Fusion of biomedical imaging studies for increased sample size and diversity: a case study of brain MRI

Data collection, curation, and cleaning constitute a crucial phase in Machine Learning (ML) projects. In biomedical ML, it is often desirable to leverage multiple datasets to increase sample size and diversity, but this poses unique challenges, which arise from heterogeneity in study design, data de...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in radiology Vol. 4; p. 1283392
Main Authors Aiskovich, Matias, Castro, Eduardo, Reinen, Jenna M., Fadnavis, Shreyas, Mehta, Anushree, Li, Hongyang, Dhurandhar, Amit, Cecchi, Guillermo A., Polosecki, Pablo
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 2024
Subjects
Online AccessGet full text
ISSN2673-8740
2673-8740
DOI10.3389/fradi.2024.1283392

Cover

Abstract Data collection, curation, and cleaning constitute a crucial phase in Machine Learning (ML) projects. In biomedical ML, it is often desirable to leverage multiple datasets to increase sample size and diversity, but this poses unique challenges, which arise from heterogeneity in study design, data descriptors, file system organization, and metadata. In this study, we present an approach to the integration of multiple brain MRI datasets with a focus on homogenization of their organization and preprocessing for ML. We use our own fusion example (approximately 84,000 images from 54,000 subjects, 12 studies, and 88 individual scanners) to illustrate and discuss the issues faced by study fusion efforts, and we examine key decisions necessary during dataset homogenization, presenting in detail a database structure flexible enough to accommodate multiple observational MRI datasets. We believe our approach can provide a basis for future similarly-minded biomedical ML projects.
AbstractList Data collection, curation, and cleaning constitute a crucial phase in Machine Learning (ML) projects. In biomedical ML, it is often desirable to leverage multiple datasets to increase sample size and diversity, but this poses unique challenges, which arise from heterogeneity in study design, data descriptors, file system organization, and metadata. In this study, we present an approach to the integration of multiple brain MRI datasets with a focus on homogenization of their organization and preprocessing for ML. We use our own fusion example (approximately 84,000 images from 54,000 subjects, 12 studies, and 88 individual scanners) to illustrate and discuss the issues faced by study fusion efforts, and we examine key decisions necessary during dataset homogenization, presenting in detail a database structure flexible enough to accommodate multiple observational MRI datasets. We believe our approach can provide a basis for future similarly-minded biomedical ML projects.
Data collection, curation, and cleaning constitute a crucial phase in Machine Learning (ML) projects. In biomedical ML, it is often desirable to leverage multiple datasets to increase sample size and diversity, but this poses unique challenges, which arise from heterogeneity in study design, data descriptors, file system organization, and metadata. In this study, we present an approach to the integration of multiple brain MRI datasets with a focus on homogenization of their organization and preprocessing for ML. We use our own fusion example (approximately 84,000 images from 54,000 subjects, 12 studies, and 88 individual scanners) to illustrate and discuss the issues faced by study fusion efforts, and we examine key decisions necessary during dataset homogenization, presenting in detail a database structure flexible enough to accommodate multiple observational MRI datasets. We believe our approach can provide a basis for future similarly-minded biomedical ML projects.Data collection, curation, and cleaning constitute a crucial phase in Machine Learning (ML) projects. In biomedical ML, it is often desirable to leverage multiple datasets to increase sample size and diversity, but this poses unique challenges, which arise from heterogeneity in study design, data descriptors, file system organization, and metadata. In this study, we present an approach to the integration of multiple brain MRI datasets with a focus on homogenization of their organization and preprocessing for ML. We use our own fusion example (approximately 84,000 images from 54,000 subjects, 12 studies, and 88 individual scanners) to illustrate and discuss the issues faced by study fusion efforts, and we examine key decisions necessary during dataset homogenization, presenting in detail a database structure flexible enough to accommodate multiple observational MRI datasets. We believe our approach can provide a basis for future similarly-minded biomedical ML projects.
Author Reinen, Jenna M.
Mehta, Anushree
Fadnavis, Shreyas
Dhurandhar, Amit
Castro, Eduardo
Li, Hongyang
Aiskovich, Matias
Polosecki, Pablo
Cecchi, Guillermo A.
Author_xml – sequence: 1
  givenname: Matias
  surname: Aiskovich
  fullname: Aiskovich, Matias
– sequence: 2
  givenname: Eduardo
  surname: Castro
  fullname: Castro, Eduardo
– sequence: 3
  givenname: Jenna M.
  surname: Reinen
  fullname: Reinen, Jenna M.
– sequence: 4
  givenname: Shreyas
  surname: Fadnavis
  fullname: Fadnavis, Shreyas
– sequence: 5
  givenname: Anushree
  surname: Mehta
  fullname: Mehta, Anushree
– sequence: 6
  givenname: Hongyang
  surname: Li
  fullname: Li, Hongyang
– sequence: 7
  givenname: Amit
  surname: Dhurandhar
  fullname: Dhurandhar, Amit
– sequence: 8
  givenname: Guillermo A.
  surname: Cecchi
  fullname: Cecchi, Guillermo A.
– sequence: 9
  givenname: Pablo
  surname: Polosecki
  fullname: Polosecki, Pablo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38645773$$D View this record in MEDLINE/PubMed
BookMark eNpNkU9vEzEQxS1UREvpF-CAfOSSMOv_5oaqFiIVISE4W157HLnarIO9ixQ-PdskVJxmNPrNG817r8nFWEYk5G0Ha86N_ZCqj3nNgIl1xwznlr0gV0xpvjJawMV__SW5ae0RAJg2goF8RS65UUJqza_I9n5uuYy0JNrnssOYgx9o3vltHre0TXPM2GgqleYxVPQNI21-tx-QtvwHqR8jjfk31panw0fqaViQ497hqFl9HunX75s35GXyQ8Obc70mP-_vftx-WT18-7y5_fSwClyJaRUAtExgIqoQrbKgPeul7QwkJqPlHC0HCAoCdjExwfpeqdChlVLxjkt-TTYn3Vj8o9vX5ZN6cMVndxyUunW-TjkM6HRQUvjOBkhBcM0MWmZSSlb0vRe2W7Ten7T2tfyasU1ul1vAYfAjlrk5DsuaNiD1gr47o3O_mPh8-J_RC8BOQKiltYrpGenAPQXqjoG6p0DdOVD-Fwn2knA
Cites_doi 10.1016/j.neuroimage.2018.10.009
10.15265/IYS-2016-s006
10.1016/j.neuroimage.2012.01.021
10.1017/S1041610209009405
10.34133/2021/8786793
10.1016/j.neuroimage.2020.117401
10.1002/wps.21038
10.1038/s41598-020-58074-8
10.1038/s41467-020-18037-z
10.1016/j.neuroimage.2022.119210
10.1186/s12883-014-0204-1
10.1016/j.neuroimage.2015.09.018
10.1146/annurev.clinpsy.3.022806.091415
10.1145/3502287
10.1353/pbm.2021.0002
10.1056/NEJMC2104626
10.1371/journal.pone.0184661
10.1212/WNL.0b013e3181cb3e25
10.1002/acn3.644
10.1038/s41597-022-01721-8
10.1016/j.jocm.2018.07.002
10.1016/j.neuroimage.2013.05.041
10.1162/jocn.2009.21407
10.1038/sdata.2016.44
10.1371/journal.pmed.1001779
10.1093/BIOSTATISTICS/KXZ041
10.1093/cercor/bhs352
10.1038/sdata.2018.134
10.1016/S2589-7500(23)00025-0
10.1136/jnnp.2007.128728
10.3389/fnins.2012.00152
10.1038/s41593-019-0471-7
10.1109/CVPR52688.2022.00037
10.2196/21929
10.1038/s41746-020-00323-1
10.1148/radiol.2020192224
10.1016/j.neuroimage.2010.09.025
ContentType Journal Article
Copyright 2024 Aiskovich, Castro, Reinen, Fadnavis, Mehta, Li, Dhurandhar, Cecchi and Polosecki.
Copyright_xml – notice: 2024 Aiskovich, Castro, Reinen, Fadnavis, Mehta, Li, Dhurandhar, Cecchi and Polosecki.
DBID AAYXX
CITATION
NPM
7X8
DOA
DOI 10.3389/fradi.2024.1283392
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2673-8740
ExternalDocumentID oai_doaj_org_article_7c654a19c0fc43728e928fff94bba491
38645773
10_3389_fradi_2024_1283392
Genre Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS040068
– fundername: NIA NIH HHS
  grantid: P30 AG066444
– fundername: NIA NIH HHS
  grantid: P01 AG003991
– fundername: NIA NIH HHS
  grantid: P01 AG026276
– fundername: NIA NIH HHS
  grantid: U01 AG024904
GroupedDBID 9T4
AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
OK1
PGMZT
RPM
NPM
7X8
ID FETCH-LOGICAL-c364t-c0075f08de6cd96907a2b59180f25d933e9300c60ce1df242bb66c1e955631353
IEDL.DBID DOA
ISSN 2673-8740
IngestDate Wed Aug 27 01:23:14 EDT 2025
Thu Jul 10 23:15:00 EDT 2025
Sun Feb 02 01:33:14 EST 2025
Tue Jul 01 04:25:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords brain MRI
dataset fusion
data preparation
data scarcity
biomedical machine learning
Language English
License 2024 Aiskovich, Castro, Reinen, Fadnavis, Mehta, Li, Dhurandhar, Cecchi and Polosecki.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-c0075f08de6cd96907a2b59180f25d933e9300c60ce1df242bb66c1e955631353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/7c654a19c0fc43728e928fff94bba491
PMID 38645773
PQID 3043778057
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_7c654a19c0fc43728e928fff94bba491
proquest_miscellaneous_3043778057
pubmed_primary_38645773
crossref_primary_10_3389_fradi_2024_1283392
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in radiology
PublicationTitleAlternate Front Radiol
PublicationYear 2024
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Fischl (B16) 2012; 62
Marcus (B29) 2010; 22
Willemink (B6) 2020; 295
Dinsdale (B17) 2021; 224
Alberto (B7) 2023; 5
Rieke (B35) 2020; 3
Avants (B33) 2011; 54
Yang (B34) 2023; 10
Kaufmann (B12) 2019; 22
Hyman (B15) 2021; 64
Mahmood (B3) 2022
Shiffman (B36) 2008; 4
Ayaz (B39) 2021; 9
Bansal (B5) 2022; 54
Van Essen (B27) 2013; 80
Liu (B1) 2021; 2021
Taylor (B25) 2017; 144
Polosecki (B20) 2020; 10
Gorgolewski (B21) 2016; 3
Esteban (B18) 2017; 12
Wei (B32) 2018; 5
Paulsen (B30) 2008; 79
Schulz (B4) 2020; 11
Subbaswamy (B11) 2020; 21
Shafto (B24) 2014; 14
Evans (B38) 2016; 25
Sudlow (B9) 2015; 12
Leonardsen (B13) 2022; 256
Brady (B37) 2023; 22
Marek (B31) 2018; 5
Petersen (B22) 2010; 74
Ellis (B23) 2009; 21
Alwosheel (B2) 2018; 28
Chen (B14) 2023
Nooner (B28) 2012; 6
Deng (B8) 2009
Finlayson (B10) 2021; 385
Allen (B19) 2014; 24
Bookheimer (B26) 2019; 185
References_xml – volume: 185
  start-page: 335
  year: 2019
  ident: B26
  article-title: The lifespan human connectome project in aging: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.10.009
– volume: 25
  start-page: S48
  year: 2016
  ident: B38
  article-title: Electronic health records: then, now, and in the future
  publication-title: Yearb Med Inform
  doi: 10.15265/IYS-2016-s006
– volume: 62
  start-page: 774
  year: 2012
  ident: B16
  article-title: FreeSurfer
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 21
  start-page: 672
  year: 2009
  ident: B23
  article-title: The Australian imaging, biomarkers and lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease
  publication-title: Int Psychogeriatr
  doi: 10.1017/S1041610209009405
– volume: 2021
  start-page: 1
  year: 2021
  ident: B1
  article-title: Advances in deep learning-based medical image analysis
  publication-title: Health Data Sci
  doi: 10.34133/2021/8786793
– volume: 224
  start-page: 117401
  year: 2021
  ident: B17
  article-title: Learning patterns of the ageing brain in MRI using deep convolutional networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117401
– start-page: 248
  volume-title: ImageNet: a large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition
  year: 2009
  ident: B8
– volume: 22
  start-page: 42
  year: 2023
  ident: B37
  article-title: Accelerating medicines partnership® schizophrenia (AMP® SCZ): developing tools to enable early intervention in the psychosis high risk state
  publication-title: World Psychiatry
  doi: 10.1002/wps.21038
– volume: 10
  start-page: 1252
  year: 2020
  ident: B20
  article-title: Resting-state connectivity stratifies premanifest Huntington’s disease by longitudinal cognitive decline rate
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-58074-8
– volume: 11
  start-page: 4238
  year: 2020
  ident: B4
  article-title: Different scaling of linear models, deep learning in UKBiobank brain images versus machine-learning datasets
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18037-z
– volume: 256
  start-page: 119210
  year: 2022
  ident: B13
  article-title: Deep neural networks learn general and clinically relevant representations of the ageing brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2022.119210
– volume: 14
  start-page: 1
  year: 2014
  ident: B24
  article-title: The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing
  publication-title: BMC Neurol
  doi: 10.1186/s12883-014-0204-1
– volume: 144
  start-page: 262
  year: 2017
  ident: B25
  article-title: The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data repository: structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.09.018
– volume: 4
  start-page: 1
  year: 2008
  ident: B36
  article-title: Ecological momentary assessment
  publication-title: Annu Rev Clin Psychol
  doi: 10.1146/annurev.clinpsy.3.022806.091415
– volume: 54
  start-page: 1
  year: 2022
  ident: B5
  article-title: A systematic review on data scarcity problem in deep learning: solution, applications
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/3502287
– volume: 64
  start-page: 6
  year: 2021
  ident: B15
  article-title: Psychiatric disorders: grounded in human biology but not natural kinds
  publication-title: Perspect Biol Med
  doi: 10.1353/pbm.2021.0002
– volume: 385
  start-page: 283
  year: 2021
  ident: B10
  article-title: The clinician, dataset shift in artificial intelligence
  publication-title: N Engl J Med
  doi: 10.1056/NEJMC2104626
– volume: 12
  start-page: e0184661
  year: 2017
  ident: B18
  article-title: MRIQC: advancing the automatic prediction of image quality in MRI from unseen sites
  publication-title: PLoS one
  doi: 10.1371/journal.pone.0184661
– volume: 74
  start-page: 201
  year: 2010
  ident: B22
  article-title: Alzheimer’s disease neuroimaging initiative (ADNI): clinical characterization
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181cb3e25
– volume: 5
  start-page: 1460
  year: 2018
  ident: B31
  article-title: The Parkinson’s progression markers initiative (PPMI) – establishing a PD biomarker cohort
  publication-title: Ann Clin Transl Neurol
  doi: 10.1002/acn3.644
– volume: 10
  start-page: 41
  year: 2023
  ident: B34
  article-title: MedMNIST v2 - A large-scale lightweight benchmark for 2D and 3D biomedical image classification
  publication-title: Sci Data
  doi: 10.1038/s41597-022-01721-8
– volume: 28
  start-page: 167
  year: 2018
  ident: B2
  article-title: Is your dataset big enough? sample size requirements when using artificial neural networks for discrete choice analysis
  publication-title: J Choice Model
  doi: 10.1016/j.jocm.2018.07.002
– volume: 80
  start-page: 62
  year: 2013
  ident: B27
  article-title: The WU-Minn Human Connectome Project: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 22
  start-page: 2677
  year: 2010
  ident: B29
  article-title: Open access series of imaging studies (OASIS): longitudinal MRI data in nondemented and demented older adults
  publication-title: J Cogn Neurosci
  doi: 10.1162/jocn.2009.21407
– volume: 3
  start-page: 160044
  year: 2016
  ident: B21
  article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments
  publication-title: Sci Data
  doi: 10.1038/sdata.2016.44
– volume: 12
  start-page: e1001779
  year: 2015
  ident: B9
  article-title: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle, old age
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1001779
– volume: 21
  start-page: 345
  year: 2020
  ident: B11
  article-title: From development to deployment: dataset shift, causality, and shift-stable models in health AI
  publication-title: Biostatistics
  doi: 10.1093/BIOSTATISTICS/KXZ041
– volume: 24
  start-page: 663
  year: 2014
  ident: B19
  article-title: Tracking whole-brain connectivity dynamics in the resting state
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhs352
– volume: 5
  start-page: 180134
  year: 2018
  ident: B32
  article-title: Structural and functional brain scans from the cross-sectional Southwest University adult lifespan dataset
  publication-title: Sci Data
  doi: 10.1038/sdata.2018.134
– volume: 5
  start-page: e288
  year: 2023
  ident: B7
  article-title: The impact of commercial health datasets on medical research, health-care algorithms
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(23)00025-0
– volume: 79
  start-page: 874
  year: 2008
  ident: B30
  article-title: Detection of Huntington’s disease decades before diagnosis: the Predict-HD study
  publication-title: J Neurol Neurosurg Psychiatr
  doi: 10.1136/jnnp.2007.128728
– volume: 6
  start-page: 152
  year: 2012
  ident: B28
  article-title: The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2012.00152
– volume: 22
  start-page: 1
  year: 2019
  ident: B12
  article-title: Common brain disorders are associated with heritable patterns of apparent aging of the brain
  publication-title: Nat Neurosci
  doi: 10.1038/s41593-019-0471-7
– year: 2022
  ident: B3
  article-title: How Much More Data Do I Need? Estimating Requirements for Downstream Tasks
  doi: 10.1109/CVPR52688.2022.00037
– volume: 9
  start-page: e21929
  year: 2021
  ident: B39
  article-title: The fast health interoperability resources (FHIR) standard: systematic literature review of implementations, applications, challenges and opportunities
  publication-title: JMIR Med Inform
  doi: 10.2196/21929
– volume: 3
  start-page: 1
  year: 2020
  ident: B35
  article-title: The future of digital health with federated learning
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-020-00323-1
– volume: 295
  start-page: 4
  year: 2020
  ident: B6
  article-title: Preparing medical imaging data for machine learning
  publication-title: Radiology
  doi: 10.1148/radiol.2020192224
– volume: 54
  start-page: 2033
  year: 2011
  ident: B33
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.09.025
– start-page: 7288
  year: 2023
  ident: B14
  article-title: ScaleDet: a scalable multi-dataset object detector
SSID ssj0002784205
Score 2.2423234
Snippet Data collection, curation, and cleaning constitute a crucial phase in Machine Learning (ML) projects. In biomedical ML, it is often desirable to leverage...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 1283392
SubjectTerms biomedical machine learning
brain MRI
data preparation
data scarcity
dataset fusion
Title Fusion of biomedical imaging studies for increased sample size and diversity: a case study of brain MRI
URI https://www.ncbi.nlm.nih.gov/pubmed/38645773
https://www.proquest.com/docview/3043778057
https://doaj.org/article/7c654a19c0fc43728e928fff94bba491
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSx0xFA5FELqRqq299UEEd2U0k9ck7rR4UcEuSgV3Ic9yC50rzr2L-uvNSeaKLqSbbodMJvOdmeQ8v4PQEelCZC6KpmNeN5wl2jhpfaOslJpG5VUJxdx8l5e3_PpO3L1o9QU5YZUeuAJ30nkpuG21J8lDjElFTVVKSXPnLC9165Ro8sKY-j2G0ygRtUomW2H6JD3YMMv2IOXHeUtmTNNXJ1Eh7H9byyynzfQD2hjVRHxWl7eJ3sV-C62XdE0_bKNf0yV4ufA84Vo_D1Dj2Z_ScggPNTcQZ30Uz3pQC4cY8GCBCBgPs8eIbR9wWGVknGKLfR5S7vtb5oS-Efjmx9VHdDu9-PntshlbJjSeSb5oPKgAiagQpQ8aLF9LndCtIomKoBmLmhHiJfGxDSkfz85J6duogScMWmB8Qmv9vI-fEZatjIom7oXw3EqXpUcDoSFYlzfXzk3Q1xV85r4yY5hsUQDYpoBtAGwzgj1B54Dw80hgtS4XsqzNKGvzL1lP0OFKPib_BRDasH2cLwfDgKIJ2jN0E7RTBff8KKYkF13HvvyPJeyi9_Ba1Qmzh9YWD8u4n9WShTsoX-BB8Rc9Abeg36E
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusion+of+biomedical+imaging+studies+for+increased+sample+size+and+diversity%3A+a+case+study+of+brain+MRI&rft.jtitle=Frontiers+in+radiology&rft.au=Matias+Aiskovich&rft.au=Eduardo+Castro&rft.au=Jenna+M.+Reinen&rft.au=Shreyas+Fadnavis&rft.date=2024&rft.pub=Frontiers+Media+S.A&rft.eissn=2673-8740&rft.volume=4&rft_id=info:doi/10.3389%2Ffradi.2024.1283392&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7c654a19c0fc43728e928fff94bba491
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-8740&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-8740&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-8740&client=summon