Optimal Route Planning for Truck–Drone Delivery Using Variable Neighborhood Tabu Search Algorithm
The optimal delivery route problem for truck–drone delivery is defined as a traveling salesman problem with drone (TSP-D), which has been studied in a wide range of previous literature. However, most of the existing studies ignore truck waiting time at rendezvous points. To fill this gap, this paper...
Saved in:
Published in | Applied sciences Vol. 12; no. 1; p. 529 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-3417 2076-3417 |
DOI | 10.3390/app12010529 |
Cover
Loading…
Abstract | The optimal delivery route problem for truck–drone delivery is defined as a traveling salesman problem with drone (TSP-D), which has been studied in a wide range of previous literature. However, most of the existing studies ignore truck waiting time at rendezvous points. To fill this gap, this paper builds a mixed integer nonlinear programming model subject to time constraints and route constraints, aiming to minimize the total delivery time. Since the TSP-D is non-deterministic polynomial-time hard (NP-hard), the proposed model is solved by the variable neighborhood tabu search algorithm, where the neighborhood structure is changed by point exchange and link exchange to expand the tabu search range. A delivery network with 1 warehouse and 23 customer points are employed as a case study to verify the effectiveness of the model and algorithm. The 23 customer points are visited by three truck–drones. The results indicate that truck–drone delivery can effectively reduce the total delivery time by 20.1% compared with traditional pure-truck delivery. Sensitivity analysis of different parameters shows that increasing the number of truck–drones can effectively save the total delivery time, but gradually reduce the marginal benefits. Only increasing either the truck speed or drone speed can reduce the total delivery time, but not to the greatest extent. Bilateral increase of truck speed and drone speed can minimize the delivery time. It can clearly be seen that the proposed method can effectively optimize the truck–drone delivery route and improve the delivery efficiency. |
---|---|
AbstractList | The optimal delivery route problem for truck–drone delivery is defined as a traveling salesman problem with drone (TSP-D), which has been studied in a wide range of previous literature. However, most of the existing studies ignore truck waiting time at rendezvous points. To fill this gap, this paper builds a mixed integer nonlinear programming model subject to time constraints and route constraints, aiming to minimize the total delivery time. Since the TSP-D is non-deterministic polynomial-time hard (NP-hard), the proposed model is solved by the variable neighborhood tabu search algorithm, where the neighborhood structure is changed by point exchange and link exchange to expand the tabu search range. A delivery network with 1 warehouse and 23 customer points are employed as a case study to verify the effectiveness of the model and algorithm. The 23 customer points are visited by three truck–drones. The results indicate that truck–drone delivery can effectively reduce the total delivery time by 20.1% compared with traditional pure-truck delivery. Sensitivity analysis of different parameters shows that increasing the number of truck–drones can effectively save the total delivery time, but gradually reduce the marginal benefits. Only increasing either the truck speed or drone speed can reduce the total delivery time, but not to the greatest extent. Bilateral increase of truck speed and drone speed can minimize the delivery time. It can clearly be seen that the proposed method can effectively optimize the truck–drone delivery route and improve the delivery efficiency. |
Author | Wang, Xue Tong, Bao Zheng, Wenlong Mao, Xinhua Wang, Jianwei Zhou, Feihao |
Author_xml | – sequence: 1 givenname: Bao surname: Tong fullname: Tong, Bao – sequence: 2 givenname: Jianwei surname: Wang fullname: Wang, Jianwei – sequence: 3 givenname: Xue surname: Wang fullname: Wang, Xue – sequence: 4 givenname: Feihao surname: Zhou fullname: Zhou, Feihao – sequence: 5 givenname: Xinhua surname: Mao fullname: Mao, Xinhua – sequence: 6 givenname: Wenlong surname: Zheng fullname: Zheng, Wenlong |
BookMark | eNptUdtOGzEQtapUakp56g9Y6iNK67G9Fz8i0hYkBIiGvlq2400clvUy663EG__AH_IlNQSkCDEvMxqdc-ZyPpNJFztPyFdg34VQ7Ifpe-AMWMHVBzLlrCpnQkI12ak_kf1h2LAcCkQNbErceZ_CjWnpZRyTpxet6brQrWgTkS5wdNeP9w9zzIPo3Lfhn8c7ejU8Af4aDMa2np75sFrbiOsYl3Rh7Ej_eINuTQ_bVcSQ1jdfyMfGtIPff8l75OrXz8XR8ez0_PfJ0eHpzIlSppltQClogFeycFIpVxdKCM-9ratGCV5WzlpZSGZZbblXtVwqV0hoeFGA4UrskZOt7jKaje4x34V3OpqgnxsRV9pgCq71-llfOc9LLqT03IItRZ4CRdk4bnnW-rbV6jHejn5IehNH7PL6mpdQcyjzzzMKtiiHcRjQN9qFZFKIXUITWg1MP1mjd6zJnIM3nNdN30P_B-KdkKU |
CitedBy_id | crossref_primary_10_1177_03611981241243076 crossref_primary_10_3390_systems11050259 crossref_primary_10_3390_app132413086 crossref_primary_10_34229_2707_451X_24_3_4 crossref_primary_10_3390_app122010232 crossref_primary_10_1108_IJLM_04_2023_0149 crossref_primary_10_1007_s10479_024_06164_5 crossref_primary_10_23890_IJAST_vm05is02_0201 crossref_primary_10_3390_drones8080356 crossref_primary_10_3390_math11194214 crossref_primary_10_3390_app12115506 crossref_primary_10_1007_s10586_024_04809_5 crossref_primary_10_1016_j_swevo_2024_101825 crossref_primary_10_1007_s00291_024_00754_2 crossref_primary_10_1016_j_cor_2024_106672 crossref_primary_10_54569_aair_1145616 crossref_primary_10_1038_s41598_024_83149_1 crossref_primary_10_3390_drones8100550 crossref_primary_10_3390_drones7020080 crossref_primary_10_1016_j_apm_2025_116074 |
Cites_doi | 10.1016/j.trc.2015.03.005 10.3390/s17051144 10.1016/j.eswa.2018.03.032 10.1109/TPWRS.2005.860946 10.1109/TSMC.2016.2582745 10.3844/jcssp.2005.175.181 10.1007/s10732-019-09431-y 10.1287/ijoc.2018.0826 10.1109/MED51440.2021.9480359 10.1287/mnsc.2017.2824 10.1016/j.trc.2020.02.030 10.2197/ipsjjip.25.655 10.1007/s00170-009-2292-4 10.1287/trsc.2019.0944 10.1016/j.ejor.2020.07.048 10.1002/net.21982 10.1109/TSMCB.2008.915645 10.1016/j.trc.2018.03.025 10.1287/trsc.2017.0791 10.1016/j.trc.2019.06.016 10.1109/TSMC.2018.2867496 10.1109/TASE.2015.2461213 10.1007/s00500-015-1970-4 10.1016/j.trc.2018.12.001 10.1002/net.21864 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app12010529 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_c499c9ce262344e2b1b637f9156fc2b2 10_3390_app12010529 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c364t-bf1991f12745c499c85933e2eb87f93267cbb4540b08b2e984d9c541f2551a293 |
IEDL.DBID | BENPR |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:30:15 EDT 2025 Mon Jun 30 11:04:19 EDT 2025 Tue Jul 01 00:51:26 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-bf1991f12745c499c85933e2eb87f93267cbb4540b08b2e984d9c541f2551a293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2618216339?pq-origsite=%requestingapplication% |
PQID | 2618216339 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c499c9ce262344e2b1b637f9156fc2b2 proquest_journals_2618216339 crossref_citationtrail_10_3390_app12010529 crossref_primary_10_3390_app12010529 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Bouman (ref_19) 2018; 72 Dorling (ref_21) 2017; 47 (ref_26) 2006; 21 Poikonen (ref_6) 2019; 31 Kim (ref_9) 2018; 49 Agatz (ref_17) 2018; 52 Montemanni (ref_3) 2019; 15 Othman (ref_13) 2017; 25 Murray (ref_15) 2015; 54 ref_16 Sacramento (ref_18) 2019; 102 Hu (ref_2) 2010; 48 Savuran (ref_12) 2016; 20 Chang (ref_24) 2018; 104 Guturu (ref_25) 2008; 38 Carlsson (ref_29) 2017; 64 Ha (ref_5) 2018; 86 Canca (ref_7) 2020; 114 Ha (ref_22) 2020; 26 Chauhan (ref_10) 2019; 99 Andre (ref_28) 2005; 1 Lai (ref_27) 2020; 289 ref_1 Ham (ref_8) 2018; 91 Yurek (ref_23) 2018; 91 Mathew (ref_11) 2015; 12 Schermer (ref_20) 2019; 106 Poikonen (ref_4) 2021; 77 Dayarian (ref_14) 2020; 54 |
References_xml | – volume: 54 start-page: 86 year: 2015 ident: ref_15 article-title: The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2015.03.005 – ident: ref_16 doi: 10.3390/s17051144 – volume: 104 start-page: 307 year: 2018 ident: ref_24 article-title: Optimal delivery routing with wider drone-delivery areas along a shorter truck-route publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.03.032 – volume: 21 start-page: 224 year: 2006 ident: ref_26 article-title: New multiobjective tabu search algorithm for fuzzy optimal planning of power distribution systems publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2005.860946 – volume: 86 start-page: 597 year: 2018 ident: ref_5 article-title: On the min-cost traveling salesman problem with drone publication-title: Transp. Res. – volume: 15 start-page: 1617 year: 2019 ident: ref_3 article-title: Drone-assisted deliveries: New formulations for the flying sidekick traveling salesman problem publication-title: Optim. Lett. – volume: 47 start-page: 70 year: 2017 ident: ref_21 article-title: Vehicle routing problems for drone delivery publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2016.2582745 – volume: 1 start-page: 175 year: 2005 ident: ref_28 article-title: A variable neighborhood search algorithm for assigning cells to switches in wireless networks publication-title: J. Comput. Sci. doi: 10.3844/jcssp.2005.175.181 – volume: 26 start-page: 219 year: 2020 ident: ref_22 article-title: Heuristic methods for the traveling salesman problem with drone publication-title: J. Heuristics doi: 10.1007/s10732-019-09431-y – volume: 91 start-page: 249 year: 2018 ident: ref_23 article-title: A decomposition-based iterative optimization algorithm for traveling salesman problem with drone publication-title: Transp. Res. – volume: 31 start-page: 335 year: 2019 ident: ref_6 article-title: A branch-and-bound approach to the traveling salesman problem with a drone publication-title: Inf. J. Comput. doi: 10.1287/ijoc.2018.0826 – ident: ref_1 doi: 10.1109/MED51440.2021.9480359 – volume: 64 start-page: 4052 year: 2017 ident: ref_29 article-title: Coordinated logistics with a truck and a drone publication-title: Manag. Sci. doi: 10.1287/mnsc.2017.2824 – volume: 114 start-page: 657 year: 2020 ident: ref_7 article-title: Truck-drone team logistics: A heuristic approach to multi-drop route planning publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2020.02.030 – volume: 25 start-page: 655 year: 2017 ident: ref_13 article-title: Routing of carrier-vehicle systems with dedicated last-stretch delivery vehicle publication-title: J. Inf. Processing doi: 10.2197/ipsjjip.25.655 – volume: 48 start-page: 297 year: 2010 ident: ref_2 article-title: An innovative automated storage and retrieval system for B2C e-commerce logistics publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-009-2292-4 – volume: 54 start-page: 229 year: 2020 ident: ref_14 article-title: Same-day delivery with drone resupply publication-title: Transp. Sci. doi: 10.1287/trsc.2019.0944 – volume: 289 start-page: 1067 year: 2020 ident: ref_27 article-title: Neighborhood decomposition based variable neighborhood search and tabu search for maximally diverse grouping publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2020.07.048 – volume: 77 start-page: 116 year: 2021 ident: ref_4 article-title: Future directions in drone routing research publication-title: Networks doi: 10.1002/net.21982 – volume: 38 start-page: 645 year: 2008 ident: ref_25 article-title: An impatient evolutionary algorithm with probabilistic tabu search for unified solution of Some NP-hard problems in graph and set theory via clique finding publication-title: IEEE Trans. Syst. Man Cybern. Part B doi: 10.1109/TSMCB.2008.915645 – volume: 91 start-page: 1 year: 2018 ident: ref_8 article-title: Integrated scheduling of m-truck, m-drone, and m-depot constrained by time-window, drop-pickup, and m-visit using constraint programming publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2018.03.025 – volume: 102 start-page: 289 year: 2019 ident: ref_18 article-title: An adaptive large neighborhood search metaheuristic for the vehicle routing problem with drones publication-title: Transp. Res. – volume: 52 start-page: 965 year: 2018 ident: ref_17 article-title: Optimization approaches for the traveling salesman problem with drone publication-title: Transp. Sci. doi: 10.1287/trsc.2017.0791 – volume: 106 start-page: 166 year: 2019 ident: ref_20 article-title: A matheuristic for the vehicle routing problem with drones and its variants publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2019.06.016 – volume: 49 start-page: 42 year: 2018 ident: ref_9 article-title: Traveling salesman problem with a drone station publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2018.2867496 – volume: 12 start-page: 1298 year: 2015 ident: ref_11 article-title: Planning paths for package delivery in heterogeneous multirobot teams publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2015.2461213 – volume: 20 start-page: 2905 year: 2016 ident: ref_12 article-title: Efficient route planning for an unmanned air vehicle deployed on a moving carrier publication-title: Soft Comput. doi: 10.1007/s00500-015-1970-4 – volume: 99 start-page: 1 year: 2019 ident: ref_10 article-title: Maximum coverage capacitated facility location problem with range constrained drones publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2018.12.001 – volume: 72 start-page: 528 year: 2018 ident: ref_19 article-title: Dynamic programming approaches for the traveling salesman problem with drone publication-title: Networks doi: 10.1002/net.21864 |
SSID | ssj0000913810 |
Score | 2.3223946 |
Snippet | The optimal delivery route problem for truck–drone delivery is defined as a traveling salesman problem with drone (TSP-D), which has been studied in a wide... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 529 |
SubjectTerms | Algorithms Cost control Customers Drones Efficiency Heuristic Integer programming Logistics Mathematical models mixed-integer nonlinear programming model optimal route problem Traveling salesman problem Trucks truck–drone delivery variable neighborhood tabu search algorithm |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29TsMwELZQJxgQLSAKBXnoAEgRjeMk9lgoVYVEWVrULYqNDYj-oDYd2HgH3pAn4c5JSySQWFijS2Ldne_us8-fCWlK7vNQydDjVqUeD0XqpbiIEwcQGJS1umVxveO2H_WG_GYUjkpXfWFPWE4PnCvuQkNJrqU2DPI054bBF6IgthJwh9VMuegLOa8EplwMlj5SV-UH8gLA9bgf7OPOb-iKye8U5Jj6fwRil126O2S7KAtpOx9OlWyYaY1slcgCa6RaTMMFPS24os92ib6DKT-BN7Gzx9DVFUQUSlE6ALO9fL5_dOazqaEdM8YWjDfqmgToPWBkPDVF-7g2Co6A9MZ0kKolzTuQaXv8OJs_Z0-TPTLsXg-uel5xb4Kng4hnnrLYz2R9AJyhUx9ymgWGGSVAcVCvxVopZN5TLaGYkYI_SB1y3wK88FPI__ukMoWRHRAqfBsYAdIABHkslWCxEamJNBhYsdTWyflKlYkuSMXxbotxAuAC9Z6U9F4nzbXwa86l8bvYJdpkLYIE2O4BuEVSuEXyl1vUSWNl0aSYlYsE0KJgUIAG8vA__nFENhkehnALMg1SyeZLcwwlSqZOnDd-AVN4484 priority: 102 providerName: Directory of Open Access Journals |
Title | Optimal Route Planning for Truck–Drone Delivery Using Variable Neighborhood Tabu Search Algorithm |
URI | https://www.proquest.com/docview/2618216339 https://doaj.org/article/c499c9ce262344e2b1b637f9156fc2b2 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTsMwDLZgXOCAGD9iMKYcOABSxZqma3pCAzYQEgOhgbhVTUhAYmywjQM33oE35Emws-xHAnFtHam1E-ez43wG2E1FKGKVxoGwKg9ELPMgpyROEqFjUNbqqqV8x2Wrdn4rLu7je59wG_iyyrFPdI76oacpR36ISF9yBA9RevT6FlDXKDpd9S005mEBXbCMC7Bw3Ghd30yyLMR6KcPq6GIejq3SuXBIJ8CxA5XTrcgx9v9yyG6Xaa7AsoeHrD6yZxHmTHcVlmZIA1eh6JfjgO15zuj9NdBXuPRfcCRV-Bg2bkXEEJKyNprv-fvz67Tf6xp2ajpUivHBXLEAu8NYmW5PsRblSHFCEM0xa-fqnY0qkVm984h6GD69rMNts9E-OQ98_4RARzUxDJSluiYbYuAZa4xsNHGbRYYbJRNLuC3RShEDn6pKxU0qxUOqYxFaDDPCHHHABhS6-GWbwGRoIyNRGgNCkaRK8sTI3NQ0Glrx3JbgYKzKTHtycepx0ckwyCC9ZzN6L8HuRPh1xKnxt9gx2WQiQkTY7kGv_5j5dZW5_0q14QjjhDAcJ1gtwr_DsNRqrngJymOLZn51DrLpXNr6__U2LHK67uBSLmUoDPvvZgdByFBVYF42zyp-vlVcKP8DEIPexg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NSgMxEB7EHtSD-IvVqjkoqLDYzWa72YOIWqX-VZEq3tZNTBSsrbYV8eY7-B4-lE_izP5UQfHmtc3C7uTL5JvJ5BuApVC4wleh7wirYkf4MnZiSuIEHjoGZa0uW8p3HNcrtXNxcOlfDsB7fheGyipzn5g46uu2phz5OjJ9yZE8eOHmw6NDXaPodDVvoZHC4tC8PGPI1t3Yr-L8LnO-t9vYqTlZVwFHexXRc5Slah_rYjjma-T7mhS_PMONkoElNhNopUiXTpWl4iaU4jrUvnAtkm835iS-hC6_gDQjxFVU2N6tn571szqksindcnoREN-1TOfQLp04-wmJ_dr6kg4BPzaAZFfbG4PRjI6yrRQ_4zBgWhMw8k2kcALGs-XfZSuZRvXqJOgTdDX3-CRVFBmWtz5iSIFZA-Fy9_H6Vu20W4ZVTZNKP15YUpzALjA2p9tarE45WQQgySqzRqyeWFr5zLaaN2j33u39FJz_i2WnYbCFbzYDTLrWMxJHYwAqglBJHhgZm4pGYCke2yKs5aaMdCZmTj01mhEGNWT36Jvdi7DUH_yQanj8Pmyb5qQ_hIS3kx_anZsoW8dR8l2hNhxpoxCGI6ArHn4dhsFWc8WLUMpnNMq8QTf6wu7s338vwlCtcXwUHe3XD-dgmNNViyTdU4LBXufJzCMB6qmFDHUMrv4b6J8fuRgH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTuMwEB6hIqHdA-JXW359AGlBimgcp3EOCAGl4m-7CJUVtxC7NkiUFtoixI134G14HJ6EmcQpSKC9cU0cKRl_GX8zHn8DsBILX4QqDj1hVeqJUKZeSkmcKEDHoKzVFUv5jj-N6v6ZODwPz0fgpTgLQ2WVhU_MHHWrqylHvoFMX3IkD0G8YV1ZxEmtvnV751EHKdppLdpp5BA5Mo8PGL71Nw9qONernNf3mrv7nusw4OmgKgaeslT5Y30MzUKN3F-T-ldguFEyssRsIq0UadSpilTcxFK0Yh0K3yIR91NOQkzo_kcjXBVlCUZ39honp8MMDyluSr-SHwrE967QnrRPu89hRmjfl8GsW8CnxSBb4eoTMO6oKdvOsTQJI6YzBT8_CBZOwaRzBX322-lVr02D_otu5wafpOoiw4o2SAzpMGsidK5fn55rvW7HsJppUxnII8sKFdg_jNPp5BZrUH4WwUgSy6yZqnuWV0Gz7fYl2n1wdTMDZ99i2VkodfDNfgGTvg2MxNEYjIooVpJHRqamqhFkiqe2DOuFKRPthM2pv0Y7wQCH7J58sHsZVoaDb3M9j6-H7dCcDIeQCHd2odu7TNw_nWTfFWvDkUIKYTiCuxrg12FIbDVXvAwLxYwmzjP0k3ccz_3_9jKMIcCT44PG0Tz84HTqIsv8LEBp0Ls3i8iFBmrJgY7BxXfj_A3oKxwz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Route+Planning+for+Truck%E2%80%93Drone+Delivery+Using+Variable+Neighborhood+Tabu+Search+Algorithm&rft.jtitle=Applied+sciences&rft.au=Tong%2C+Bao&rft.au=Wang%2C+Jianwei&rft.au=Wang%2C+Xue&rft.au=Zhou%2C+Feihao&rft.date=2022-01-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=12&rft.issue=1&rft.spage=529&rft_id=info:doi/10.3390%2Fapp12010529&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app12010529 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |