Deep Residual Network Combined with Transfer Learning Based Fault Diagnosis for Rolling Bearing
Fault diagnosis of rolling bearings is significant for mechanical equipment operation and maintenance. Presently, the deep convolutional neural network (CNN) is increasingly used for fault diagnosis of rolling bearings, but CNN has challenges with incomplete training and lengthy training times. This...
Saved in:
Published in | Applied sciences Vol. 12; no. 15; p. 7810 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fault diagnosis of rolling bearings is significant for mechanical equipment operation and maintenance. Presently, the deep convolutional neural network (CNN) is increasingly used for fault diagnosis of rolling bearings, but CNN has challenges with incomplete training and lengthy training times. This paper proposes a residual network combined with the transfer learning (ResNet-TL) based diagnosis method for rolling bearing, which can preprocess the one-dimensional data of vibration signals into image data. Then, the transfer learning theory in parameter transfer is applied to the training of the network model, and the ResNet34 network is pre-trained and re-trained; the image data are selected to be the inputs of the fault diagnosis model. The experimental validation of the rolling bearing fault dataset collected from the practical bench and Case Western Reserve University shows the superiority of the ResNet34-TL model compared with other classification models. |
---|---|
AbstractList | Fault diagnosis of rolling bearings is significant for mechanical equipment operation and maintenance. Presently, the deep convolutional neural network (CNN) is increasingly used for fault diagnosis of rolling bearings, but CNN has challenges with incomplete training and lengthy training times. This paper proposes a residual network combined with the transfer learning (ResNet-TL) based diagnosis method for rolling bearing, which can preprocess the one-dimensional data of vibration signals into image data. Then, the transfer learning theory in parameter transfer is applied to the training of the network model, and the ResNet34 network is pre-trained and re-trained; the image data are selected to be the inputs of the fault diagnosis model. The experimental validation of the rolling bearing fault dataset collected from the practical bench and Case Western Reserve University shows the superiority of the ResNet34-TL model compared with other classification models. |
Author | Zhou, Jianmin Yang, Xiaotong Li, Jiahui |
Author_xml | – sequence: 1 givenname: Jianmin orcidid: 0000-0002-4749-8761 surname: Zhou fullname: Zhou, Jianmin – sequence: 2 givenname: Xiaotong orcidid: 0000-0002-4912-5360 surname: Yang fullname: Yang, Xiaotong – sequence: 3 givenname: Jiahui surname: Li fullname: Li, Jiahui |
BookMark | eNptkVFrFDEQxxepYG371C8Q8FHOJtlssnnUq7WFw0Jpn8NsMjlzbpM1yVH89saeSBHn5T_M_OY_A_O2O4opYtedM_qh7zW9gGVhnA1qZPRVd8ypkqteMHX0In_TnZWyoy006xt33JlLxIXcYQluDzP5ivUp5e9knR6nENGRp1C_kfsMsXjMZIOQY4hb8glKa17Bfq7kMsA2phIK8SmTuzTPz0RDm552rz3MBc_-6En3cPX5fn292tx-uVl_3KxsL0VdWaEFHZx3YuDS24kzN2rL6USlmhQVE6XKSpAevfPgJAMtJ4dS0ZEzoaA_6W4Ovi7Bziw5PEL-aRIE81xIeWsg12BnNJpLRGsHBAQBwk-eunHQtJecai_G5vXu4LXk9GOPpZpd2ufYzjdcUToIoaRu1PsDZXMqJaP_u5VR8_sh5sVDGs3-oW2oUEOKNUOY_zvzC8Fgj6o |
CitedBy_id | crossref_primary_10_3390_machines10121229 crossref_primary_10_1016_j_eswa_2023_122947 crossref_primary_10_1088_1361_6501_ace642 crossref_primary_10_1109_ACCESS_2025_3533551 crossref_primary_10_3390_app12199670 crossref_primary_10_3390_s23115334 crossref_primary_10_1088_2631_8695_acd625 crossref_primary_10_3390_electronics13122403 crossref_primary_10_1007_s11071_024_10310_w crossref_primary_10_1016_j_anucene_2023_110228 crossref_primary_10_1016_j_oceaneng_2024_119283 crossref_primary_10_1016_j_epsr_2024_111234 |
Cites_doi | 10.1016/j.measurement.2019.02.072 10.1109/TIM.2019.2933119 10.1109/ACCESS.2021.3096036 10.1109/JPROC.2020.3004555 10.1109/TIM.2019.2896370 10.3390/s21010244 10.1109/ICMLA.2019.00113 10.1016/j.measurement.2020.107667 10.1109/ACCESS.2020.2989510 10.1007/s10462-021-09993-z 10.1016/j.cogsys.2018.03.002 10.1109/ACCESS.2021.3061530 10.1016/j.ress.2020.107050 10.1109/TII.2016.2641470 10.1109/TIE.2017.2752151 10.1016/j.cogsys.2019.10.004 10.1109/28.475698 10.1016/j.compchemeng.2020.106731 10.1016/j.measurement.2020.108339 10.1016/j.measurement.2019.01.022 10.1007/s11042-021-10739-w 10.3390/sym11101212 10.1016/j.measurement.2020.107660 10.1109/ASET48392.2020.9118361 10.1109/ACCESS.2021.3096723 10.1109/ATEE.2013.6563406 10.1016/j.nanoen.2022.107263 10.1088/1361-6501/ab0793 10.1016/j.renene.2020.10.121 10.1109/TII.2020.3028103 10.1016/j.ymssp.2015.04.021 10.1109/ACCESS.2020.3005243 10.1109/JSEN.2020.3015868 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app12157810 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_926eecc5eaea4a4fbf0d859036209f48 10_3390_app12157810 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c364t-c49405dfd4526fcb21d89c20b067b704b007c6a6fefdfad61a96bde67082147a3 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 00:56:26 EDT 2025 Mon Jun 30 07:32:29 EDT 2025 Tue Jul 01 00:41:29 EDT 2025 Thu Apr 24 22:51:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-c49405dfd4526fcb21d89c20b067b704b007c6a6fefdfad61a96bde67082147a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4749-8761 0000-0002-4912-5360 |
OpenAccessLink | https://doaj.org/article/926eecc5eaea4a4fbf0d859036209f48 |
PQID | 2700544769 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_926eecc5eaea4a4fbf0d859036209f48 proquest_journals_2700544769 crossref_primary_10_3390_app12157810 crossref_citationtrail_10_3390_app12157810 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Jiang (ref_7) 2022; 99 Zhang (ref_26) 2021; 9 Huang (ref_32) 2022; 55 Shao (ref_30) 2020; 8 ref_14 ref_35 ref_12 Li (ref_28) 2021; 169 Zhuang (ref_36) 2020; 109 Xue (ref_1) 2021; 70 Kanemaru (ref_8) 2018; 7 Verstraete (ref_22) 2017; 2017 Choudhary (ref_15) 2020; 21 Hoang (ref_9) 2019; 69 Razik (ref_13) 2020; 56 Dagher (ref_37) 2021; 80 Wen (ref_21) 2019; 69 Singh (ref_10) 2016; 13 Schoen (ref_11) 1995; 31 Beveridge (ref_34) 2020; 59 Yang (ref_4) 2020; 157 Oh (ref_18) 2017; 65 Xu (ref_38) 2020; 8 Jiao (ref_5) 2021; 38 Wang (ref_29) 2020; 202 Ma (ref_20) 2019; 30 ref_24 ref_23 Zhong (ref_33) 2019; 137 Hou (ref_3) 2021; 9 Chen (ref_25) 2021; 163 Pham (ref_16) 2021; 9 Chen (ref_17) 2020; 17 Wu (ref_27) 2020; 135 Guo (ref_2) 2019; 139 Hoang (ref_19) 2018; 53 Smith (ref_39) 2015; 64 Zhang (ref_31) 2020; 157 ref_6 |
References_xml | – volume: 139 start-page: 226 year: 2019 ident: ref_2 article-title: Fault feature extraction for rolling element bearing diagnosis based on a multi-stage noise reduction method publication-title: Measurement doi: 10.1016/j.measurement.2019.02.072 – volume: 69 start-page: 3325 year: 2019 ident: ref_9 article-title: A motor current signal-based bearing fault diagnosis using deep learning and information fusion publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2019.2933119 – volume: 9 start-page: 98800 year: 2021 ident: ref_16 article-title: Efficient fault diagnosis of rolling bearings using neural network architecture search and sharing weights publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3096036 – volume: 109 start-page: 43 year: 2020 ident: ref_36 article-title: A comprehensive survey on transfer learning publication-title: Proc. IEEE doi: 10.1109/JPROC.2020.3004555 – volume: 56 start-page: 3604 year: 2020 ident: ref_13 article-title: Automatic diagnosis of electromechanical faults in induction motors based on the transient analysis of the stray flux via MUSIC methods publication-title: IEEE Trans. Ind. Appl. – volume: 69 start-page: 330 year: 2019 ident: ref_21 article-title: A new two-level hierarchical diagnosis network based on convolutional neural network publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2019.2896370 – ident: ref_24 doi: 10.3390/s21010244 – ident: ref_6 doi: 10.1109/ICMLA.2019.00113 – volume: 157 start-page: 107667 year: 2020 ident: ref_31 article-title: An enhanced convolutional neural network for bearing fault diagnosis based on time–frequency image publication-title: Measurement doi: 10.1016/j.measurement.2020.107667 – ident: ref_35 – volume: 8 start-page: 76120 year: 2020 ident: ref_38 article-title: Transfer learning based data feature transfer for fault diagnosis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2989510 – volume: 55 start-page: 1289 year: 2022 ident: ref_32 article-title: A novel fault diagnosis method based on CNN and LSTM and its application in fault diagnosis for complex systems publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-09993-z – volume: 38 start-page: 73 year: 2021 ident: ref_5 article-title: Approach for Fault Diagnosis Based on Pattern Match of Characteristic Waveforms in Frequency Domain publication-title: J. East China Jiaotong Univ. – volume: 53 start-page: 42 year: 2018 ident: ref_19 article-title: Rolling element bearing fault diagnosis using convolutional neural network and vibration image publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2018.03.002 – volume: 9 start-page: 43889 year: 2021 ident: ref_26 article-title: Deep convolutional neural network using transfer learning for fault diagnosis publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3061530 – volume: 202 start-page: 107050 year: 2020 ident: ref_29 article-title: Multi-scale deep intra-class transfer learning for bearing fault diagnosis publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2020.107050 – volume: 13 start-page: 1341 year: 2016 ident: ref_10 article-title: Detection of bearing faults in mechanical systems using stator current monitoring publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2016.2641470 – volume: 65 start-page: 3539 year: 2017 ident: ref_18 article-title: Scalable and unsupervised feature engineering using vibration-imaging and deep learning for rotor system diagnosis publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2752151 – volume: 59 start-page: 312 year: 2020 ident: ref_34 article-title: Inception and ResNet features are (almost) equivalent publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2019.10.004 – volume: 7 start-page: 282 year: 2018 ident: ref_8 article-title: Bearing fault detection in induction machine based on stator current spectrum monitoring publication-title: IEEJ J. Ind. Appl. – volume: 31 start-page: 1280 year: 1995 ident: ref_11 article-title: An unsupervised, on-line system for induction motor fault detection using stator current monitoring publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/28.475698 – volume: 2017 start-page: 5067651 year: 2017 ident: ref_22 article-title: Deep Learning Enabled Fault Diagnosis Using Time-Frequency Image Analysis of Rolling Element Bearings publication-title: Shock. Vib. – volume: 135 start-page: 106731 year: 2020 ident: ref_27 article-title: Fault detection and diagnosis based on transfer learning for multimode chemical processes publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.106731 – volume: 169 start-page: 108339 year: 2021 ident: ref_28 article-title: Deep convolution domain-adversarial transfer learning for fault diagnosis of rolling bearings publication-title: Measurement doi: 10.1016/j.measurement.2020.108339 – volume: 137 start-page: 435 year: 2019 ident: ref_33 article-title: A novel gas turbine fault diagnosis method based on transfer learning with CNN publication-title: Measurement doi: 10.1016/j.measurement.2019.01.022 – volume: 80 start-page: 20369 year: 2021 ident: ref_37 article-title: Facial age estimation using pre-trained CNN and transfer learning publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-021-10739-w – ident: ref_23 doi: 10.3390/sym11101212 – volume: 157 start-page: 107660 year: 2020 ident: ref_4 article-title: Optimal IMF selection and unknown fault feature extraction for rolling bearings with different defect modes publication-title: Measurement doi: 10.1016/j.measurement.2020.107660 – ident: ref_14 doi: 10.1109/ASET48392.2020.9118361 – volume: 70 start-page: 1 year: 2021 ident: ref_1 article-title: Feature Extraction Using Hierarchical Dispersion Entropy for Rolling Bearing Fault Diagnosis publication-title: IEEE Trans. Instrum. Meas. – volume: 9 start-page: 99756 year: 2021 ident: ref_3 article-title: A Novel Rolling Bearing Fault Diagnosis Method Based on Adaptive Feature Selection and Clustering publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3096723 – ident: ref_12 doi: 10.1109/ATEE.2013.6563406 – volume: 99 start-page: 107263 year: 2022 ident: ref_7 article-title: Ultra-compact triboelectric bearing based on a ribbon cage with applications for fault diagnosis of rotating machinery publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107263 – volume: 30 start-page: 055402 year: 2019 ident: ref_20 article-title: A novel bearing fault diagnosis method based on 2D image representation and transfer learning-convolutional neural network publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ab0793 – volume: 163 start-page: 2053 year: 2021 ident: ref_25 article-title: Diagnosis of wind turbine faults with transfer learning algorithms publication-title: Renew. Energy doi: 10.1016/j.renene.2020.10.121 – volume: 17 start-page: 5402 year: 2020 ident: ref_17 article-title: Fault diagnosis method of low-speed rolling bearing based on acoustic emission signal and subspace embedded feature distribution alignment publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2020.3028103 – volume: 64 start-page: 100 year: 2015 ident: ref_39 article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study publication-title: Mech. Syst. Signal Processing doi: 10.1016/j.ymssp.2015.04.021 – volume: 8 start-page: 119421 year: 2020 ident: ref_30 article-title: Transfer learning method based on adversarial domain adaption for bearing fault diagnosis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3005243 – volume: 21 start-page: 1727 year: 2020 ident: ref_15 article-title: Infrared thermography based fault diagnosis of induction motor bearings using machine learning publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3015868 |
SSID | ssj0000913810 |
Score | 2.3323104 |
Snippet | Fault diagnosis of rolling bearings is significant for mechanical equipment operation and maintenance. Presently, the deep convolutional neural network (CNN)... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 7810 |
SubjectTerms | Accuracy bearing fault diagnosis Bearings Deep learning deep residual network Experiments Fault diagnosis Machine learning Neural networks time-frequency image transfer learning Vibration Wavelet transforms |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSyNBEC7ceNk9iK9l44s-eFBh2J6Znp7pkxg1iGAQUfA29FMWJImZ-P-tmunEgIunwKROVV1VX1V3fQVwnBuFVZcLSW6FToSVPDGpswmCE8OVNTbzNO98N5I3T-L2uXiODbcmPqtcxMQ2ULuJpR75X7ogLYQopTqfviW0NYpuV-MKjR-wjiG4qnqwPrge3T8suyzEelmlvBvMy7G-p3thIlQoK5qZXUlFLWP_l4DcZpnhJmxEeMguOntuwZofb8OvFdLAbdiK7tiwk8gZfboD9ZX3U_bgm3a2io26x90MvR0rX-8YtVtZm5eCn7FIqvrCBpjDHBvq99c5u-oe3f1rGOJYFsm62QBF8XcXnobXj5c3SdydkNhcinlihUIo5oKjFeLBmix1lbIZGkCWpuQCva20UsvggwvayVQraZyXJUKCVJQ6_w298WTs_wBzNkheIpIrAlaD1iCkQkUWJhQ8szxTfThbqLG2kVic9lu81lhgkM7rFZ334XgpPO34NP4vNiB7LEWIBLv9MJm91NGnapVJjyew8NproUUwgbuqUJSTuQqi6sPBwpp19Mym_jxHe9__vQ8_Mxp1aB_7HUBvPnv3hwhA5uYonrIPdHbbfw priority: 102 providerName: ProQuest |
Title | Deep Residual Network Combined with Transfer Learning Based Fault Diagnosis for Rolling Bearing |
URI | https://www.proquest.com/docview/2700544769 https://doaj.org/article/926eecc5eaea4a4fbf0d859036209f48 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60XvQg1gdWa9mDBxWCeWw23aO1jUWwiCh4C_sUQarY-P-d3WxLQMGLp0AY2DA7s_NNduYbgNNMcsy6tI0yRUVEFYsjmWgVITiRMVdSpcb1O9_N2PSJ3j7nz61RX64mrKEHbhR3yVNmcJncCCOooFbaWA9z7g7emFvq23wx5rWSKX8G88RRVzUNeRnm9e4-2BEpFEPXK9sKQZ6p_8dB7KNLuQPbARaSq-ZzurBm5ruw1SIL3IVucMMFOQtc0ed7UI2N-SAPZuF7qsisKeom6OWY8RpN3G9W4uORNZ8kkKm-kBHGLk1K8fVWk3FTbPe6IIhfSSDpJiMUxec-PJWTx-tpFGYmRCpjtI4U5QjBtNVudLhVMk30kKsUFc8KWcQUvaxQTDBrrLZCs0RwJrVhBUKBhBYiO4DO_H1uDoFoZVlcIILLLWaBSiKUQkXm0uZxquKU9-BiqcZKBUJxN9fircLEwum8aum8B6cr4Y-GR-N3sZHbj5WII7_2L9AkqmAS1V8m0YP-cjer4JGLyl2w55QWjB_9xxrHsJm6RghfCtiHTv35ZU4QntRyAOvD8mYAG6PJ7P5h4O3yGxnY5fs |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcgAOiBYQSwv4UCRAinASx4kPCLEsy5a2e0Ct1JuJvyqkane72Qrxp_iNzCTOshKIW0-RYiuKxuOZN_bMG4CD3CiMulxIcivqRFjJE5M6myA4MVxZYzNP9c4nUzk5E1_Oi_Mt-NXXwlBaZW8TW0Pt5pbOyN_SBWkhRCnV-8VVQl2j6Ha1b6HRqcWR__kDQ7bm3eEI1_dllo0_nX6cJLGrQGJzKVaJFQpBiguOmmsHa7LUVcpm-GuyNCUXqIellbUMPrhQO5nWShrnZYnOMhVlneN3b8FtkaMnp8r08ef1mQ5xbFYp78oAcZzTLTTRN5QVVehuOL62P8Bf5r_1aeMHcD-CUfah054d2PKzXbi3QVG4Cztx8zfsVWSofv0Q9Mj7Bfvqm7aSi027VHKGtgXjbO8YHe6y1gsGv2SRwvWCDdFjOjaury9XbNSl-H1vGKJmFqnB2RCn4vMRnN2ITB_D9mw-80-AORskLxE3FgFjT2sQwKEgCxMKnlmeqQG86cWobaQxp24alxrDGZK53pD5AA7Wkxcde8e_pw1pPdZTiHK7fTFfXui4g7XKpEd9L3zta1GLYAJ3VaEIAXAVRDWA_X41dbQDjf6jtU__P_wC7kxOT4718eH0aA_uZlRk0aYZ7sP2anntnyH0WZnnrb4x-HbTCv4buOsXgg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEB7qFUQfxFbF06r7UEGF0E2y2WQfRDyvR2v1KMVC3-L-LEK5Oy9XxH_Nv86ZZHMeKL71KZAMIcxOZr7ZnfkGYD83CrMuF5LcCp0IK3liUmcTBCeGK2ts5qnf-fNUHp2LjxfFxRb86nthqKyy94mto3ZzS3vkB3RAWghRSnUQYlnE6XjybvE9oQlSdNLaj9PoTOTE__yB6Vvz9niMa_0yyyaHXz4cJXHCQGJzKVaJFQoBiwuOBm0Ha7LUVcpm-JmyNCUXaJOllVoGH1zQTqZaSeO8LDFwpqLUOb73FmyXlBUNYHt0OD09W-_wEONmlfKuKTDPFaczaSJzKCvq190Ig-20gL-CQRvhJvfhXoSm7H1nSzuw5We7cHeDsHAXdqIraNiryFf9-gHUY-8X7Mw3bV8Xm3aF5Qw9DWbd3jHa6mVtTAx-ySKh6yUbYfx0bKKvr1Zs3BX8fWsYYmgWicLZCEXx-hDOb0Srj2Awm8_8Y2DOBslLRJFFwEzUGoRzqMjChIJnlmdqCG96NdY2kprTbI2rGpMb0nm9ofMh7K-FFx2Xx7_FRrQeaxEi4G5vzJeXdfyfa5VJj9ZfeO210CKYwF1VKMIDXAVRDWGvX806eoWm_mPDT_7_-AXcRuOuPx1PT57CnYw6Ltqawz0YrJbX_hnioJV5Hg2OwdebtvHfOVUdFA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Residual+Network+Combined+with+Transfer+Learning+Based+Fault+Diagnosis+for+Rolling+Bearing&rft.jtitle=Applied+sciences&rft.au=Jianmin+Zhou&rft.au=Xiaotong+Yang&rft.au=Jiahui+Li&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=15&rft.spage=7810&rft_id=info:doi/10.3390%2Fapp12157810&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_926eecc5eaea4a4fbf0d859036209f48 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |