Two-Layer-Graph Clustering for Real-Time 3D LiDAR Point Cloud Segmentation

The perception system has become a topic of great importance for autonomous vehicles, as high accuracy and real-time performance can ensure safety in complex urban scenarios. Clustering is a fundamental step for parsing point cloud due to the extensive input data (over 100,000 points) of a wide vari...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 10; no. 23; p. 8534
Main Authors Yang, Haozhe, Wang, Zhiling, Lin, Linglong, Liang, Huawei, Huang, Weixin, Xu, Fengyu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The perception system has become a topic of great importance for autonomous vehicles, as high accuracy and real-time performance can ensure safety in complex urban scenarios. Clustering is a fundamental step for parsing point cloud due to the extensive input data (over 100,000 points) of a wide variety of complex objects. It is still challenging to achieve high precision real-time performance with limited vehicle-mounted computing resources, which need to balance the accuracy and processing time. We propose a method based on a Two-Layer-Graph (TLG) structure, which can be applied in a real autonomous vehicle under urban scenarios. TLG can describe the point clouds hierarchically, we use a range graph to represent point clouds and a set graph for point cloud sets, which reduce both processing time and memory consumption. In the range graph, Euclidean distance and the angle of the sensor position with two adjacent vectors (calculated from continuing points to different direction) are used as the segmentation standard, which use the local concave features to distinguish different objects close to each other. In the set graph, we use the start and end position to express the whole set of continuous points concisely, and an improved Breadth-First-Search (BFS) algorithm is designed to update categories of point cloud sets between different channels. This method is evaluated on real vehicles and major datasets. The results show that TLG succeeds in providing a real-time performance (less than 20 ms per frame), and a high segmentation accuracy rate (93.64%) for traffic objects in the road of urban scenarios.
AbstractList The perception system has become a topic of great importance for autonomous vehicles, as high accuracy and real-time performance can ensure safety in complex urban scenarios. Clustering is a fundamental step for parsing point cloud due to the extensive input data (over 100,000 points) of a wide variety of complex objects. It is still challenging to achieve high precision real-time performance with limited vehicle-mounted computing resources, which need to balance the accuracy and processing time. We propose a method based on a Two-Layer-Graph (TLG) structure, which can be applied in a real autonomous vehicle under urban scenarios. TLG can describe the point clouds hierarchically, we use a range graph to represent point clouds and a set graph for point cloud sets, which reduce both processing time and memory consumption. In the range graph, Euclidean distance and the angle of the sensor position with two adjacent vectors (calculated from continuing points to different direction) are used as the segmentation standard, which use the local concave features to distinguish different objects close to each other. In the set graph, we use the start and end position to express the whole set of continuous points concisely, and an improved Breadth-First-Search (BFS) algorithm is designed to update categories of point cloud sets between different channels. This method is evaluated on real vehicles and major datasets. The results show that TLG succeeds in providing a real-time performance (less than 20 ms per frame), and a high segmentation accuracy rate (93.64%) for traffic objects in the road of urban scenarios.
Author Liang, Huawei
Lin, Linglong
Huang, Weixin
Yang, Haozhe
Xu, Fengyu
Wang, Zhiling
Author_xml – sequence: 1
  givenname: Haozhe
  surname: Yang
  fullname: Yang, Haozhe
– sequence: 2
  givenname: Zhiling
  surname: Wang
  fullname: Wang, Zhiling
– sequence: 3
  givenname: Linglong
  orcidid: 0000-0002-0941-2402
  surname: Lin
  fullname: Lin, Linglong
– sequence: 4
  givenname: Huawei
  surname: Liang
  fullname: Liang, Huawei
– sequence: 5
  givenname: Weixin
  surname: Huang
  fullname: Huang, Weixin
– sequence: 6
  givenname: Fengyu
  surname: Xu
  fullname: Xu, Fengyu
BookMark eNptUU1Lw0AUXKSCtfbkHwh4lOh-ZZM9llZrpaDUel42m7d1S5qNmwTpvzdahSK-y3s8ZoYZ5hwNKl8BQpcE3zAm8a2ua4IpyxLGT9CQ4lTEjJN0cHSfoXHTbHE_krCM4CF6XH_4eKn3EOJ50PVbNC27poXgqk1kfYhWoMt47XYQsVm0dLPJKnr2rmp7nO-K6AU2O6ha3TpfXaBTq8sGxj97hF7v79bTh3j5NF9MJ8vYMMHb2HBDueBJQWyeF4IxIWgBkmfaMs0YpIWUCc2JpFlBgMpEWEupzY0GBrjgbIQWB93C662qg9vpsFdeO_X98GGjdGidKUFRbMDmWR9d5DwxRMrUMNDc0jQXBpte6-qgVQf_3kHTqq3vQtXbV73JlPIkIVmPIgeUCb5pAlhl3CFzG7QrFcHqqwF11EDPuf7D-XX6H_oTFbKGww
CitedBy_id crossref_primary_10_1007_s12559_023_10211_x
crossref_primary_10_3390_rs13204123
crossref_primary_10_3390_rs15010131
crossref_primary_10_3390_s23136119
crossref_primary_10_1007_s10489_022_03576_3
crossref_primary_10_1021_acsomega_1c04393
crossref_primary_10_1109_LRA_2022_3182096
crossref_primary_10_3390_rs13163239
crossref_primary_10_3788_LOP221510
crossref_primary_10_1109_TCSII_2022_3185228
crossref_primary_10_3390_wevj13070130
Cites_doi 10.1109/ROBOT.2008.4543832
10.1109/ICRA.2017.7989591
10.1109/ICCV.2019.00939
10.1109/IROS.2013.6696957
10.1016/j.isprsjprs.2015.01.011
10.1109/JSTARS.2018.2817227
10.1002/rob.20147
10.1109/LRA.2020.2965389
10.3390/rs8010005
10.1109/IROS.2016.7759050
10.1016/j.cag.2015.01.006
10.5194/isprs-annals-IV-1-W1-43-2017
10.4271/2016-01-0128
10.1016/j.isprsjprs.2015.01.016
10.1109/TGRS.2016.2554563
10.1109/IVS.2010.5548059
10.1016/j.isprsjprs.2019.12.008
10.1109/JSTARS.2014.2361430
10.1109/ITSC.2018.8569999
10.1109/JSTARS.2014.2349003
10.1016/j.eswa.2020.113816
10.1109/ROBIO49542.2019.8961567
10.1109/ICRA.2011.5979818
10.1109/ICVES.2018.8519488
10.1109/IROS40897.2019.8968026
10.5194/isprs-annals-III-3-201-2016
10.1007/s10514-019-09883-y
10.5194/isprsarchives-XXXIX-B3-167-2012
10.1016/j.robot.2013.07.001
10.1109/ICISC.2018.8398899
10.1109/PRRS.2016.7867013
10.1016/j.isprsjprs.2014.04.022
10.1109/IVS.2018.8500552
10.1109/ICInfA.2018.8812461
10.1109/CVPR.2012.6248074
10.1002/rob.20255
10.3390/rs9050433
10.1016/j.isprsjprs.2018.01.013
10.1109/MGRS.2016.2561021
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app10238534
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_20cefb83416b45c1997c3ea4f27b6c0c
10_3390_app10238534
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c364t-c4c24645d1fbbd633662de948af3a33e7d9952b1928d1e2956ff22fbcae3e0d43
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:08:05 EDT 2025
Mon Jun 30 11:11:43 EDT 2025
Tue Jul 01 03:14:50 EDT 2025
Thu Apr 24 23:11:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-c4c24645d1fbbd633662de948af3a33e7d9952b1928d1e2956ff22fbcae3e0d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0941-2402
OpenAccessLink https://doaj.org/article/20cefb83416b45c1997c3ea4f27b6c0c
PQID 2467245518
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_20cefb83416b45c1997c3ea4f27b6c0c
proquest_journals_2467245518
crossref_citationtrail_10_3390_app10238534
crossref_primary_10_3390_app10238534
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wang (ref_34) 2017; 55
Adam (ref_20) 2018; 4
Vo (ref_25) 2015; 104
Koopman (ref_5) 2016; 4
Hu (ref_24) 2020; 5
ref_14
ref_36
ref_13
Zhicheng (ref_38) 2020; 48
ref_12
ref_10
ref_31
Xiao (ref_26) 2013; 61
Wang (ref_33) 2014; 8
Xu (ref_32) 2018; 11
ref_19
ref_16
ref_15
Schmitt (ref_35) 2016; 4
ref_37
Xu (ref_11) 2017; 4
Ural (ref_17) 2012; XXXIX-B3
Lu (ref_30) 2016; 3
Badue (ref_4) 2021; 165
Urmson (ref_7) 2008; 8
Yan (ref_3) 2020; 44
Jiayuan (ref_39) 2020; 160
ref_22
ref_21
ref_43
Yan (ref_18) 2014; 94
ref_42
Thrun (ref_8) 2006; 9
Dong (ref_27) 2018; 137
ref_1
ref_2
ref_29
Weinmann (ref_23) 2015; 49
ref_9
Weinmann (ref_40) 2015; 105
Chen (ref_28) 2014; 7
Divyakant (ref_41) 2020; 16
ref_6
References_xml – ident: ref_37
  doi: 10.1109/ROBOT.2008.4543832
– ident: ref_14
  doi: 10.1109/ICRA.2017.7989591
– ident: ref_42
  doi: 10.1109/ICCV.2019.00939
– ident: ref_29
  doi: 10.1109/IROS.2013.6696957
– volume: 104
  start-page: 88
  year: 2015
  ident: ref_25
  article-title: Octree-based region growing for point cloud segmentation
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.01.011
– volume: 11
  start-page: 4270
  year: 2018
  ident: ref_32
  article-title: Unsupervised segmentation of point clouds from buildings using hierarchical clustering based on gestalt principles
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2817227
– volume: 9
  start-page: 661
  year: 2006
  ident: ref_8
  article-title: Stanley: The robot that won the DARPA Grand Challenge
  publication-title: J. Field Robot.
  doi: 10.1002/rob.20147
– volume: 5
  start-page: 875
  year: 2020
  ident: ref_24
  article-title: Learning to Optimally Segment Point Clouds
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.2965389
– ident: ref_21
  doi: 10.3390/rs8010005
– ident: ref_13
  doi: 10.1109/IROS.2016.7759050
– volume: 49
  start-page: 47
  year: 2015
  ident: ref_23
  article-title: Distinctive 2D and 3D features for automated large-scale scene analysis in urban areas
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2015.01.006
– volume: 4
  start-page: 43
  year: 2017
  ident: ref_11
  article-title: Voxel-and graph-based point cloud segmentation of 3d scenes using perceptual grouping laws
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-annals-IV-1-W1-43-2017
– volume: 4
  start-page: 15
  year: 2016
  ident: ref_5
  article-title: Challenges in autonomous vehicle testing and validation
  publication-title: Sae Int. J. Transp. Saf.
  doi: 10.4271/2016-01-0128
– volume: 105
  start-page: 286
  year: 2015
  ident: ref_40
  article-title: Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.01.016
– volume: 55
  start-page: 14
  year: 2017
  ident: ref_34
  article-title: Fusing meter-resolution 4-d insar point clouds and optical images for semantic urban infrastructure monitoring
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2554563
– ident: ref_9
  doi: 10.1109/IVS.2010.5548059
– volume: 160
  start-page: 244
  year: 2020
  ident: ref_39
  article-title: Robust point cloud registration based on topological graph and Cauchy weighted lq-norm
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.12.008
– volume: 8
  start-page: 953
  year: 2014
  ident: ref_33
  article-title: Automatic feature-based geometric fusion of multiview tomosar point clouds in urban area
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2361430
– ident: ref_15
  doi: 10.1109/ITSC.2018.8569999
– volume: 7
  start-page: 4199
  year: 2014
  ident: ref_28
  article-title: A methodology for automated segmentation and reconstruction of urban 3-d buildings from als point clouds
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote
  doi: 10.1109/JSTARS.2014.2349003
– volume: 165
  start-page: 113816
  year: 2021
  ident: ref_4
  article-title: Self-Driving Cars: A Survey
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113816
– ident: ref_6
  doi: 10.1109/ROBIO49542.2019.8961567
– ident: ref_19
  doi: 10.1109/ICRA.2011.5979818
– volume: 16
  start-page: 1030
  year: 2020
  ident: ref_41
  article-title: Performance evaluation of choice set generation algorithms for analyzing truck route choice: Insights from spatial aggregation for the breadth first search link elimination (BFS-LE) algorithm
  publication-title: Transp. Transp. Sci.
– ident: ref_2
  doi: 10.1109/ICVES.2018.8519488
– ident: ref_36
  doi: 10.1109/IROS40897.2019.8968026
– volume: 3
  start-page: 201
  year: 2016
  ident: ref_30
  article-title: Pairwise linkage for point cloud segmentation
  publication-title: ISPRS Ann. Photogramm. Remote. Sens. SpatialInforma
  doi: 10.5194/isprs-annals-III-3-201-2016
– volume: 44
  start-page: 147
  year: 2020
  ident: ref_3
  article-title: Online learning for 3D LiDAR-based human detection: Experimental analysis of point cloud clustering and classification methods
  publication-title: Auton. Robot.
  doi: 10.1007/s10514-019-09883-y
– volume: XXXIX-B3
  start-page: 167
  year: 2012
  ident: ref_17
  article-title: Min-cut based segmentation of airborne lidar point clouds
  publication-title: Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci.
  doi: 10.5194/isprsarchives-XXXIX-B3-167-2012
– volume: 48
  start-page: 1377
  year: 2020
  ident: ref_38
  article-title: Point Cloud Instance Segmentation Method Based on Superpoint Graph
  publication-title: Tongji Daxue Xuebao/J. Tongji Univ.
– volume: 61
  start-page: 1641
  year: 2013
  ident: ref_26
  article-title: Three-dimensional point cloud plane segmentation in both structured and unstructured environments
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2013.07.001
– ident: ref_10
  doi: 10.1109/ICISC.2018.8398899
– ident: ref_31
  doi: 10.1109/PRRS.2016.7867013
– ident: ref_12
– volume: 94
  start-page: 183
  year: 2014
  ident: ref_18
  article-title: A global optimization approach to roof segmentation from airborne lidar point clouds
  publication-title: J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.04.022
– volume: 4
  start-page: 1
  year: 2018
  ident: ref_20
  article-title: H-ransac: A hybrid point cloud segmentation combining 2d and 3d data
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci.
– ident: ref_16
  doi: 10.1109/IVS.2018.8500552
– ident: ref_1
  doi: 10.1109/ICInfA.2018.8812461
– ident: ref_43
  doi: 10.1109/CVPR.2012.6248074
– volume: 8
  start-page: 425
  year: 2008
  ident: ref_7
  article-title: Autonomous driving in urban environments: Boss and the Urban Challenge
  publication-title: J. Field Robot.
  doi: 10.1002/rob.20255
– ident: ref_22
  doi: 10.3390/rs9050433
– volume: 137
  start-page: 112
  year: 2018
  ident: ref_27
  article-title: An efficient global energy optimization approach for robust 3d plane segmentation of point clouds
  publication-title: J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.01.013
– volume: 4
  start-page: 6
  year: 2016
  ident: ref_35
  article-title: Data fusion and remote sensing: An ever-growing relationship
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2016.2561021
SSID ssj0000913810
Score 2.2542717
Snippet The perception system has become a topic of great importance for autonomous vehicles, as high accuracy and real-time performance can ensure safety in complex...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 8534
SubjectTerms Accuracy
Algorithms
Autonomous vehicles
cluster
Clustering
Design
graph structure
improved BFS
Methods
point cloud
real time
Sensors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxwxDLbocmkPCGirLo8qBw5tpaizTuZ1QrwRoghtQeI2mrwQEswAuyv-PvZsdqEq4jrjXJzY_uzEnwG2asPztX2QmNdaMqG3LFOjpcKasmcsa2e5oP_nLDu-1CdX6VUsuI3is8qZT-wctWst18h_I1k0auYP275_kDw1im9X4wiND7BILrgoerC4e3B2PpxXWZj1shgk08Y8Rfk93wszWwFFKf1PKOoY-_9zyF2UOVyGpQgPxc50P1dgwTer8OkVaeAqrERzHIkfkTP652c4uXhq5WlN-FkeMQW12LudMAUCrRAES8WQ8KDkdg-h9sXpzf7OUJy3N82Y5NqJE3_99V1sQmq-wOXhwcXesYxjEqRVmR5Lqy3y_aQbBGNcplSWofOlLuqgSOE-d2WZoiEoV7iBR0qIQkAMxtZe-cRp9RV6Tdv4byByZRIdBgHL4LQpLcEDWpjq3AaDWGR9-DXTWGUjhziPsritKJdg9Vav1NuHrbnw_ZQ6422xXVb9XIT5rrsP7eN1Fc2nwsT6YAoKuZnRqeXXMVb5WgfMTWYT24eN2cZV0QhH1cuRWXv_9zp8RE6ju1cqG9AbP078JmGNsfkeD9QzgJbSAQ
  priority: 102
  providerName: ProQuest
Title Two-Layer-Graph Clustering for Real-Time 3D LiDAR Point Cloud Segmentation
URI https://www.proquest.com/docview/2467245518
https://doaj.org/article/20cefb83416b45c1997c3ea4f27b6c0c
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB58XPQg1gdWa8mhBxUCbZJ9HfuwFdEiVcHbsnmJoFvRFv--M7tbqSh48bpM2OWbZOabTfINQCvT1F_beS6iTHES9OZJoBWXIsPqWSSZNfRD_3ocXtyry4fgYanVF50JK-WBS-CwODfO6xiDbahVYOhchJEuU15EOjRtQ9EXc95SMVXE4KRD0lXlhTyJdT3tB5NKAWYn9S0FFUr9PwJxkV2G27BV0ULWLT-nBisu34HNJbHAHahVy_CdnVRa0ae7cHn3MeVXGfJmPiLpadZ_npP0AY5gSEfZBHkgp2seTA7Y1dOgO2E306d8hnbTuWW37vGlunyU78H98Pyuf8Gr9gjcyFDNuFFG0L6k7XitbShlGArrEhVnXiLQLrJJEgiNFC62HSewEPJeCK9N5qRrWyX3YS2f5u4AWCR1W_mOF4m3SicGaQEODFRkvBYiDutwtkAsNZV2OLWweE6xhiB40yV469D6Mn4tJTN-N-sR9F8mpHNdPEDvp5X307-8X4fGwnFptfjeU0QlEoqk5g7_4x1HsCGoyC7OsDRgbfY2d8fIRGa6CavxcNSE9d75-GbSLKbgJ_Uf3AU
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiBYQgQJ7KBIgrXBm168DQqUhTdu0QiWVejPeV1Wp2KVJVPGn-I3MOHYoAnHr1Z61rNmZnW92d74B2CwN99f2QWJaasmE3jKPjZYKS8qeMS-d5Q39g8NkdKz3TuKTFfjZ1cLwtcpuTWwWaldb3iN_h-TRqJk_7MPFd8ldo_h0tWuhsTCLff_jilK26fvdAc3vK8Thp8n2SLZdBaRViZ5Jqy3ycZ7rB2NcolSSoPO5zsqg6P986vI8RkPIJ3N9j5Q_hIAYjC298pHTir57C25rRZGcK9OHO8s9HebYzPrRogyQ3kd8Cs3cCBQT9R-Br-kP8Nfy38S04QO434JRsbWwnjVY8dU63LtGUbgOa63zT8XrlqH6zUPYm1zVclwSWpc7THgtts_nTLhAIwSBYHFE6FNycYlQAzE-G2wdic_1WTUjuXruxBd_-q0teaoewfGNqO8xrFZ15Z-ASJWJdOgHzIPTJrcERmhgrFMbDGKW9OBtp7HCtozl3DjjvKDMhdVbXFNvDzaXwhcLoo5_i31k1S9FmF27eVBfnhatsxYYWR9MRgE-MTq2fBfHKl_qgKlJbGR7sNFNXNG6_LT4baBP___6JdwZTQ7GxXj3cP8Z3EVO4Jv7MRuwOruc--eEcmbmRWNaAr7etC3_AuC6DiQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxNBEB9qCqIPYqtitOo-VFBh6WV37-tBpG0a-xFDiC307Xr7VQr1rjYJxX_Nv86Zy16sKL719W72OGZn52Nn5jcAm6Wm-drOc5GWihOgN89jrbgUJUbPIi-toQv9L6Nk_0QdnsanK_Cz7YWhsspWJzaK2taG7si3BJ5ooQg_bMuHsohxf_Dp6junCVKUaW3HaSxE5Mj9uMHwbfrxoI97_VaIwd7x7j4PEwa4kYmacaOMoNSe7XmtbSJlkgjrcpWVXuK_utTmeSw0ekGZ7TmBsYT3QnhtSiddZJXE796D1ZSiog6s7uyNxpPlDQ8hbma9aNEUKGUeUU6akBLQQqo_zGAzLeAvY9BYuMFjeBRcU7a9kKU1WHHVOjy8BVi4DmtBFUzZu4BX_f4JHB7f1HxYou_OPxP8Ndu9nBP8Aq5g6BKzCfqinFpNmOyz4UV_e8LG9UU1Q7p6btlXd_4tNEBVT-HkThj4DDpVXbnnwFKpI-V7XuTeKp0bdE1wYaxS47UQWdKFDy3HChPwy2mMxmWBcQyxt7jF3i5sLomvFrAd_ybbIdYvSQhru3lQX58X4egWIjLO6wzNfaJVbKgyx0hXKi9SnZjIdGGj3bgiKIBp8VtcX_z_9Ru4j3JcDA9GRy_hgaBovimW2YDO7HruXqHLM9Ovg2wxOLtrcf4F3QgTtg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Layer-Graph+Clustering+for+Real-Time+3D+LiDAR+Point+Cloud+Segmentation&rft.jtitle=Applied+sciences&rft.au=Haozhe+Yang&rft.au=Zhiling+Wang&rft.au=Linglong+Lin&rft.au=Huawei+Liang&rft.date=2020-12-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=10&rft.issue=23&rft.spage=8534&rft_id=info:doi/10.3390%2Fapp10238534&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_20cefb83416b45c1997c3ea4f27b6c0c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon