname: Xu, Fengyu |
BookMark | eNptUU1Lw0AUXKSCtfbkHwh4lOh-ZZM9llZrpaDUel42m7d1S5qNmwTpvzdahSK-y3s8ZoYZ5hwNKl8BQpcE3zAm8a2ua4IpyxLGT9CQ4lTEjJN0cHSfoXHTbHE_krCM4CF6XH_4eKn3EOJ50PVbNC27poXgqk1kfYhWoMt47XYQsVm0dLPJKnr2rmp7nO-K6AU2O6ha3TpfXaBTq8sGxj97hF7v79bTh3j5NF9MJ8vYMMHb2HBDueBJQWyeF4IxIWgBkmfaMs0YpIWUCc2JpFlBgMpEWEupzY0GBrjgbIQWB93C662qg9vpsFdeO_X98GGjdGidKUFRbMDmWR9d5DwxRMrUMNDc0jQXBpte6-qgVQf_3kHTqq3vQtXbV73JlPIkIVmPIgeUCb5pAlhl3CFzG7QrFcHqqwF11EDPuf7D-XX6H_oTFbKGww |
CitedBy_id | crossref_primary_10_1007_s12559_023_10211_x crossref_primary_10_3390_rs13204123 crossref_primary_10_3390_rs15010131 crossref_primary_10_3390_s23136119 crossref_primary_10_1007_s10489_022_03576_3 crossref_primary_10_1021_acsomega_1c04393 crossref_primary_10_1109_LRA_2022_3182096 crossref_primary_10_3390_rs13163239 crossref_primary_10_3788_LOP221510 crossref_primary_10_1109_TCSII_2022_3185228 crossref_primary_10_3390_wevj13070130 |
Cites_doi | 10.1109/ROBOT.2008.4543832 10.1109/ICRA.2017.7989591 10.1109/ICCV.2019.00939 10.1109/IROS.2013.6696957 10.1016/j.isprsjprs.2015.01.011 10.1109/JSTARS.2018.2817227 10.1002/rob.20147 10.1109/LRA.2020.2965389 10.3390/rs8010005 10.1109/IROS.2016.7759050 10.1016/j.cag.2015.01.006 10.5194/isprs-annals-IV-1-W1-43-2017 10.4271/2016-01-0128 10.1016/j.isprsjprs.2015.01.016 10.1109/TGRS.2016.2554563 10.1109/IVS.2010.5548059 10.1016/j.isprsjprs.2019.12.008 10.1109/JSTARS.2014.2361430 10.1109/ITSC.2018.8569999 10.1109/JSTARS.2014.2349003 10.1016/j.eswa.2020.113816 10.1109/ROBIO49542.2019.8961567 10.1109/ICRA.2011.5979818 10.1109/ICVES.2018.8519488 10.1109/IROS40897.2019.8968026 10.5194/isprs-annals-III-3-201-2016 10.1007/s10514-019-09883-y 10.5194/isprsarchives-XXXIX-B3-167-2012 10.1016/j.robot.2013.07.001 10.1109/ICISC.2018.8398899 10.1109/PRRS.2016.7867013 10.1016/j.isprsjprs.2014.04.022 10.1109/IVS.2018.8500552 10.1109/ICInfA.2018.8812461 10.1109/CVPR.2012.6248074 10.1002/rob.20255 10.3390/rs9050433 10.1016/j.isprsjprs.2018.01.013 10.1109/MGRS.2016.2561021 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app10238534 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_20cefb83416b45c1997c3ea4f27b6c0c 10_3390_app10238534 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c364t-c4c24645d1fbbd633662de948af3a33e7d9952b1928d1e2956ff22fbcae3e0d43 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:08:05 EDT 2025 Mon Jun 30 11:11:43 EDT 2025 Tue Jul 01 03:14:50 EDT 2025 Thu Apr 24 23:11:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-c4c24645d1fbbd633662de948af3a33e7d9952b1928d1e2956ff22fbcae3e0d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0941-2402 |
OpenAccessLink | https://doaj.org/article/20cefb83416b45c1997c3ea4f27b6c0c |
PQID | 2467245518 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_20cefb83416b45c1997c3ea4f27b6c0c proquest_journals_2467245518 crossref_citationtrail_10_3390_app10238534 crossref_primary_10_3390_app10238534 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Wang (ref_34) 2017; 55 Adam (ref_20) 2018; 4 Vo (ref_25) 2015; 104 Koopman (ref_5) 2016; 4 Hu (ref_24) 2020; 5 ref_14 ref_36 ref_13 Zhicheng (ref_38) 2020; 48 ref_12 ref_10 ref_31 Xiao (ref_26) 2013; 61 Wang (ref_33) 2014; 8 Xu (ref_32) 2018; 11 ref_19 ref_16 ref_15 Schmitt (ref_35) 2016; 4 ref_37 Xu (ref_11) 2017; 4 Ural (ref_17) 2012; XXXIX-B3 Lu (ref_30) 2016; 3 Badue (ref_4) 2021; 165 Urmson (ref_7) 2008; 8 Yan (ref_3) 2020; 44 Jiayuan (ref_39) 2020; 160 ref_22 ref_21 ref_43 Yan (ref_18) 2014; 94 ref_42 Thrun (ref_8) 2006; 9 Dong (ref_27) 2018; 137 ref_1 ref_2 ref_29 Weinmann (ref_23) 2015; 49 ref_9 Weinmann (ref_40) 2015; 105 Chen (ref_28) 2014; 7 Divyakant (ref_41) 2020; 16 ref_6 |
References_xml | – ident: ref_37 doi: 10.1109/ROBOT.2008.4543832 – ident: ref_14 doi: 10.1109/ICRA.2017.7989591 – ident: ref_42 doi: 10.1109/ICCV.2019.00939 – ident: ref_29 doi: 10.1109/IROS.2013.6696957 – volume: 104 start-page: 88 year: 2015 ident: ref_25 article-title: Octree-based region growing for point cloud segmentation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.01.011 – volume: 11 start-page: 4270 year: 2018 ident: ref_32 article-title: Unsupervised segmentation of point clouds from buildings using hierarchical clustering based on gestalt principles publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2817227 – volume: 9 start-page: 661 year: 2006 ident: ref_8 article-title: Stanley: The robot that won the DARPA Grand Challenge publication-title: J. Field Robot. doi: 10.1002/rob.20147 – volume: 5 start-page: 875 year: 2020 ident: ref_24 article-title: Learning to Optimally Segment Point Clouds publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2020.2965389 – ident: ref_21 doi: 10.3390/rs8010005 – ident: ref_13 doi: 10.1109/IROS.2016.7759050 – volume: 49 start-page: 47 year: 2015 ident: ref_23 article-title: Distinctive 2D and 3D features for automated large-scale scene analysis in urban areas publication-title: Comput. Graph. doi: 10.1016/j.cag.2015.01.006 – volume: 4 start-page: 43 year: 2017 ident: ref_11 article-title: Voxel-and graph-based point cloud segmentation of 3d scenes using perceptual grouping laws publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-annals-IV-1-W1-43-2017 – volume: 4 start-page: 15 year: 2016 ident: ref_5 article-title: Challenges in autonomous vehicle testing and validation publication-title: Sae Int. J. Transp. Saf. doi: 10.4271/2016-01-0128 – volume: 105 start-page: 286 year: 2015 ident: ref_40 article-title: Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.01.016 – volume: 55 start-page: 14 year: 2017 ident: ref_34 article-title: Fusing meter-resolution 4-d insar point clouds and optical images for semantic urban infrastructure monitoring publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2554563 – ident: ref_9 doi: 10.1109/IVS.2010.5548059 – volume: 160 start-page: 244 year: 2020 ident: ref_39 article-title: Robust point cloud registration based on topological graph and Cauchy weighted lq-norm publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.12.008 – volume: 8 start-page: 953 year: 2014 ident: ref_33 article-title: Automatic feature-based geometric fusion of multiview tomosar point clouds in urban area publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2361430 – ident: ref_15 doi: 10.1109/ITSC.2018.8569999 – volume: 7 start-page: 4199 year: 2014 ident: ref_28 article-title: A methodology for automated segmentation and reconstruction of urban 3-d buildings from als point clouds publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote doi: 10.1109/JSTARS.2014.2349003 – volume: 165 start-page: 113816 year: 2021 ident: ref_4 article-title: Self-Driving Cars: A Survey publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113816 – ident: ref_6 doi: 10.1109/ROBIO49542.2019.8961567 – ident: ref_19 doi: 10.1109/ICRA.2011.5979818 – volume: 16 start-page: 1030 year: 2020 ident: ref_41 article-title: Performance evaluation of choice set generation algorithms for analyzing truck route choice: Insights from spatial aggregation for the breadth first search link elimination (BFS-LE) algorithm publication-title: Transp. Transp. Sci. – ident: ref_2 doi: 10.1109/ICVES.2018.8519488 – ident: ref_36 doi: 10.1109/IROS40897.2019.8968026 – volume: 3 start-page: 201 year: 2016 ident: ref_30 article-title: Pairwise linkage for point cloud segmentation publication-title: ISPRS Ann. Photogramm. Remote. Sens. SpatialInforma doi: 10.5194/isprs-annals-III-3-201-2016 – volume: 44 start-page: 147 year: 2020 ident: ref_3 article-title: Online learning for 3D LiDAR-based human detection: Experimental analysis of point cloud clustering and classification methods publication-title: Auton. Robot. doi: 10.1007/s10514-019-09883-y – volume: XXXIX-B3 start-page: 167 year: 2012 ident: ref_17 article-title: Min-cut based segmentation of airborne lidar point clouds publication-title: Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. doi: 10.5194/isprsarchives-XXXIX-B3-167-2012 – volume: 48 start-page: 1377 year: 2020 ident: ref_38 article-title: Point Cloud Instance Segmentation Method Based on Superpoint Graph publication-title: Tongji Daxue Xuebao/J. Tongji Univ. – volume: 61 start-page: 1641 year: 2013 ident: ref_26 article-title: Three-dimensional point cloud plane segmentation in both structured and unstructured environments publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2013.07.001 – ident: ref_10 doi: 10.1109/ICISC.2018.8398899 – ident: ref_31 doi: 10.1109/PRRS.2016.7867013 – ident: ref_12 – volume: 94 start-page: 183 year: 2014 ident: ref_18 article-title: A global optimization approach to roof segmentation from airborne lidar point clouds publication-title: J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.04.022 – volume: 4 start-page: 1 year: 2018 ident: ref_20 article-title: H-ransac: A hybrid point cloud segmentation combining 2d and 3d data publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. – ident: ref_16 doi: 10.1109/IVS.2018.8500552 – ident: ref_1 doi: 10.1109/ICInfA.2018.8812461 – ident: ref_43 doi: 10.1109/CVPR.2012.6248074 – volume: 8 start-page: 425 year: 2008 ident: ref_7 article-title: Autonomous driving in urban environments: Boss and the Urban Challenge publication-title: J. Field Robot. doi: 10.1002/rob.20255 – ident: ref_22 doi: 10.3390/rs9050433 – volume: 137 start-page: 112 year: 2018 ident: ref_27 article-title: An efficient global energy optimization approach for robust 3d plane segmentation of point clouds publication-title: J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.01.013 – volume: 4 start-page: 6 year: 2016 ident: ref_35 article-title: Data fusion and remote sensing: An ever-growing relationship publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2016.2561021 |
SSID | ssj0000913810 |
Score | 2.2542717 |
Snippet | The perception system has become a topic of great importance for autonomous vehicles, as high accuracy and real-time performance can ensure safety in complex... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 8534 |
SubjectTerms | Accuracy Algorithms Autonomous vehicles cluster Clustering Design graph structure improved BFS Methods point cloud real time Sensors |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxwxDLbocmkPCGirLo8qBw5tpaizTuZ1QrwRoghtQeI2mrwQEswAuyv-PvZsdqEq4jrjXJzY_uzEnwG2asPztX2QmNdaMqG3LFOjpcKasmcsa2e5oP_nLDu-1CdX6VUsuI3is8qZT-wctWst18h_I1k0auYP275_kDw1im9X4wiND7BILrgoerC4e3B2PpxXWZj1shgk08Y8Rfk93wszWwFFKf1PKOoY-_9zyF2UOVyGpQgPxc50P1dgwTer8OkVaeAqrERzHIkfkTP652c4uXhq5WlN-FkeMQW12LudMAUCrRAES8WQ8KDkdg-h9sXpzf7OUJy3N82Y5NqJE3_99V1sQmq-wOXhwcXesYxjEqRVmR5Lqy3y_aQbBGNcplSWofOlLuqgSOE-d2WZoiEoV7iBR0qIQkAMxtZe-cRp9RV6Tdv4byByZRIdBgHL4LQpLcEDWpjq3AaDWGR9-DXTWGUjhziPsritKJdg9Vav1NuHrbnw_ZQ6422xXVb9XIT5rrsP7eN1Fc2nwsT6YAoKuZnRqeXXMVb5WgfMTWYT24eN2cZV0QhH1cuRWXv_9zp8RE6ju1cqG9AbP078JmGNsfkeD9QzgJbSAQ priority: 102 providerName: ProQuest |
Title | Two-Layer-Graph Clustering for Real-Time 3D LiDAR Point Cloud Segmentation |
URI | https://www.proquest.com/docview/2467245518 https://doaj.org/article/20cefb83416b45c1997c3ea4f27b6c0c |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB58XPQg1gdWa8mhBxUCbZJ9HfuwFdEiVcHbsnmJoFvRFv--M7tbqSh48bpM2OWbZOabTfINQCvT1F_beS6iTHES9OZJoBWXIsPqWSSZNfRD_3ocXtyry4fgYanVF50JK-WBS-CwODfO6xiDbahVYOhchJEuU15EOjRtQ9EXc95SMVXE4KRD0lXlhTyJdT3tB5NKAWYn9S0FFUr9PwJxkV2G27BV0ULWLT-nBisu34HNJbHAHahVy_CdnVRa0ae7cHn3MeVXGfJmPiLpadZ_npP0AY5gSEfZBHkgp2seTA7Y1dOgO2E306d8hnbTuWW37vGlunyU78H98Pyuf8Gr9gjcyFDNuFFG0L6k7XitbShlGArrEhVnXiLQLrJJEgiNFC62HSewEPJeCK9N5qRrWyX3YS2f5u4AWCR1W_mOF4m3SicGaQEODFRkvBYiDutwtkAsNZV2OLWweE6xhiB40yV469D6Mn4tJTN-N-sR9F8mpHNdPEDvp5X307-8X4fGwnFptfjeU0QlEoqk5g7_4x1HsCGoyC7OsDRgbfY2d8fIRGa6CavxcNSE9d75-GbSLKbgJ_Uf3AU |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiBYQgQJ7KBIgrXBm168DQqUhTdu0QiWVejPeV1Wp2KVJVPGn-I3MOHYoAnHr1Z61rNmZnW92d74B2CwN99f2QWJaasmE3jKPjZYKS8qeMS-d5Q39g8NkdKz3TuKTFfjZ1cLwtcpuTWwWaldb3iN_h-TRqJk_7MPFd8ldo_h0tWuhsTCLff_jilK26fvdAc3vK8Thp8n2SLZdBaRViZ5Jqy3ycZ7rB2NcolSSoPO5zsqg6P986vI8RkPIJ3N9j5Q_hIAYjC298pHTir57C25rRZGcK9OHO8s9HebYzPrRogyQ3kd8Cs3cCBQT9R-Br-kP8Nfy38S04QO434JRsbWwnjVY8dU63LtGUbgOa63zT8XrlqH6zUPYm1zVclwSWpc7THgtts_nTLhAIwSBYHFE6FNycYlQAzE-G2wdic_1WTUjuXruxBd_-q0teaoewfGNqO8xrFZ15Z-ASJWJdOgHzIPTJrcERmhgrFMbDGKW9OBtp7HCtozl3DjjvKDMhdVbXFNvDzaXwhcLoo5_i31k1S9FmF27eVBfnhatsxYYWR9MRgE-MTq2fBfHKl_qgKlJbGR7sNFNXNG6_LT4baBP___6JdwZTQ7GxXj3cP8Z3EVO4Jv7MRuwOruc--eEcmbmRWNaAr7etC3_AuC6DiQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxNBEB9qCqIPYqtitOo-VFBh6WV37-tBpG0a-xFDiC307Xr7VQr1rjYJxX_Nv86Zy16sKL719W72OGZn52Nn5jcAm6Wm-drOc5GWihOgN89jrbgUJUbPIi-toQv9L6Nk_0QdnsanK_Cz7YWhsspWJzaK2taG7si3BJ5ooQg_bMuHsohxf_Dp6junCVKUaW3HaSxE5Mj9uMHwbfrxoI97_VaIwd7x7j4PEwa4kYmacaOMoNSe7XmtbSJlkgjrcpWVXuK_utTmeSw0ekGZ7TmBsYT3QnhtSiddZJXE796D1ZSiog6s7uyNxpPlDQ8hbma9aNEUKGUeUU6akBLQQqo_zGAzLeAvY9BYuMFjeBRcU7a9kKU1WHHVOjy8BVi4DmtBFUzZu4BX_f4JHB7f1HxYou_OPxP8Ndu9nBP8Aq5g6BKzCfqinFpNmOyz4UV_e8LG9UU1Q7p6btlXd_4tNEBVT-HkThj4DDpVXbnnwFKpI-V7XuTeKp0bdE1wYaxS47UQWdKFDy3HChPwy2mMxmWBcQyxt7jF3i5sLomvFrAd_ybbIdYvSQhru3lQX58X4egWIjLO6wzNfaJVbKgyx0hXKi9SnZjIdGGj3bgiKIBp8VtcX_z_9Ru4j3JcDA9GRy_hgaBovimW2YDO7HruXqHLM9Ovg2wxOLtrcf4F3QgTtg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Layer-Graph+Clustering+for+Real-Time+3D+LiDAR+Point+Cloud+Segmentation&rft.jtitle=Applied+sciences&rft.au=Haozhe+Yang&rft.au=Zhiling+Wang&rft.au=Linglong+Lin&rft.au=Huawei+Liang&rft.date=2020-12-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=10&rft.issue=23&rft.spage=8534&rft_id=info:doi/10.3390%2Fapp10238534&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_20cefb83416b45c1997c3ea4f27b6c0c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |