Transformer-Based Subject-Sensitive Hashing for Integrity Authentication of High-Resolution Remote Sensing (HRRS) Images
The implicit prerequisite for using HRRS images is that the images can be trusted. Otherwise, their value would be greatly reduced. As a new data security technology, subject-sensitive hashing overcomes the shortcomings of existing integrity authentication methods and could realize subject-sensitive...
Saved in:
Published in | Applied sciences Vol. 13; no. 3; p. 1815 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The implicit prerequisite for using HRRS images is that the images can be trusted. Otherwise, their value would be greatly reduced. As a new data security technology, subject-sensitive hashing overcomes the shortcomings of existing integrity authentication methods and could realize subject-sensitive authentication of HRRS images. However, shortcomings of the existing algorithm, in terms of robustness, limit its application. For example, the lack of robustness against JPEG compression makes existing algorithms more passive in some applications. To enhance the robustness, we proposed a Transformer-based subject-sensitive hashing algorithm. In this paper, first, we designed a Transformer-based HRRS image feature extraction network by improving Swin-Unet. Next, subject-sensitive features of HRRS images were extracted by this improved Swin-Unet. Then, the hash sequence was generated through a feature coding method that combined mapping mechanisms with principal component analysis (PCA). Our experimental results showed that the robustness of the proposed algorithm was greatly improved in comparison with existing algorithms, especially the robustness against JPEG compression. |
---|---|
AbstractList | Featured ApplicationThe transformer based subject-sensitive hashing algorithm proposed in this paper could be applied to data security of HRRS images to provide integrity authentication services for later use of HRRS images, and to generate watermark information for digital watermarks.AbstractThe implicit prerequisite for using HRRS images is that the images can be trusted. Otherwise, their value would be greatly reduced. As a new data security technology, subject-sensitive hashing overcomes the shortcomings of existing integrity authentication methods and could realize subject-sensitive authentication of HRRS images. However, shortcomings of the existing algorithm, in terms of robustness, limit its application. For example, the lack of robustness against JPEG compression makes existing algorithms more passive in some applications. To enhance the robustness, we proposed a Transformer-based subject-sensitive hashing algorithm. In this paper, first, we designed a Transformer-based HRRS image feature extraction network by improving Swin-Unet. Next, subject-sensitive features of HRRS images were extracted by this improved Swin-Unet. Then, the hash sequence was generated through a feature coding method that combined mapping mechanisms with principal component analysis (PCA). Our experimental results showed that the robustness of the proposed algorithm was greatly improved in comparison with existing algorithms, especially the robustness against JPEG compression. The implicit prerequisite for using HRRS images is that the images can be trusted. Otherwise, their value would be greatly reduced. As a new data security technology, subject-sensitive hashing overcomes the shortcomings of existing integrity authentication methods and could realize subject-sensitive authentication of HRRS images. However, shortcomings of the existing algorithm, in terms of robustness, limit its application. For example, the lack of robustness against JPEG compression makes existing algorithms more passive in some applications. To enhance the robustness, we proposed a Transformer-based subject-sensitive hashing algorithm. In this paper, first, we designed a Transformer-based HRRS image feature extraction network by improving Swin-Unet. Next, subject-sensitive features of HRRS images were extracted by this improved Swin-Unet. Then, the hash sequence was generated through a feature coding method that combined mapping mechanisms with principal component analysis (PCA). Our experimental results showed that the robustness of the proposed algorithm was greatly improved in comparison with existing algorithms, especially the robustness against JPEG compression. |
Author | Yan, Xinyun Wang, Yingying Ding, Kaimeng Zeng, Yue Chen, Shiping |
Author_xml | – sequence: 1 givenname: Kaimeng orcidid: 0000-0002-1339-813X surname: Ding fullname: Ding, Kaimeng – sequence: 2 givenname: Shiping orcidid: 0000-0002-4603-0024 surname: Chen fullname: Chen, Shiping – sequence: 3 givenname: Yue surname: Zeng fullname: Zeng, Yue – sequence: 4 givenname: Yingying surname: Wang fullname: Wang, Yingying – sequence: 5 givenname: Xinyun surname: Yan fullname: Yan, Xinyun |
BookMark | eNptUcFqGzEQFSWFpElO-QFBLy1lG2mllbTHNLS1IVCw07PQSrNrGVtyJW1o_r6q3UIoncsMj_ceb2beoLMQAyB0Q8lHxnpyaw4Hygijinav0EVLpGgYp_LsxXyOrnPeklo9ZYqSC_TzMZmQx5j2kJpPJoPD63nYgi3NGkL2xT8BXpi88WHClYaXocCUfHnGd3PZQCjemuJjwHHECz9tmhXkuJuP0Ar2sQA-GlX5u8VqtX6Pl3szQb5Cr0ezy3D9p1-i718-P94vmodvX5f3dw-NZYKXxnKioOaVA-vajlsh3eCgt8zwQYKTHXNkIKOQduylUIK3jEkunCBODZwydomWJ18XzVYfkt-b9Kyj8foIxDRpk-oSO9DCWSu4A9lbzqXplFCEDxw62bZ8UKJ6vT15HVL8MUMuehvnFGp83UrZq76XUlUWPbFsijknGLX15XijkozfaUr073_pF_-qmg__aP4m_R_7F9QGl5Y |
CitedBy_id | crossref_primary_10_3390_rs15194860 crossref_primary_10_1117_1_JRS_17_032404 crossref_primary_10_3390_ijgi13090336 crossref_primary_10_1016_j_neunet_2024_106357 |
Cites_doi | 10.1109/TCSVT.2017.2776159 10.1016/j.sigpro.2017.07.019 10.1109/TMM.2020.2999188 10.1109/TGRS.2021.3136190 10.1109/TBC.2022.3147145 10.3390/ijgi9080485 10.1109/TGRS.2022.3185640 10.1007/978-3-030-25614-2_4 10.1109/ICECCT.2019.8869146 10.1109/TIFS.2014.2371237 10.1109/CVPR46437.2021.00084 10.1109/TIM.2022.3165838 10.1109/CVPR.2018.00418 10.1109/TGRS.2022.3180685 10.1109/JBHI.2021.3064696 10.1016/j.neucom.2018.04.057 10.1016/j.jvcir.2021.103124 10.1016/j.procs.2021.05.021 10.1007/978-3-319-24574-4_28 10.1109/ICCVW54120.2021.00210 10.1109/TGRS.2015.2478379 10.1016/j.imavis.2021.104245 10.1109/TCYB.2021.3069920 10.1109/CVPR.2019.00296 10.1109/CVPR46437.2021.00424 10.1109/TIFS.2022.3161149 10.1016/j.neunet.2019.08.025 10.1109/TVLSI.2004.832943 10.1109/TGRS.2022.3173476 10.1016/j.compeleceng.2020.106648 10.1109/LSP.2009.2032451 10.3390/rs13245109 10.1117/1.JMI.6.1.014006 10.1109/TIM.2022.3178991 10.1109/ACCESS.2020.3015876 10.1109/CONIT51480.2021.9498572 10.1088/1755-1315/440/3/032138 10.1109/ICCV48922.2021.00986 |
ContentType | Journal Article |
Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app13031815 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_6dcc64de79c447a586804b4e57224b86 10_3390_app13031815 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c364t-c408e0007b35254c67dbde9c3a4b7ed753d0b0f67cf976864233746d60d8b4133 |
IEDL.DBID | BENPR |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:24:48 EDT 2025 Mon Jun 30 11:09:26 EDT 2025 Thu Apr 24 23:01:37 EDT 2025 Tue Jul 01 04:32:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-c408e0007b35254c67dbde9c3a4b7ed753d0b0f67cf976864233746d60d8b4133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4603-0024 0000-0002-1339-813X |
OpenAccessLink | https://www.proquest.com/docview/2779899778?pq-origsite=%requestingapplication% |
PQID | 2779899778 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6dcc64de79c447a586804b4e57224b86 proquest_journals_2779899778 crossref_citationtrail_10_3390_app13031815 crossref_primary_10_3390_app13031815 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_12 ref_11 Biswas (ref_16) 2021; 113 Zhang (ref_40) 2004; 12 Xue (ref_31) 2022; 60 Samanta (ref_4) 2021; 185 Zhao (ref_45) 2020; 440 Chi (ref_51) 2021; 25 ref_24 ref_23 ref_22 Quan (ref_20) 2022; 60 Zhang (ref_32) 2022; 68 Ding (ref_42) 2015; 40 ref_27 Romero (ref_19) 2016; 54 ref_26 Lin (ref_28) 2022; 71 Khelifi (ref_10) 2019; 29 Wang (ref_50) 2022; 52 Li (ref_5) 2022; 17 Huang (ref_18) 2021; 23 ref_35 ref_34 Khelifi (ref_2) 2010; 17 Wang (ref_17) 2021; 8 ref_39 ref_38 Tang (ref_14) 2018; 308 ref_37 Niu (ref_1) 2008; 36 Masoumi (ref_41) 2015; 10 Du (ref_3) 2020; 81 Lei (ref_33) 2022; 60 Hamid (ref_15) 2020; 84 Song (ref_30) 2022; 60 Ji (ref_47) 2019; 48 Li (ref_46) 2022; 19 Alom (ref_44) 2019; 6 Qin (ref_13) 2018; 36 Wang (ref_29) 2022; 19 ref_43 Chen (ref_21) 2022; 60 Zhang (ref_9) 2020; 8 Ibtehaz (ref_25) 2020; 121 ref_49 ref_48 ref_8 Ye (ref_36) 2022; 71 ref_7 ref_6 |
References_xml | – volume: 29 start-page: 50 year: 2019 ident: ref_10 article-title: Perceptual Video Hashing for Content Identification and Authentication publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2017.2776159 – volume: 36 start-page: 194 year: 2018 ident: ref_13 article-title: Perceptual hashing for color images based on hybrid extraction of structural features publication-title: Signal Process. doi: 10.1016/j.sigpro.2017.07.019 – volume: 23 start-page: 1516 year: 2021 ident: ref_18 article-title: Perceptual Image Hashing With Texture and Invariant Vector Distance for Copy Detection publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2020.2999188 – volume: 60 start-page: 5615611 year: 2022 ident: ref_33 article-title: Transformer-Based Multistage Enhancement for Remote Sensing Image Super-Resolution publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2021.3136190 – volume: 68 start-page: 359 year: 2022 ident: ref_32 article-title: Cross-Frame Transformer-Based Spatio-Temporal Video Super-Resolution publication-title: IEEE Trans. Broadcast. doi: 10.1109/TBC.2022.3147145 – ident: ref_39 – volume: 81 start-page: 115713 year: 2020 ident: ref_3 article-title: Perceptual hashing for image authentication: A survey publication-title: Image Commun. – volume: 60 start-page: 5607514 year: 2022 ident: ref_21 article-title: Remote Sensing Image Change Detection with Transformers publication-title: IEEE Trans. Geosci. Remote Sens. – ident: ref_23 – ident: ref_6 doi: 10.3390/ijgi9080485 – ident: ref_8 – volume: 60 start-page: 5532117 year: 2022 ident: ref_30 article-title: BS2T: Bottleneck Spatial–Spectral Transformer for Hyperspectral Image Classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3185640 – ident: ref_24 doi: 10.1007/978-3-030-25614-2_4 – ident: ref_11 doi: 10.1109/ICECCT.2019.8869146 – volume: 10 start-page: 256 year: 2015 ident: ref_41 article-title: Novel Approach to Protect Advanced Encryption Standard Algorithm Implementation Against Differential Electromagnetic and Power Analysis publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2014.2371237 – ident: ref_49 doi: 10.1109/CVPR46437.2021.00084 – volume: 71 start-page: 2507412 year: 2022 ident: ref_36 article-title: CT-Net: An Efficient Network for Low-Altitude Object Detection Based on Convolution and Transformer publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3165838 – volume: 19 start-page: 8009205 year: 2022 ident: ref_46 article-title: Multistage Attention ResU-Net for Semantic Segmentation of Fine-Resolution Remote Sensing Images publication-title: IEEE Geosci. Remote Sens. Lett. – ident: ref_48 doi: 10.1109/CVPR.2018.00418 – volume: 60 start-page: 5531116 year: 2022 ident: ref_31 article-title: Grafting Transformer on Automatically Designed Convolutional Neural Network for Hyperspectral Image Classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3180685 – volume: 48 start-page: 448 year: 2019 ident: ref_47 article-title: Building extraction via convolutional neural networks from an open remote sensing building dataset publication-title: Acta Geod. Cartogr. Sin. – volume: 25 start-page: 3185 year: 2021 ident: ref_51 article-title: Deep Semisupervised Multitask Learning Model and Its Interpretability for Survival Analysis publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2021.3064696 – volume: 308 start-page: 147 year: 2018 ident: ref_14 article-title: Image hashing with color vector angle publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.04.057 – volume: 8 start-page: 103124 year: 2021 ident: ref_17 article-title: Perceptual hash-based coarse-to-fine grained image tampering forensics method publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2021.103124 – ident: ref_7 – volume: 185 start-page: 203 year: 2021 ident: ref_4 article-title: Analysis of Perceptual Hashing Algorithms in Image Manipulation Detection publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2021.05.021 – ident: ref_22 doi: 10.1007/978-3-319-24574-4_28 – volume: 40 start-page: 716 year: 2015 ident: ref_42 article-title: An adaptive grid partition based perceptual hash algorithm for remote sensing image authentication publication-title: Wuhan Daxue Xuebao – volume: 36 start-page: 1405 year: 2008 ident: ref_1 article-title: An Overview of Perceptual Hashing publication-title: Acta Electron. Sin. – ident: ref_34 doi: 10.1109/ICCVW54120.2021.00210 – volume: 54 start-page: 1349 year: 2016 ident: ref_19 article-title: Unsupervised Deep Feature Extraction for Remote Sensing Image Classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2478379 – volume: 113 start-page: 104245 year: 2021 ident: ref_16 article-title: A new perceptual hashing method for verification and identity classification of occluded faces publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2021.104245 – volume: 52 start-page: 12623 year: 2022 ident: ref_50 article-title: Interpretability-Based Multimodal Convolutional Neural Networks for Skin Lesion Diagnosis publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3069920 – ident: ref_35 doi: 10.1109/CVPR.2019.00296 – ident: ref_27 doi: 10.1109/CVPR46437.2021.00424 – ident: ref_37 – volume: 17 start-page: 1404 year: 2022 ident: ref_5 article-title: Unified Performance Evaluation Method for Perceptual Image Hashing publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2022.3161149 – volume: 121 start-page: 74 year: 2020 ident: ref_25 article-title: MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation publication-title: Neural Net. doi: 10.1016/j.neunet.2019.08.025 – volume: 12 start-page: 957 year: 2004 ident: ref_40 article-title: High-speed VLSI architectures for the AES algorithm publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. doi: 10.1109/TVLSI.2004.832943 – volume: 60 start-page: 4706718 year: 2022 ident: ref_20 article-title: Self-Distillation Feature Learning Network for Optical and SAR Image Registration publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3173476 – volume: 84 start-page: 106648 year: 2020 ident: ref_15 article-title: Robust Image Hashing Scheme using Laplacian Pyramids publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2020.106648 – volume: 17 start-page: 43 year: 2010 ident: ref_2 article-title: Analysis of the Security of Perceptual Image Hashing Based on Non-Negative Matrix Factorization publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2009.2032451 – ident: ref_26 doi: 10.3390/rs13245109 – volume: 6 start-page: 014006 year: 2019 ident: ref_44 article-title: Recurrent residual U-Net for medical image segmentation publication-title: J. Med. Imaging. doi: 10.1117/1.JMI.6.1.014006 – volume: 71 start-page: 4005615 year: 2022 ident: ref_28 article-title: DS-TransUNet: Dual Swin Transformer U-Net for Medical Image Segmentation publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3178991 – volume: 8 start-page: 148556 year: 2020 ident: ref_9 article-title: An Encrypted Speech Retrieval Method Based on Deep Perceptual Hashing and CNN-BiLSTM publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3015876 – ident: ref_43 – volume: 19 start-page: 4510305 year: 2022 ident: ref_29 article-title: A ViT-Based Multiscale Feature Fusion Approach for Remote Sensing Image Segmentation publication-title: IEEE Geosci. Remote Sens. Lett. – ident: ref_12 doi: 10.1109/CONIT51480.2021.9498572 – volume: 440 start-page: 032138 year: 2020 ident: ref_45 article-title: Attention residual convolution neural network based on U-net (AttentionResU-Net) for retina vessel segmentation publication-title: IOP Conf. Ser. Earth Environ. Sci. IOP Publ. doi: 10.1088/1755-1315/440/3/032138 – ident: ref_38 doi: 10.1109/ICCV48922.2021.00986 |
SSID | ssj0000913810 |
Score | 2.2793202 |
Snippet | The implicit prerequisite for using HRRS images is that the images can be trusted. Otherwise, their value would be greatly reduced. As a new data security... Featured ApplicationThe transformer based subject-sensitive hashing algorithm proposed in this paper could be applied to data security of HRRS images to... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1815 |
SubjectTerms | Algorithms Deep learning HRRS images Methods perceptual hashing Remote sensing subject-sensitive hashing transformer U-net |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7E-sBqlT300AqLabKvHK1YWkEPfYC3kH3kpFXaCv58Z3bTUlHw4jVMHuzMznwzO_mGkLbJbM_oJGdSWkhQAJAzLXzJqlRY5VXPmUCl9PgkhzP-8Cyet0Z9YU9YpAeOC3cjnbWSO69yy7kqhZY64YZ7oSD4GB3ItiHmbSVTwQfnPaSuij_kZZDX43kwumsIaOJbCApM_T8ccYgug0NyUMNCehs_p0F2_PyI7G-RBR6RRr0Nl7RTc0V3j8nndA08_YL1ISI5Cq4Aaytsgq3p6MzoMA5MoiBGR4EeAqA3xeIYtgrFmh19qyj2fDCs50drpGMPevQ0PAhu7wzH40mXjl7BBS1PyGxwP70bsnqYArOZ5CtmeaI9IgKDBKjcSuWM87nNSm6Ud5C1uMQklVS2AoSiIS3JMsWlk4nTBiJddkp2529zf0aoyEuhfMptJSy3aZVr7QB48qTkqtK6apLr9foWtmYax4EXLwVkHKiMYksZTdLeCL9Hgo3fxfqoqI0IsmKHC2ArRW0rxV-20iSttZqLeqsui1SpHJJOpfT5f7zjguzhRPrY2N0iu6vFh78E3LIyV8FEvwCUf-nB priority: 102 providerName: Directory of Open Access Journals |
Title | Transformer-Based Subject-Sensitive Hashing for Integrity Authentication of High-Resolution Remote Sensing (HRRS) Images |
URI | https://www.proquest.com/docview/2779899778 https://doaj.org/article/6dcc64de79c447a586804b4e57224b86 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS-tQEB60bnRx8Yn1ajkLFyocTJvzykqsWKugSFVwF3IecaOttr1wf74zyWlVFLfJJITMOd98M5l8A7BvU9e2Jsm4Ug4TFCTk3MhQ8LIjnQ667W0lpXR9o_oP4upRPsaC2yS2Vc4wsQJqP3JUIz_uaJ1hbqC1OXl94zQ1ir6uxhEai7CEEGxMA5a65ze3g3mVhVQvTTupf8xLMb-n78IE2xjY5JdQVCn2fwPkKsr0VuFPpIfstPbnGiyE4TqsfBINXIe1uB0n7CBqRh9uwP_7GQENY97FyOQZQgLVWPgdtagTqLF-PTiJoRm7rGQikIIzKpJRy1Bdu2OjklHvB6e6fr0q2SCgPwOrboSXH_QHg7tDdvmCUDTZhIfe-f1Zn8ehCtylSky5E4kJxAwsCaEKp7S3PmQuLYTVwWP24hOblEq7EpmKwfQkTbVQXiXeWIx46RY0hqNh2AYms0Lq0BGulE64TpkZ45GAiqQQujSmbMLR7P3mLiqO0-CL5xwzD3JG_skZTdifG7_WQhs_m3XJUXMTUseuDozGT3ncbLnyzinhg86cELqQRuFTWRGkRsJijWrC7szNedyyk_xjge38fvovLNPM-bp1exca0_G_sIfMZGpbsGh6F624CFtVfv8O6gflRA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gHpQDEdS4gNoHTMCk4-xMv-ZAjKjrrDwOy5JwG6Yf4wV2YXcJ8Kf4jVTNY8VovHGdrulMpqqrvq6u_gpg0yaua02UcqUcblAQkHMjQ8HLWDoddNfbikrp4FBlx-LniTxZgLv2LgyVVbY-sXLUfuwoR_4p1jrFvYHW5vPFJaeuUXS62rbQqM1iL9xe45ZtutP_hvr9EMe978OvGW-6CnCXKDHjTkQmUGi0xAQqnNLe-pC6pBBWB4_w3Uc2KpV2JYZqg_g8SbRQXkXeWHT5Cc77BJ6KBCM53Uzv_ZjndIhj03Sj-hogjkd0Ck1BAsOo_CPwVf0B_nL_VUzrvYDlBoyyL7X1rMBCGK3C0gOKwlVYaRb_lG01DNXbL-Fm2MLdMOG7GAc9QwdEGR1-RAXx5EJZVrdpYijG-hUpBQJ-Rik5KlCqM4VsXDKqNOF0ilCvATYIaD2BVRPh61vZYHC0zfrn6Pimr-D4UX72a1gcjUfhDTCZFlKHWLhSOuHiMjXGI9wVUSF0aUzZgY_t_81dw29ObTbOctznkDLyB8rowOZc-KKm9fi32C4pai5CXNzVg_HkV94s7Vx555TwQadOCF1Io_CrrAhSIzyyRnVgo1Vz3jiIaf7bnNf-P_wenmXDg_18v3-4tw7Pqdt9XTS-AYuzyVV4i5hoZt9Vhsjg9LEt_x7lEx2k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTkLsAbEBojDAD0PakKyliWM7D2iibFXLoJq6TdpbiH_tBdrRFgH_Gn_d7hKnDIF422viWJHvfPfd-fwdwI7JbM_opOBSWgxQEJBznfuKhzS3yqueMzWV0sexHJ6L9xf5xRr8au_CUFllaxNrQ-1mlnLk-6lSBcYGSun9EMsiTg4HB1dfOXWQopPWtp1GoyLH_ud3DN8Wb0aHKOtXaTo4Ons35LHDALeZFEtuRaI9uUlDrKDCSuWM84XNKmGUdwjlXWKSIJUN6LY1YvUsU0I6mTht0PxnOO8dWFcUFXVgvX80PpmsMjzEuKl7SXMpMMuKhM6kyWWgU83_cIN1t4C_nEHt4QYP4H6Epuxto0ubsOanW7Bxg7BwCzajKViw3chXvfcQfpy14NfPeR-9omNojii_w0-pPJ4MKhs2TZsYDmOjmqIC4T-jBB2VKzV5QzYLjOpOOJ0pNDuCTTzqkmf1RPj57nAyOd1joy9oBheP4PxWlvsxdKazqX8CLC-qXPlU2JBbYdNQaO0Q_IqkEipoHbrwul3f0ka2c2q68bnEqIeEUd4QRhd2VoOvGpKPfw_rk6BWQ4iZu34wm1-WcaOX0lkrhfOqsEKoKtcS_8oInysES0bLLmy3Yi6juViUv5X76f9fv4S7qPXlh9H4-BncSxFwNRXk29BZzr_55wiQluZF1EQGn25b-a8B5ZwjNg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transformer-Based+Subject-Sensitive+Hashing+for+Integrity+Authentication+of+High-Resolution+Remote+Sensing+%28HRRS%29+Images&rft.jtitle=Applied+sciences&rft.au=Ding%2C+Kaimeng&rft.au=Chen%2C+Shiping&rft.au=Zeng%2C+Yue&rft.au=Wang%2C+Yingying&rft.date=2023-02-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=3&rft.spage=1815&rft_id=info:doi/10.3390%2Fapp13031815&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app13031815 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |