Deep Residual Network Combined with Transfer Learning Based Fault Diagnosis for Rolling Bearing

Fault diagnosis of rolling bearings is significant for mechanical equipment operation and maintenance. Presently, the deep convolutional neural network (CNN) is increasingly used for fault diagnosis of rolling bearings, but CNN has challenges with incomplete training and lengthy training times. This...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 12; no. 15; p. 7810
Main Authors Zhou, Jianmin, Yang, Xiaotong, Li, Jiahui
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fault diagnosis of rolling bearings is significant for mechanical equipment operation and maintenance. Presently, the deep convolutional neural network (CNN) is increasingly used for fault diagnosis of rolling bearings, but CNN has challenges with incomplete training and lengthy training times. This paper proposes a residual network combined with the transfer learning (ResNet-TL) based diagnosis method for rolling bearing, which can preprocess the one-dimensional data of vibration signals into image data. Then, the transfer learning theory in parameter transfer is applied to the training of the network model, and the ResNet34 network is pre-trained and re-trained; the image data are selected to be the inputs of the fault diagnosis model. The experimental validation of the rolling bearing fault dataset collected from the practical bench and Case Western Reserve University shows the superiority of the ResNet34-TL model compared with other classification models.
AbstractList Fault diagnosis of rolling bearings is significant for mechanical equipment operation and maintenance. Presently, the deep convolutional neural network (CNN) is increasingly used for fault diagnosis of rolling bearings, but CNN has challenges with incomplete training and lengthy training times. This paper proposes a residual network combined with the transfer learning (ResNet-TL) based diagnosis method for rolling bearing, which can preprocess the one-dimensional data of vibration signals into image data. Then, the transfer learning theory in parameter transfer is applied to the training of the network model, and the ResNet34 network is pre-trained and re-trained; the image data are selected to be the inputs of the fault diagnosis model. The experimental validation of the rolling bearing fault dataset collected from the practical bench and Case Western Reserve University shows the superiority of the ResNet34-TL model compared with other classification models.
Author Zhou, Jianmin
Yang, Xiaotong
Li, Jiahui
Author_xml – sequence: 1
  givenname: Jianmin
  orcidid: 0000-0002-4749-8761
  surname: Zhou
  fullname: Zhou, Jianmin
– sequence: 2
  givenname: Xiaotong
  orcidid: 0000-0002-4912-5360
  surname: Yang
  fullname: Yang, Xiaotong
– sequence: 3
  givenname: Jiahui
  surname: Li
  fullname: Li, Jiahui
BookMark eNptkVFrFDEQxxepYG371C8Q8FHOJtlssnnUq7WFw0Jpn8NsMjlzbpM1yVH89saeSBHn5T_M_OY_A_O2O4opYtedM_qh7zW9gGVhnA1qZPRVd8ypkqteMHX0In_TnZWyoy006xt33JlLxIXcYQluDzP5ivUp5e9knR6nENGRp1C_kfsMsXjMZIOQY4hb8glKa17Bfq7kMsA2phIK8SmTuzTPz0RDm552rz3MBc_-6En3cPX5fn292tx-uVl_3KxsL0VdWaEFHZx3YuDS24kzN2rL6USlmhQVE6XKSpAevfPgJAMtJ4dS0ZEzoaA_6W4Ovi7Bziw5PEL-aRIE81xIeWsg12BnNJpLRGsHBAQBwk-eunHQtJecai_G5vXu4LXk9GOPpZpd2ufYzjdcUToIoaRu1PsDZXMqJaP_u5VR8_sh5sVDGs3-oW2oUEOKNUOY_zvzC8Fgj6o
CitedBy_id crossref_primary_10_3390_machines10121229
crossref_primary_10_1016_j_eswa_2023_122947
crossref_primary_10_1088_1361_6501_ace642
crossref_primary_10_1109_ACCESS_2025_3533551
crossref_primary_10_3390_app12199670
crossref_primary_10_3390_s23115334
crossref_primary_10_1088_2631_8695_acd625
crossref_primary_10_3390_electronics13122403
crossref_primary_10_1007_s11071_024_10310_w
crossref_primary_10_1016_j_anucene_2023_110228
crossref_primary_10_1016_j_oceaneng_2024_119283
crossref_primary_10_1016_j_epsr_2024_111234
Cites_doi 10.1016/j.measurement.2019.02.072
10.1109/TIM.2019.2933119
10.1109/ACCESS.2021.3096036
10.1109/JPROC.2020.3004555
10.1109/TIM.2019.2896370
10.3390/s21010244
10.1109/ICMLA.2019.00113
10.1016/j.measurement.2020.107667
10.1109/ACCESS.2020.2989510
10.1007/s10462-021-09993-z
10.1016/j.cogsys.2018.03.002
10.1109/ACCESS.2021.3061530
10.1016/j.ress.2020.107050
10.1109/TII.2016.2641470
10.1109/TIE.2017.2752151
10.1016/j.cogsys.2019.10.004
10.1109/28.475698
10.1016/j.compchemeng.2020.106731
10.1016/j.measurement.2020.108339
10.1016/j.measurement.2019.01.022
10.1007/s11042-021-10739-w
10.3390/sym11101212
10.1016/j.measurement.2020.107660
10.1109/ASET48392.2020.9118361
10.1109/ACCESS.2021.3096723
10.1109/ATEE.2013.6563406
10.1016/j.nanoen.2022.107263
10.1088/1361-6501/ab0793
10.1016/j.renene.2020.10.121
10.1109/TII.2020.3028103
10.1016/j.ymssp.2015.04.021
10.1109/ACCESS.2020.3005243
10.1109/JSEN.2020.3015868
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app12157810
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_926eecc5eaea4a4fbf0d859036209f48
10_3390_app12157810
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c364t-c49405dfd4526fcb21d89c20b067b704b007c6a6fefdfad61a96bde67082147a3
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 00:56:26 EDT 2025
Mon Jun 30 07:32:29 EDT 2025
Tue Jul 01 00:41:29 EDT 2025
Thu Apr 24 22:51:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-c49405dfd4526fcb21d89c20b067b704b007c6a6fefdfad61a96bde67082147a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4749-8761
0000-0002-4912-5360
OpenAccessLink https://doaj.org/article/926eecc5eaea4a4fbf0d859036209f48
PQID 2700544769
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_926eecc5eaea4a4fbf0d859036209f48
proquest_journals_2700544769
crossref_primary_10_3390_app12157810
crossref_citationtrail_10_3390_app12157810
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Jiang (ref_7) 2022; 99
Zhang (ref_26) 2021; 9
Huang (ref_32) 2022; 55
Shao (ref_30) 2020; 8
ref_14
ref_35
ref_12
Li (ref_28) 2021; 169
Zhuang (ref_36) 2020; 109
Xue (ref_1) 2021; 70
Kanemaru (ref_8) 2018; 7
Verstraete (ref_22) 2017; 2017
Choudhary (ref_15) 2020; 21
Hoang (ref_9) 2019; 69
Razik (ref_13) 2020; 56
Dagher (ref_37) 2021; 80
Wen (ref_21) 2019; 69
Singh (ref_10) 2016; 13
Schoen (ref_11) 1995; 31
Beveridge (ref_34) 2020; 59
Yang (ref_4) 2020; 157
Oh (ref_18) 2017; 65
Xu (ref_38) 2020; 8
Jiao (ref_5) 2021; 38
Wang (ref_29) 2020; 202
Ma (ref_20) 2019; 30
ref_24
ref_23
Zhong (ref_33) 2019; 137
Hou (ref_3) 2021; 9
Chen (ref_25) 2021; 163
Pham (ref_16) 2021; 9
Chen (ref_17) 2020; 17
Wu (ref_27) 2020; 135
Guo (ref_2) 2019; 139
Hoang (ref_19) 2018; 53
Smith (ref_39) 2015; 64
Zhang (ref_31) 2020; 157
ref_6
References_xml – volume: 139
  start-page: 226
  year: 2019
  ident: ref_2
  article-title: Fault feature extraction for rolling element bearing diagnosis based on a multi-stage noise reduction method
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.02.072
– volume: 69
  start-page: 3325
  year: 2019
  ident: ref_9
  article-title: A motor current signal-based bearing fault diagnosis using deep learning and information fusion
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2933119
– volume: 9
  start-page: 98800
  year: 2021
  ident: ref_16
  article-title: Efficient fault diagnosis of rolling bearings using neural network architecture search and sharing weights
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3096036
– volume: 109
  start-page: 43
  year: 2020
  ident: ref_36
  article-title: A comprehensive survey on transfer learning
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2020.3004555
– volume: 56
  start-page: 3604
  year: 2020
  ident: ref_13
  article-title: Automatic diagnosis of electromechanical faults in induction motors based on the transient analysis of the stray flux via MUSIC methods
  publication-title: IEEE Trans. Ind. Appl.
– volume: 69
  start-page: 330
  year: 2019
  ident: ref_21
  article-title: A new two-level hierarchical diagnosis network based on convolutional neural network
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2896370
– ident: ref_24
  doi: 10.3390/s21010244
– ident: ref_6
  doi: 10.1109/ICMLA.2019.00113
– volume: 157
  start-page: 107667
  year: 2020
  ident: ref_31
  article-title: An enhanced convolutional neural network for bearing fault diagnosis based on time–frequency image
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107667
– ident: ref_35
– volume: 8
  start-page: 76120
  year: 2020
  ident: ref_38
  article-title: Transfer learning based data feature transfer for fault diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2989510
– volume: 55
  start-page: 1289
  year: 2022
  ident: ref_32
  article-title: A novel fault diagnosis method based on CNN and LSTM and its application in fault diagnosis for complex systems
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-09993-z
– volume: 38
  start-page: 73
  year: 2021
  ident: ref_5
  article-title: Approach for Fault Diagnosis Based on Pattern Match of Characteristic Waveforms in Frequency Domain
  publication-title: J. East China Jiaotong Univ.
– volume: 53
  start-page: 42
  year: 2018
  ident: ref_19
  article-title: Rolling element bearing fault diagnosis using convolutional neural network and vibration image
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2018.03.002
– volume: 9
  start-page: 43889
  year: 2021
  ident: ref_26
  article-title: Deep convolutional neural network using transfer learning for fault diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3061530
– volume: 202
  start-page: 107050
  year: 2020
  ident: ref_29
  article-title: Multi-scale deep intra-class transfer learning for bearing fault diagnosis
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2020.107050
– volume: 13
  start-page: 1341
  year: 2016
  ident: ref_10
  article-title: Detection of bearing faults in mechanical systems using stator current monitoring
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2016.2641470
– volume: 65
  start-page: 3539
  year: 2017
  ident: ref_18
  article-title: Scalable and unsupervised feature engineering using vibration-imaging and deep learning for rotor system diagnosis
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2752151
– volume: 59
  start-page: 312
  year: 2020
  ident: ref_34
  article-title: Inception and ResNet features are (almost) equivalent
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2019.10.004
– volume: 7
  start-page: 282
  year: 2018
  ident: ref_8
  article-title: Bearing fault detection in induction machine based on stator current spectrum monitoring
  publication-title: IEEJ J. Ind. Appl.
– volume: 31
  start-page: 1280
  year: 1995
  ident: ref_11
  article-title: An unsupervised, on-line system for induction motor fault detection using stator current monitoring
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/28.475698
– volume: 2017
  start-page: 5067651
  year: 2017
  ident: ref_22
  article-title: Deep Learning Enabled Fault Diagnosis Using Time-Frequency Image Analysis of Rolling Element Bearings
  publication-title: Shock. Vib.
– volume: 135
  start-page: 106731
  year: 2020
  ident: ref_27
  article-title: Fault detection and diagnosis based on transfer learning for multimode chemical processes
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106731
– volume: 169
  start-page: 108339
  year: 2021
  ident: ref_28
  article-title: Deep convolution domain-adversarial transfer learning for fault diagnosis of rolling bearings
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108339
– volume: 137
  start-page: 435
  year: 2019
  ident: ref_33
  article-title: A novel gas turbine fault diagnosis method based on transfer learning with CNN
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.01.022
– volume: 80
  start-page: 20369
  year: 2021
  ident: ref_37
  article-title: Facial age estimation using pre-trained CNN and transfer learning
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-021-10739-w
– ident: ref_23
  doi: 10.3390/sym11101212
– volume: 157
  start-page: 107660
  year: 2020
  ident: ref_4
  article-title: Optimal IMF selection and unknown fault feature extraction for rolling bearings with different defect modes
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107660
– ident: ref_14
  doi: 10.1109/ASET48392.2020.9118361
– volume: 70
  start-page: 1
  year: 2021
  ident: ref_1
  article-title: Feature Extraction Using Hierarchical Dispersion Entropy for Rolling Bearing Fault Diagnosis
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 9
  start-page: 99756
  year: 2021
  ident: ref_3
  article-title: A Novel Rolling Bearing Fault Diagnosis Method Based on Adaptive Feature Selection and Clustering
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3096723
– ident: ref_12
  doi: 10.1109/ATEE.2013.6563406
– volume: 99
  start-page: 107263
  year: 2022
  ident: ref_7
  article-title: Ultra-compact triboelectric bearing based on a ribbon cage with applications for fault diagnosis of rotating machinery
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107263
– volume: 30
  start-page: 055402
  year: 2019
  ident: ref_20
  article-title: A novel bearing fault diagnosis method based on 2D image representation and transfer learning-convolutional neural network
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab0793
– volume: 163
  start-page: 2053
  year: 2021
  ident: ref_25
  article-title: Diagnosis of wind turbine faults with transfer learning algorithms
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.10.121
– volume: 17
  start-page: 5402
  year: 2020
  ident: ref_17
  article-title: Fault diagnosis method of low-speed rolling bearing based on acoustic emission signal and subspace embedded feature distribution alignment
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.3028103
– volume: 64
  start-page: 100
  year: 2015
  ident: ref_39
  article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study
  publication-title: Mech. Syst. Signal Processing
  doi: 10.1016/j.ymssp.2015.04.021
– volume: 8
  start-page: 119421
  year: 2020
  ident: ref_30
  article-title: Transfer learning method based on adversarial domain adaption for bearing fault diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3005243
– volume: 21
  start-page: 1727
  year: 2020
  ident: ref_15
  article-title: Infrared thermography based fault diagnosis of induction motor bearings using machine learning
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3015868
SSID ssj0000913810
Score 2.3323104
Snippet Fault diagnosis of rolling bearings is significant for mechanical equipment operation and maintenance. Presently, the deep convolutional neural network (CNN)...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 7810
SubjectTerms Accuracy
bearing fault diagnosis
Bearings
Deep learning
deep residual network
Experiments
Fault diagnosis
Machine learning
Neural networks
time-frequency image
transfer learning
Vibration
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSyNBEC7ceNk9iK9l44s-eFBh2J6Znp7pkxg1iGAQUfA29FMWJImZ-P-tmunEgIunwKROVV1VX1V3fQVwnBuFVZcLSW6FToSVPDGpswmCE8OVNTbzNO98N5I3T-L2uXiODbcmPqtcxMQ2ULuJpR75X7ogLYQopTqfviW0NYpuV-MKjR-wjiG4qnqwPrge3T8suyzEelmlvBvMy7G-p3thIlQoK5qZXUlFLWP_l4DcZpnhJmxEeMguOntuwZofb8OvFdLAbdiK7tiwk8gZfboD9ZX3U_bgm3a2io26x90MvR0rX-8YtVtZm5eCn7FIqvrCBpjDHBvq99c5u-oe3f1rGOJYFsm62QBF8XcXnobXj5c3SdydkNhcinlihUIo5oKjFeLBmix1lbIZGkCWpuQCva20UsvggwvayVQraZyXJUKCVJQ6_w298WTs_wBzNkheIpIrAlaD1iCkQkUWJhQ8szxTfThbqLG2kVic9lu81lhgkM7rFZ334XgpPO34NP4vNiB7LEWIBLv9MJm91NGnapVJjyew8NproUUwgbuqUJSTuQqi6sPBwpp19Mym_jxHe9__vQ8_Mxp1aB_7HUBvPnv3hwhA5uYonrIPdHbbfw
  priority: 102
  providerName: ProQuest
Title Deep Residual Network Combined with Transfer Learning Based Fault Diagnosis for Rolling Bearing
URI https://www.proquest.com/docview/2700544769
https://doaj.org/article/926eecc5eaea4a4fbf0d859036209f48
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60XvQg1gdWa9mDBxWCeWw23aO1jUWwiCh4C_sUQarY-P-d3WxLQMGLp0AY2DA7s_NNduYbgNNMcsy6tI0yRUVEFYsjmWgVITiRMVdSpcb1O9_N2PSJ3j7nz61RX64mrKEHbhR3yVNmcJncCCOooFbaWA9z7g7emFvq23wx5rWSKX8G88RRVzUNeRnm9e4-2BEpFEPXK9sKQZ6p_8dB7KNLuQPbARaSq-ZzurBm5ruw1SIL3IVucMMFOQtc0ed7UI2N-SAPZuF7qsisKeom6OWY8RpN3G9W4uORNZ8kkKm-kBHGLk1K8fVWk3FTbPe6IIhfSSDpJiMUxec-PJWTx-tpFGYmRCpjtI4U5QjBtNVudLhVMk30kKsUFc8KWcQUvaxQTDBrrLZCs0RwJrVhBUKBhBYiO4DO_H1uDoFoZVlcIILLLWaBSiKUQkXm0uZxquKU9-BiqcZKBUJxN9fircLEwum8aum8B6cr4Y-GR-N3sZHbj5WII7_2L9AkqmAS1V8m0YP-cjer4JGLyl2w55QWjB_9xxrHsJm6RghfCtiHTv35ZU4QntRyAOvD8mYAG6PJ7P5h4O3yGxnY5fs
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcgAOiBYQSwv4UCRAinASx4kPCLEsy5a2e0Ct1JuJvyqkane72Qrxp_iNzCTOshKIW0-RYiuKxuOZN_bMG4CD3CiMulxIcivqRFjJE5M6myA4MVxZYzNP9c4nUzk5E1_Oi_Mt-NXXwlBaZW8TW0Pt5pbOyN_SBWkhRCnV-8VVQl2j6Ha1b6HRqcWR__kDQ7bm3eEI1_dllo0_nX6cJLGrQGJzKVaJFQpBiguOmmsHa7LUVcpm-GuyNCUXqIellbUMPrhQO5nWShrnZYnOMhVlneN3b8FtkaMnp8r08ef1mQ5xbFYp78oAcZzTLTTRN5QVVehuOL62P8Bf5r_1aeMHcD-CUfah054d2PKzXbi3QVG4Cztx8zfsVWSofv0Q9Mj7Bfvqm7aSi027VHKGtgXjbO8YHe6y1gsGv2SRwvWCDdFjOjaury9XbNSl-H1vGKJmFqnB2RCn4vMRnN2ITB_D9mw-80-AORskLxE3FgFjT2sQwKEgCxMKnlmeqQG86cWobaQxp24alxrDGZK53pD5AA7Wkxcde8e_pw1pPdZTiHK7fTFfXui4g7XKpEd9L3zta1GLYAJ3VaEIAXAVRDWA_X41dbQDjf6jtU__P_wC7kxOT4718eH0aA_uZlRk0aYZ7sP2anntnyH0WZnnrb4x-HbTCv4buOsXgg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEB7qFUQfxFbF06r7UEGF0E2y2WQfRDyvR2v1KMVC3-L-LEK5Oy9XxH_Nv86ZZHMeKL71KZAMIcxOZr7ZnfkGYD83CrMuF5LcCp0IK3liUmcTBCeGK2ts5qnf-fNUHp2LjxfFxRb86nthqKyy94mto3ZzS3vkB3RAWghRSnUQYlnE6XjybvE9oQlSdNLaj9PoTOTE__yB6Vvz9niMa_0yyyaHXz4cJXHCQGJzKVaJFQoBiwuOBm0Ha7LUVcpm-JmyNCUXaJOllVoGH1zQTqZaSeO8LDFwpqLUOb73FmyXlBUNYHt0OD09W-_wEONmlfKuKTDPFaczaSJzKCvq190Ig-20gL-CQRvhJvfhXoSm7H1nSzuw5We7cHeDsHAXdqIraNiryFf9-gHUY-8X7Mw3bV8Xm3aF5Qw9DWbd3jHa6mVtTAx-ySKh6yUbYfx0bKKvr1Zs3BX8fWsYYmgWicLZCEXx-hDOb0Srj2Awm8_8Y2DOBslLRJFFwEzUGoRzqMjChIJnlmdqCG96NdY2kprTbI2rGpMb0nm9ofMh7K-FFx2Xx7_FRrQeaxEi4G5vzJeXdfyfa5VJj9ZfeO210CKYwF1VKMIDXAVRDWGvX806eoWm_mPDT_7_-AXcRuOuPx1PT57CnYw6Ltqawz0YrJbX_hnioJV5Hg2OwdebtvHfOVUdFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Residual+Network+Combined+with+Transfer+Learning+Based+Fault+Diagnosis+for+Rolling+Bearing&rft.jtitle=Applied+sciences&rft.au=Jianmin+Zhou&rft.au=Xiaotong+Yang&rft.au=Jiahui+Li&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=15&rft.spage=7810&rft_id=info:doi/10.3390%2Fapp12157810&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_926eecc5eaea4a4fbf0d859036209f48
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon