Fusion of biomedical imaging studies for increased sample size and diversity: a case study of brain MRI
Data collection, curation, and cleaning constitute a crucial phase in Machine Learning (ML) projects. In biomedical ML, it is often desirable to leverage multiple datasets to increase sample size and diversity, but this poses unique challenges, which arise from heterogeneity in study design, data de...
Saved in:
Published in | Frontiers in radiology Vol. 4; p. 1283392 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2673-8740 2673-8740 |
DOI | 10.3389/fradi.2024.1283392 |
Cover
Abstract | Data collection, curation, and cleaning constitute a crucial phase in Machine Learning (ML) projects. In biomedical ML, it is often desirable to leverage multiple datasets to increase sample size and diversity, but this poses unique challenges, which arise from heterogeneity in study design, data descriptors, file system organization, and metadata. In this study, we present an approach to the integration of multiple brain MRI datasets with a focus on homogenization of their organization and preprocessing for ML. We use our own fusion example (approximately 84,000 images from 54,000 subjects, 12 studies, and 88 individual scanners) to illustrate and discuss the issues faced by study fusion efforts, and we examine key decisions necessary during dataset homogenization, presenting in detail a database structure flexible enough to accommodate multiple observational MRI datasets. We believe our approach can provide a basis for future similarly-minded biomedical ML projects. |
---|---|
AbstractList | Data collection, curation, and cleaning constitute a crucial phase in Machine Learning (ML) projects. In biomedical ML, it is often desirable to leverage multiple datasets to increase sample size and diversity, but this poses unique challenges, which arise from heterogeneity in study design, data descriptors, file system organization, and metadata. In this study, we present an approach to the integration of multiple brain MRI datasets with a focus on homogenization of their organization and preprocessing for ML. We use our own fusion example (approximately 84,000 images from 54,000 subjects, 12 studies, and 88 individual scanners) to illustrate and discuss the issues faced by study fusion efforts, and we examine key decisions necessary during dataset homogenization, presenting in detail a database structure flexible enough to accommodate multiple observational MRI datasets. We believe our approach can provide a basis for future similarly-minded biomedical ML projects. Data collection, curation, and cleaning constitute a crucial phase in Machine Learning (ML) projects. In biomedical ML, it is often desirable to leverage multiple datasets to increase sample size and diversity, but this poses unique challenges, which arise from heterogeneity in study design, data descriptors, file system organization, and metadata. In this study, we present an approach to the integration of multiple brain MRI datasets with a focus on homogenization of their organization and preprocessing for ML. We use our own fusion example (approximately 84,000 images from 54,000 subjects, 12 studies, and 88 individual scanners) to illustrate and discuss the issues faced by study fusion efforts, and we examine key decisions necessary during dataset homogenization, presenting in detail a database structure flexible enough to accommodate multiple observational MRI datasets. We believe our approach can provide a basis for future similarly-minded biomedical ML projects.Data collection, curation, and cleaning constitute a crucial phase in Machine Learning (ML) projects. In biomedical ML, it is often desirable to leverage multiple datasets to increase sample size and diversity, but this poses unique challenges, which arise from heterogeneity in study design, data descriptors, file system organization, and metadata. In this study, we present an approach to the integration of multiple brain MRI datasets with a focus on homogenization of their organization and preprocessing for ML. We use our own fusion example (approximately 84,000 images from 54,000 subjects, 12 studies, and 88 individual scanners) to illustrate and discuss the issues faced by study fusion efforts, and we examine key decisions necessary during dataset homogenization, presenting in detail a database structure flexible enough to accommodate multiple observational MRI datasets. We believe our approach can provide a basis for future similarly-minded biomedical ML projects. |
Author | Reinen, Jenna M. Mehta, Anushree Fadnavis, Shreyas Dhurandhar, Amit Castro, Eduardo Li, Hongyang Aiskovich, Matias Polosecki, Pablo Cecchi, Guillermo A. |
Author_xml | – sequence: 1 givenname: Matias surname: Aiskovich fullname: Aiskovich, Matias – sequence: 2 givenname: Eduardo surname: Castro fullname: Castro, Eduardo – sequence: 3 givenname: Jenna M. surname: Reinen fullname: Reinen, Jenna M. – sequence: 4 givenname: Shreyas surname: Fadnavis fullname: Fadnavis, Shreyas – sequence: 5 givenname: Anushree surname: Mehta fullname: Mehta, Anushree – sequence: 6 givenname: Hongyang surname: Li fullname: Li, Hongyang – sequence: 7 givenname: Amit surname: Dhurandhar fullname: Dhurandhar, Amit – sequence: 8 givenname: Guillermo A. surname: Cecchi fullname: Cecchi, Guillermo A. – sequence: 9 givenname: Pablo surname: Polosecki fullname: Polosecki, Pablo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38645773$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkU9vEzEQxS1UREvpF-CAfOSSMOv_5oaqFiIVISE4W157HLnarIO9ixQ-PdskVJxmNPrNG817r8nFWEYk5G0Ha86N_ZCqj3nNgIl1xwznlr0gV0xpvjJawMV__SW5ae0RAJg2goF8RS65UUJqza_I9n5uuYy0JNrnssOYgx9o3vltHre0TXPM2GgqleYxVPQNI21-tx-QtvwHqR8jjfk31panw0fqaViQ497hqFl9HunX75s35GXyQ8Obc70mP-_vftx-WT18-7y5_fSwClyJaRUAtExgIqoQrbKgPeul7QwkJqPlHC0HCAoCdjExwfpeqdChlVLxjkt-TTYn3Vj8o9vX5ZN6cMVndxyUunW-TjkM6HRQUvjOBkhBcM0MWmZSSlb0vRe2W7Ten7T2tfyasU1ul1vAYfAjlrk5DsuaNiD1gr47o3O_mPh8-J_RC8BOQKiltYrpGenAPQXqjoG6p0DdOVD-Fwn2knA |
Cites_doi | 10.1016/j.neuroimage.2018.10.009 10.15265/IYS-2016-s006 10.1016/j.neuroimage.2012.01.021 10.1017/S1041610209009405 10.34133/2021/8786793 10.1016/j.neuroimage.2020.117401 10.1002/wps.21038 10.1038/s41598-020-58074-8 10.1038/s41467-020-18037-z 10.1016/j.neuroimage.2022.119210 10.1186/s12883-014-0204-1 10.1016/j.neuroimage.2015.09.018 10.1146/annurev.clinpsy.3.022806.091415 10.1145/3502287 10.1353/pbm.2021.0002 10.1056/NEJMC2104626 10.1371/journal.pone.0184661 10.1212/WNL.0b013e3181cb3e25 10.1002/acn3.644 10.1038/s41597-022-01721-8 10.1016/j.jocm.2018.07.002 10.1016/j.neuroimage.2013.05.041 10.1162/jocn.2009.21407 10.1038/sdata.2016.44 10.1371/journal.pmed.1001779 10.1093/BIOSTATISTICS/KXZ041 10.1093/cercor/bhs352 10.1038/sdata.2018.134 10.1016/S2589-7500(23)00025-0 10.1136/jnnp.2007.128728 10.3389/fnins.2012.00152 10.1038/s41593-019-0471-7 10.1109/CVPR52688.2022.00037 10.2196/21929 10.1038/s41746-020-00323-1 10.1148/radiol.2020192224 10.1016/j.neuroimage.2010.09.025 |
ContentType | Journal Article |
Copyright | 2024 Aiskovich, Castro, Reinen, Fadnavis, Mehta, Li, Dhurandhar, Cecchi and Polosecki. |
Copyright_xml | – notice: 2024 Aiskovich, Castro, Reinen, Fadnavis, Mehta, Li, Dhurandhar, Cecchi and Polosecki. |
DBID | AAYXX CITATION NPM 7X8 DOA |
DOI | 10.3389/fradi.2024.1283392 |
DatabaseName | CrossRef PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2673-8740 |
ExternalDocumentID | oai_doaj_org_article_7c654a19c0fc43728e928fff94bba491 38645773 10_3389_fradi_2024_1283392 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS040068 – fundername: NIA NIH HHS grantid: P30 AG066444 – fundername: NIA NIH HHS grantid: P01 AG003991 – fundername: NIA NIH HHS grantid: P01 AG026276 – fundername: NIA NIH HHS grantid: U01 AG024904 |
GroupedDBID | 9T4 AAFWJ AAYXX AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E OK1 PGMZT RPM NPM 7X8 |
ID | FETCH-LOGICAL-c364t-c0075f08de6cd96907a2b59180f25d933e9300c60ce1df242bb66c1e955631353 |
IEDL.DBID | DOA |
ISSN | 2673-8740 |
IngestDate | Wed Aug 27 01:23:14 EDT 2025 Thu Jul 10 23:15:00 EDT 2025 Sun Feb 02 01:33:14 EST 2025 Tue Jul 01 04:25:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | brain MRI dataset fusion data preparation data scarcity biomedical machine learning |
Language | English |
License | 2024 Aiskovich, Castro, Reinen, Fadnavis, Mehta, Li, Dhurandhar, Cecchi and Polosecki. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-c0075f08de6cd96907a2b59180f25d933e9300c60ce1df242bb66c1e955631353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/7c654a19c0fc43728e928fff94bba491 |
PMID | 38645773 |
PQID | 3043778057 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7c654a19c0fc43728e928fff94bba491 proquest_miscellaneous_3043778057 pubmed_primary_38645773 crossref_primary_10_3389_fradi_2024_1283392 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in radiology |
PublicationTitleAlternate | Front Radiol |
PublicationYear | 2024 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Fischl (B16) 2012; 62 Marcus (B29) 2010; 22 Willemink (B6) 2020; 295 Dinsdale (B17) 2021; 224 Alberto (B7) 2023; 5 Rieke (B35) 2020; 3 Avants (B33) 2011; 54 Yang (B34) 2023; 10 Kaufmann (B12) 2019; 22 Hyman (B15) 2021; 64 Mahmood (B3) 2022 Shiffman (B36) 2008; 4 Ayaz (B39) 2021; 9 Bansal (B5) 2022; 54 Van Essen (B27) 2013; 80 Liu (B1) 2021; 2021 Taylor (B25) 2017; 144 Polosecki (B20) 2020; 10 Gorgolewski (B21) 2016; 3 Esteban (B18) 2017; 12 Wei (B32) 2018; 5 Paulsen (B30) 2008; 79 Schulz (B4) 2020; 11 Subbaswamy (B11) 2020; 21 Shafto (B24) 2014; 14 Evans (B38) 2016; 25 Sudlow (B9) 2015; 12 Leonardsen (B13) 2022; 256 Brady (B37) 2023; 22 Marek (B31) 2018; 5 Petersen (B22) 2010; 74 Ellis (B23) 2009; 21 Alwosheel (B2) 2018; 28 Chen (B14) 2023 Nooner (B28) 2012; 6 Deng (B8) 2009 Finlayson (B10) 2021; 385 Allen (B19) 2014; 24 Bookheimer (B26) 2019; 185 |
References_xml | – volume: 185 start-page: 335 year: 2019 ident: B26 article-title: The lifespan human connectome project in aging: an overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.10.009 – volume: 25 start-page: S48 year: 2016 ident: B38 article-title: Electronic health records: then, now, and in the future publication-title: Yearb Med Inform doi: 10.15265/IYS-2016-s006 – volume: 62 start-page: 774 year: 2012 ident: B16 article-title: FreeSurfer publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.01.021 – volume: 21 start-page: 672 year: 2009 ident: B23 article-title: The Australian imaging, biomarkers and lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease publication-title: Int Psychogeriatr doi: 10.1017/S1041610209009405 – volume: 2021 start-page: 1 year: 2021 ident: B1 article-title: Advances in deep learning-based medical image analysis publication-title: Health Data Sci doi: 10.34133/2021/8786793 – volume: 224 start-page: 117401 year: 2021 ident: B17 article-title: Learning patterns of the ageing brain in MRI using deep convolutional networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117401 – start-page: 248 volume-title: ImageNet: a large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition year: 2009 ident: B8 – volume: 22 start-page: 42 year: 2023 ident: B37 article-title: Accelerating medicines partnership® schizophrenia (AMP® SCZ): developing tools to enable early intervention in the psychosis high risk state publication-title: World Psychiatry doi: 10.1002/wps.21038 – volume: 10 start-page: 1252 year: 2020 ident: B20 article-title: Resting-state connectivity stratifies premanifest Huntington’s disease by longitudinal cognitive decline rate publication-title: Sci Rep doi: 10.1038/s41598-020-58074-8 – volume: 11 start-page: 4238 year: 2020 ident: B4 article-title: Different scaling of linear models, deep learning in UKBiobank brain images versus machine-learning datasets publication-title: Nat Commun doi: 10.1038/s41467-020-18037-z – volume: 256 start-page: 119210 year: 2022 ident: B13 article-title: Deep neural networks learn general and clinically relevant representations of the ageing brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2022.119210 – volume: 14 start-page: 1 year: 2014 ident: B24 article-title: The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing publication-title: BMC Neurol doi: 10.1186/s12883-014-0204-1 – volume: 144 start-page: 262 year: 2017 ident: B25 article-title: The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data repository: structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.09.018 – volume: 4 start-page: 1 year: 2008 ident: B36 article-title: Ecological momentary assessment publication-title: Annu Rev Clin Psychol doi: 10.1146/annurev.clinpsy.3.022806.091415 – volume: 54 start-page: 1 year: 2022 ident: B5 article-title: A systematic review on data scarcity problem in deep learning: solution, applications publication-title: ACM Comput Surv (CSUR) doi: 10.1145/3502287 – volume: 64 start-page: 6 year: 2021 ident: B15 article-title: Psychiatric disorders: grounded in human biology but not natural kinds publication-title: Perspect Biol Med doi: 10.1353/pbm.2021.0002 – volume: 385 start-page: 283 year: 2021 ident: B10 article-title: The clinician, dataset shift in artificial intelligence publication-title: N Engl J Med doi: 10.1056/NEJMC2104626 – volume: 12 start-page: e0184661 year: 2017 ident: B18 article-title: MRIQC: advancing the automatic prediction of image quality in MRI from unseen sites publication-title: PLoS one doi: 10.1371/journal.pone.0184661 – volume: 74 start-page: 201 year: 2010 ident: B22 article-title: Alzheimer’s disease neuroimaging initiative (ADNI): clinical characterization publication-title: Neurology doi: 10.1212/WNL.0b013e3181cb3e25 – volume: 5 start-page: 1460 year: 2018 ident: B31 article-title: The Parkinson’s progression markers initiative (PPMI) – establishing a PD biomarker cohort publication-title: Ann Clin Transl Neurol doi: 10.1002/acn3.644 – volume: 10 start-page: 41 year: 2023 ident: B34 article-title: MedMNIST v2 - A large-scale lightweight benchmark for 2D and 3D biomedical image classification publication-title: Sci Data doi: 10.1038/s41597-022-01721-8 – volume: 28 start-page: 167 year: 2018 ident: B2 article-title: Is your dataset big enough? sample size requirements when using artificial neural networks for discrete choice analysis publication-title: J Choice Model doi: 10.1016/j.jocm.2018.07.002 – volume: 80 start-page: 62 year: 2013 ident: B27 article-title: The WU-Minn Human Connectome Project: an overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 22 start-page: 2677 year: 2010 ident: B29 article-title: Open access series of imaging studies (OASIS): longitudinal MRI data in nondemented and demented older adults publication-title: J Cogn Neurosci doi: 10.1162/jocn.2009.21407 – volume: 3 start-page: 160044 year: 2016 ident: B21 article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments publication-title: Sci Data doi: 10.1038/sdata.2016.44 – volume: 12 start-page: e1001779 year: 2015 ident: B9 article-title: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle, old age publication-title: PLoS Med doi: 10.1371/journal.pmed.1001779 – volume: 21 start-page: 345 year: 2020 ident: B11 article-title: From development to deployment: dataset shift, causality, and shift-stable models in health AI publication-title: Biostatistics doi: 10.1093/BIOSTATISTICS/KXZ041 – volume: 24 start-page: 663 year: 2014 ident: B19 article-title: Tracking whole-brain connectivity dynamics in the resting state publication-title: Cereb Cortex doi: 10.1093/cercor/bhs352 – volume: 5 start-page: 180134 year: 2018 ident: B32 article-title: Structural and functional brain scans from the cross-sectional Southwest University adult lifespan dataset publication-title: Sci Data doi: 10.1038/sdata.2018.134 – volume: 5 start-page: e288 year: 2023 ident: B7 article-title: The impact of commercial health datasets on medical research, health-care algorithms publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(23)00025-0 – volume: 79 start-page: 874 year: 2008 ident: B30 article-title: Detection of Huntington’s disease decades before diagnosis: the Predict-HD study publication-title: J Neurol Neurosurg Psychiatr doi: 10.1136/jnnp.2007.128728 – volume: 6 start-page: 152 year: 2012 ident: B28 article-title: The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry publication-title: Front Neurosci doi: 10.3389/fnins.2012.00152 – volume: 22 start-page: 1 year: 2019 ident: B12 article-title: Common brain disorders are associated with heritable patterns of apparent aging of the brain publication-title: Nat Neurosci doi: 10.1038/s41593-019-0471-7 – year: 2022 ident: B3 article-title: How Much More Data Do I Need? Estimating Requirements for Downstream Tasks doi: 10.1109/CVPR52688.2022.00037 – volume: 9 start-page: e21929 year: 2021 ident: B39 article-title: The fast health interoperability resources (FHIR) standard: systematic literature review of implementations, applications, challenges and opportunities publication-title: JMIR Med Inform doi: 10.2196/21929 – volume: 3 start-page: 1 year: 2020 ident: B35 article-title: The future of digital health with federated learning publication-title: NPJ Digit Med doi: 10.1038/s41746-020-00323-1 – volume: 295 start-page: 4 year: 2020 ident: B6 article-title: Preparing medical imaging data for machine learning publication-title: Radiology doi: 10.1148/radiol.2020192224 – volume: 54 start-page: 2033 year: 2011 ident: B33 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.09.025 – start-page: 7288 year: 2023 ident: B14 article-title: ScaleDet: a scalable multi-dataset object detector |
SSID | ssj0002784205 |
Score | 2.2423234 |
Snippet | Data collection, curation, and cleaning constitute a crucial phase in Machine Learning (ML) projects. In biomedical ML, it is often desirable to leverage... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 1283392 |
SubjectTerms | biomedical machine learning brain MRI data preparation data scarcity dataset fusion |
Title | Fusion of biomedical imaging studies for increased sample size and diversity: a case study of brain MRI |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38645773 https://www.proquest.com/docview/3043778057 https://doaj.org/article/7c654a19c0fc43728e928fff94bba491 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSx0xFA5FELqRqq299UEEd2U0k9ck7rR4UcEuSgV3Ic9yC50rzr2L-uvNSeaKLqSbbodMJvOdmeQ8v4PQEelCZC6KpmNeN5wl2jhpfaOslJpG5VUJxdx8l5e3_PpO3L1o9QU5YZUeuAJ30nkpuG21J8lDjElFTVVKSXPnLC9165Ro8sKY-j2G0ygRtUomW2H6JD3YMMv2IOXHeUtmTNNXJ1Eh7H9byyynzfQD2hjVRHxWl7eJ3sV-C62XdE0_bKNf0yV4ufA84Vo_D1Dj2Z_ScggPNTcQZ30Uz3pQC4cY8GCBCBgPs8eIbR9wWGVknGKLfR5S7vtb5oS-Efjmx9VHdDu9-PntshlbJjSeSb5oPKgAiagQpQ8aLF9LndCtIomKoBmLmhHiJfGxDSkfz85J6duogScMWmB8Qmv9vI-fEZatjIom7oXw3EqXpUcDoSFYlzfXzk3Q1xV85r4yY5hsUQDYpoBtAGwzgj1B54Dw80hgtS4XsqzNKGvzL1lP0OFKPib_BRDasH2cLwfDgKIJ2jN0E7RTBff8KKYkF13HvvyPJeyi9_Ba1Qmzh9YWD8u4n9WShTsoX-BB8Rc9Abeg36E |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusion+of+biomedical+imaging+studies+for+increased+sample+size+and+diversity%3A+a+case+study+of+brain+MRI&rft.jtitle=Frontiers+in+radiology&rft.au=Matias+Aiskovich&rft.au=Eduardo+Castro&rft.au=Jenna+M.+Reinen&rft.au=Shreyas+Fadnavis&rft.date=2024&rft.pub=Frontiers+Media+S.A&rft.eissn=2673-8740&rft.volume=4&rft_id=info:doi/10.3389%2Ffradi.2024.1283392&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7c654a19c0fc43728e928fff94bba491 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-8740&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-8740&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-8740&client=summon |