Research on a PSO-H-SVM-Based Intrusion Detection Method for Industrial Robotic Arms

The automation and intelligence of industrial manufacturing is the core of the fourth industrial revolution, and robotic arms and proprietary networked information systems are an integral part of this vision. However, with the benefits come risks that have been overlooked, and robotic arms have beco...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 12; no. 6; p. 2765
Main Authors Zhou, Yulin, Xie, Lun, Pan, Hang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The automation and intelligence of industrial manufacturing is the core of the fourth industrial revolution, and robotic arms and proprietary networked information systems are an integral part of this vision. However, with the benefits come risks that have been overlooked, and robotic arms have become a heavily attacked area. In order to improve the security of the robotic arm system, this paper proposes an intrusion detection method based on a state classification model. The closure operation process of the robotic arm is divided into five consecutive states, while a support vector machine based on the particle swarm optimization algorithm (PSO-H-SVM) classifies the operation state of the robotic arm. In the detection process, the classifier predicts the operation state of the robotic arm in real time, and the detection method determines whether the state transfer meets the logical requirements, and then determines whether the intrusion occurs. In addition, a response mechanism is proposed on the basis of the intrusion detection system to make protection measures for the robotic arm system. Finally, a physical experiment platform was built to test the intrusion detection method. The results showed that the classification accuracy of the PSO-H-SVM algorithm reached 96.02%, and the detection accuracy of the intrusion detection method reached 90%, which verified the effectiveness and reliability of the intrusion detection method.
AbstractList The automation and intelligence of industrial manufacturing is the core of the fourth industrial revolution, and robotic arms and proprietary networked information systems are an integral part of this vision. However, with the benefits come risks that have been overlooked, and robotic arms have become a heavily attacked area. In order to improve the security of the robotic arm system, this paper proposes an intrusion detection method based on a state classification model. The closure operation process of the robotic arm is divided into five consecutive states, while a support vector machine based on the particle swarm optimization algorithm (PSO-H-SVM) classifies the operation state of the robotic arm. In the detection process, the classifier predicts the operation state of the robotic arm in real time, and the detection method determines whether the state transfer meets the logical requirements, and then determines whether the intrusion occurs. In addition, a response mechanism is proposed on the basis of the intrusion detection system to make protection measures for the robotic arm system. Finally, a physical experiment platform was built to test the intrusion detection method. The results showed that the classification accuracy of the PSO-H-SVM algorithm reached 96.02%, and the detection accuracy of the intrusion detection method reached 90%, which verified the effectiveness and reliability of the intrusion detection method.
Featured ApplicationThis research is mainly used for intrusion detection against physical process logic attacks that industrial robotic arms may be subject to, and the establishment of response mechanisms.AbstractThe automation and intelligence of industrial manufacturing is the core of the fourth industrial revolution, and robotic arms and proprietary networked information systems are an integral part of this vision. However, with the benefits come risks that have been overlooked, and robotic arms have become a heavily attacked area. In order to improve the security of the robotic arm system, this paper proposes an intrusion detection method based on a state classification model. The closure operation process of the robotic arm is divided into five consecutive states, while a support vector machine based on the particle swarm optimization algorithm (PSO-H-SVM) classifies the operation state of the robotic arm. In the detection process, the classifier predicts the operation state of the robotic arm in real time, and the detection method determines whether the state transfer meets the logical requirements, and then determines whether the intrusion occurs. In addition, a response mechanism is proposed on the basis of the intrusion detection system to make protection measures for the robotic arm system. Finally, a physical experiment platform was built to test the intrusion detection method. The results showed that the classification accuracy of the PSO-H-SVM algorithm reached 96.02%, and the detection accuracy of the intrusion detection method reached 90%, which verified the effectiveness and reliability of the intrusion detection method.
Author Zhou, Yulin
Xie, Lun
Pan, Hang
Author_xml – sequence: 1
  givenname: Yulin
  surname: Zhou
  fullname: Zhou, Yulin
– sequence: 2
  givenname: Lun
  surname: Xie
  fullname: Xie, Lun
– sequence: 3
  givenname: Hang
  surname: Pan
  fullname: Pan, Hang
BookMark eNptUU1PAjEUbAwmInLyD2zi0ay22213e0T8gASCAeK16XZfZQlssS0H_71FjCHGd-ibdOZNJ32XqNPaFhC6JviOUoHv1W5HMsyzgrMz1M1wwVOak6Jzgi9Q3_s1jiUILQnuouUcPCinV4ltE5W8LmbpKF28TdMH5aFOxm1we99E7hEC6HBAUwgrWyfGukjXex9cozbJ3FY2NDoZuK2_QudGbTz0f3oPLZ-flsNROpm9jIeDSaopz0NaaaOJAUEENoQDF6UhghEjYlwDVY4144xpZZipcDyryGOlFCkoVILTHhofbWur1nLnmq1yn9KqRn5fWPculYuZNiBLTAtNSwy8qPM612XFTZ5hwVmt6xKq6HVz9No5-7EHH-Ta7l0b08uM5xllBBMWVbdHlXbWewfm91WC5WEJ8mQJUU3-qHUT1OEPg1PN5t-ZLwssipE
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3535225
crossref_primary_10_1007_s10846_023_01984_2
crossref_primary_10_3390_info13070322
crossref_primary_10_1016_j_isatra_2024_12_008
Cites_doi 10.1109/TII.2018.2819677
10.1109/AERO50100.2021.9438315
10.1109/CCDC.2019.8832937
10.1145/3264888.3264894
10.1109/TIE.2016.2535119
10.1109/TrustCom/BigDataSE.2018.00079
10.1109/ICMTMA52658.2021.00087
10.1177/0278364907073776
10.1109/JSYST.2014.2322503
10.1109/TSMC.2015.2415763
10.1109/ICCWorkshops50388.2021.9473818
10.1109/ICIT46573.2021.9453596
10.1002/itl2.140
10.1109/ACC.2016.7524934
10.1109/iThings-GreenCom-CPSCom-SmartData.2017.20
10.1109/ICASSP.2019.8683667
10.1109/ACCESS.2020.2966764
10.1016/j.cose.2016.01.001
10.1109/ACCESS.2019.2960497
10.1016/j.neucom.2017.10.009
10.1109/TSG.2013.2294473
10.1109/TRO.2017.2723903
10.1145/3029798.3038437
10.1109/LRA.2020.2988430
10.1109/ICAS49788.2021.9551134
10.1109/TCYB.2020.2969320
10.1109/ICCONS.2018.8663079
10.1109/ACCESS.2020.2976624
10.1109/ACCESS.2020.2976706
10.1109/ICEAC.2010.5702317
10.1145/3134600.3134627
10.1109/ICCE.2017.7889391
10.1016/j.robot.2017.10.006
10.1109/ICSIMA50015.2021.9526304
10.1109/ICAMechS49982.2020.9310157
10.1109/CISCE50729.2020.00014
10.1109/JPROC.2020.3034595
10.1109/TII.2019.2960616
10.1109/UBMK50275.2020.9219391
10.1109/TSMC.2018.2875793
10.1109/ISEE51682.2021.9418680
10.1109/INFOCOMWKSHPS51825.2021.9484479
10.1109/IROS.2017.8205998
10.1109/TIM.2017.2749918
10.1109/TCNS.2020.3028035
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app12062765
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_8037c380e67d4d4c8b6f420965dcd8eb
10_3390_app12062765
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c364t-bcfc1fe9190f16e698f1951f9076feb40c5655caf5fb0af5b8f10aaa173eb963
IEDL.DBID BENPR
ISSN 2076-3417
IngestDate Wed Aug 27 01:32:00 EDT 2025
Mon Jun 30 07:28:57 EDT 2025
Thu Apr 24 23:03:52 EDT 2025
Tue Jul 01 00:41:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-bcfc1fe9190f16e698f1951f9076feb40c5655caf5fb0af5b8f10aaa173eb963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2642351015?pq-origsite=%requestingapplication%
PQID 2642351015
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_8037c380e67d4d4c8b6f420965dcd8eb
proquest_journals_2642351015
crossref_primary_10_3390_app12062765
crossref_citationtrail_10_3390_app12062765
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
ref_14
ref_13
ref_11
Singh (ref_18) 2019; 3
Guerrero (ref_22) 2018; 99
Shang (ref_16) 2020; 5
Ding (ref_5) 2018; 275
ref_19
ref_17
Hong (ref_30) 2014; 5
Pan (ref_49) 2020; 79
Liu (ref_12) 2020; 8
ref_24
Tang (ref_29) 2020; 50
ref_21
Li (ref_7) 2020; 8
Ott (ref_15) 2007; 26
Li (ref_25) 2018; 15
ref_28
Khojasteh (ref_26) 2020; 8
ref_35
ref_32
Li (ref_10) 2016; 58
Khaitan (ref_31) 2015; 9
ref_39
Lawal (ref_47) 2020; 8
ref_38
Li (ref_20) 2020; 16
Vihonen (ref_4) 2017; 66
Akpinar (ref_36) 2019; 7
Zhou (ref_34) 2015; 45
Zhao (ref_27) 2020; 51
ref_46
ref_45
ref_44
ref_43
ref_42
Zhou (ref_33) 2021; 109
ref_41
ref_40
ref_1
Pang (ref_23) 2016; 63
ref_3
ref_2
ref_48
Haddadin (ref_6) 2017; 33
ref_9
Qiu (ref_37) 2015; 9
ref_8
References_xml – volume: 15
  start-page: 663
  year: 2018
  ident: ref_25
  article-title: Two-Loop Covert Attacks against Constant-Value Control of Industrial Control Systems
  publication-title: IEEE Trans Ind. Inform.
  doi: 10.1109/TII.2018.2819677
– ident: ref_48
  doi: 10.1109/AERO50100.2021.9438315
– ident: ref_40
  doi: 10.1109/CCDC.2019.8832937
– ident: ref_39
  doi: 10.1145/3264888.3264894
– volume: 63
  start-page: 3242
  year: 2016
  ident: ref_23
  article-title: Two-Channel False Data Injection Attacks Against Output Tracking Control of Networked Systems
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2535119
– ident: ref_24
  doi: 10.1109/TrustCom/BigDataSE.2018.00079
– ident: ref_11
  doi: 10.1109/ICMTMA52658.2021.00087
– volume: 26
  start-page: 23
  year: 2007
  ident: ref_15
  article-title: A Unified Passivity-based Control Framework for Position, Torque and Impedance Control of Flexible Joint Robots
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364907073776
– volume: 9
  start-page: 350
  year: 2015
  ident: ref_31
  article-title: Design Techniques and Applications of Cyberphysical Systems: A Survey
  publication-title: IEEE Syst J.
  doi: 10.1109/JSYST.2014.2322503
– volume: 45
  start-page: 1345
  year: 2015
  ident: ref_34
  article-title: Design and Analysis of Multimodel-Based Anomaly Intrusion Detection Systems in Industrial Process Automation
  publication-title: IEEE Trans. Syst. Man. Cybern.
  doi: 10.1109/TSMC.2015.2415763
– ident: ref_28
  doi: 10.1109/ICCWorkshops50388.2021.9473818
– ident: ref_3
  doi: 10.1109/ICIT46573.2021.9453596
– ident: ref_42
– volume: 3
  start-page: 140
  year: 2019
  ident: ref_18
  article-title: An efficient blockchain-based approach for cooperative decision making in swarm robotics
  publication-title: Internet Technol. Lett.
  doi: 10.1002/itl2.140
– ident: ref_14
  doi: 10.1109/ACC.2016.7524934
– ident: ref_21
  doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2017.20
– volume: 79
  start-page: 1
  year: 2020
  ident: ref_49
  article-title: Hierarchical support vector machine for facial micro-expression recognition
  publication-title: MTAP
– ident: ref_50
  doi: 10.1109/ICASSP.2019.8683667
– volume: 8
  start-page: 17419
  year: 2020
  ident: ref_7
  article-title: Data Logic Attack on Heavy-Duty Industrial Manipulators
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.2966764
– volume: 58
  start-page: 149
  year: 2016
  ident: ref_10
  article-title: False sequential logic attack on SCADA system and its physical impact analysis
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2016.01.001
– volume: 7
  start-page: 184365
  year: 2019
  ident: ref_36
  article-title: Analysis of Machine Learning Methods in EtherCAT-Based Anomaly Detection
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2960497
– volume: 275
  start-page: 1674
  year: 2018
  ident: ref_5
  article-title: A survey on security control and attack detection for industrial cyber-physical systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.10.009
– volume: 5
  start-page: 1643
  year: 2014
  ident: ref_30
  article-title: Integrated Anomaly Detection for Cyber Security of the Substations
  publication-title: IEEE T Smart GRID.
  doi: 10.1109/TSG.2013.2294473
– volume: 33
  start-page: 1292
  year: 2017
  ident: ref_6
  article-title: Robot Collisions: A Survey on Detection, Isolation, and Identification
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2017.2723903
– ident: ref_17
– ident: ref_9
  doi: 10.1145/3029798.3038437
– volume: 5
  start-page: 4110
  year: 2020
  ident: ref_16
  article-title: Adaptive Cross-Coupled Control of Cable-Driven Parallel Robots With Model Uncertainties
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.2988430
– ident: ref_46
  doi: 10.1109/ICAS49788.2021.9551134
– volume: 51
  start-page: 6179
  year: 2020
  ident: ref_27
  article-title: Data-Driven False Data-Injection Attack Design and Detection in Cyber-Physical Systems
  publication-title: IEEE Trans Cybern.
  doi: 10.1109/TCYB.2020.2969320
– ident: ref_2
  doi: 10.1109/ICCONS.2018.8663079
– volume: 8
  start-page: 43355
  year: 2020
  ident: ref_47
  article-title: Security Analysis of Network Anomalies Mitigation Schemes in IoT Networks
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.2976624
– volume: 8
  start-page: 42120
  year: 2020
  ident: ref_12
  article-title: CPSS LR-DDoS Detection and Defense in Edge Computing Utilizing DCNN Q-Learning
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.2976706
– ident: ref_43
  doi: 10.1109/ICEAC.2010.5702317
– ident: ref_8
  doi: 10.1145/3134600.3134627
– ident: ref_32
  doi: 10.1109/ICCE.2017.7889391
– volume: 9
  start-page: 247
  year: 2015
  ident: ref_37
  article-title: Research on intrusion detection algorithm based on BP neural network
  publication-title: Int. J. Secur. Its Appl.
– volume: 99
  start-page: 75
  year: 2018
  ident: ref_22
  article-title: Detection of Cyber-attacks to indoor real time localization systems for autonomous robots
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2017.10.006
– ident: ref_1
  doi: 10.1109/ICSIMA50015.2021.9526304
– ident: ref_41
  doi: 10.1109/ICAMechS49982.2020.9310157
– ident: ref_44
  doi: 10.1109/CISCE50729.2020.00014
– volume: 109
  start-page: 517
  year: 2021
  ident: ref_33
  article-title: A Unified Architectural Approach for Cyberattack-Resilient Industrial Control Systems
  publication-title: P IEEE.
  doi: 10.1109/JPROC.2020.3034595
– volume: 16
  start-page: 5806
  year: 2020
  ident: ref_20
  article-title: A Data-Driven Attack Detection Approach for DC Servo Motor Systems Based on Mixed Optimization Strategy
  publication-title: IEEE Trans. Industr. Inform.
  doi: 10.1109/TII.2019.2960616
– ident: ref_35
  doi: 10.1109/UBMK50275.2020.9219391
– volume: 50
  start-page: 3300
  year: 2020
  ident: ref_29
  article-title: Event-Based Tracking Control of Mobile Robot With Denial-of-Service Attacks
  publication-title: IEEE Trans. Syst. Man. Cybern.
  doi: 10.1109/TSMC.2018.2875793
– ident: ref_45
  doi: 10.1109/ISEE51682.2021.9418680
– ident: ref_13
  doi: 10.1109/INFOCOMWKSHPS51825.2021.9484479
– ident: ref_38
  doi: 10.1109/IROS.2017.8205998
– volume: 66
  start-page: 3280
  year: 2017
  ident: ref_4
  article-title: Joint-Space Kinematic Model for Gravity-Referenced Joint Angle Estimation of Heavy-Duty Manipulators
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2749918
– ident: ref_19
– volume: 8
  start-page: 437
  year: 2020
  ident: ref_26
  article-title: Learning-based attacks in cyber-physical systems
  publication-title: IEEE Trans. Control. Netw. Syst.
  doi: 10.1109/TCNS.2020.3028035
SSID ssj0000913810
Score 2.3030615
Snippet The automation and intelligence of industrial manufacturing is the core of the fourth industrial revolution, and robotic arms and proprietary networked...
Featured ApplicationThis research is mainly used for intrusion detection against physical process logic attacks that industrial robotic arms may be subject to,...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2765
SubjectTerms Algorithms
Artificial intelligence
Communication
Design
Expected values
Fault diagnosis
Global positioning systems
GPS
intrusion detection
Logic
Machine learning
Manufacturing
physical process logic attack
PSO-H-SVM
robotic arm system
Robotics
Robots
security
Security systems
Sensors
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJz2IrYrVKnvoQYXFJLvZpkerlipUxVbpLeznSROh_f84s0lrQMGLlxyShV1mZufNkJk3hPSdxTna0jKeesGE1glThluWpB7nx3FvQofc9FFOXsXDIl00Rn1hTVhFD1wJ7iqL-MDwLHJyYIUVJtPSiwQ5S6yxmdPofQHzGslU8MHDGKmrqoY8Dnk9_g-OE-TkRRhpQFBg6v_hiAO6jPfIbh0W0uvqOG2y5YoO2WmQBXZIu76GS3pec0Vf7JP5unKOlgVV9Hn2xCZs9jZlI0AnS-8L7KkA0dNbtwpFVwWdhpnRFIJV-j23g76UuoS94QQfywMyH9_NbyasHpTADJdixbTxJvZuCODuY-nkMPMxRE4eEl_pnRaRgbAtNcqnXkfw1PA9UkrFA-403MBD0irKwh0RygGwrbM2FrEXqbMqskKAoCEOTJQd6C65XIsuNzWJOM6yeM8hmUA55w05d0l_s_iz4s74fdkIdbBZgoTX4QWYQV6bQf6XGXRJb63BvL6FyxyCvYSj00mP_2OPE7KdYPNDqEDrkRZo0J1CSLLSZ8H6vgByqN5N
  priority: 102
  providerName: Directory of Open Access Journals
Title Research on a PSO-H-SVM-Based Intrusion Detection Method for Industrial Robotic Arms
URI https://www.proquest.com/docview/2642351015
https://doaj.org/article/8037c380e67d4d4c8b6f420965dcd8eb
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELaALjAgnqI8Kg8dAMkiiZ0HE6LQUpBaKiioWxS_WCAptP9f3LluqQRiyZBYiuXzvey77yOkaTTyaCea8dgKJqSMWKG4ZlFskT-OW-U65Hr9pPsiHkbxyB-4TXxZ5dwmOkOtK4Vn5BfguCOOGyi-Gn8yZI3C21VPobFKamCCM0i-aq12f_C0OGVB1MssDGaNeRzye7wXDiPE5kV3suSKHGL_L4PsvExni2z68JBez-S5TVZMuUM2lkADd8i2V8cJPfWY0We7ZDivoKNVSQs6eH5kXfb82mMt8FKa3pfYWwEioLdm6oqvStpz3NEUglb6w99BnypZwb9hBh-TPTLstIc3XeYJE5jiiZgyqawKrbkEJ2_DxCSXmQ0hgrKQACfWSBEoCN9iVdjYygCeEr4HRVGEKTcSNHGfrJVVaQ4I5eC4tdE6FKEVsdFFoIXQSkM8GBU6lXVyPl-6XHkwceS0eM8hqcB1zpfWuU6ai8HjGYbG38NaKIPFEAS-di-qr7fc61GeBTxVPAtMkmqhhcpkYkWEEDYwu8zAxI7nEsy9Nk7yn71z-P_nI7IeYXuDqzE7JmsgG3MCQcdUNshq1rlr-P3VcKn7N8KT2ME
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0BPUAPFdBWpYXWByqVSlYT28lmDwiV0mW3sIDKFnGz4q9e2oR2V0L8KP4jM95kWakVNy45xFZizYw9Y3vmPYBt74hHO3dcZkFxZYzgpZWOiywQf5wMNlbIDU_y_g_17TK7XIDbthaG0irbNTEu1K62dEb-CR23kGRA2d7VH06sUXS72lJoTM3iyN9c45ZtvDs4QP2-F6L3dfSlzxtWAW5lribc2GDT4LvoCUOa-7xbhBTDjIC7xDx4oxKLMU5my5AFk-DTYHtSlmXakd6gueJnF-GJkrJLE6roHc6OdAhis0iTaRUgtid0CZ0KAgIm3zXn9yI9wD-rf3RpvVV41sSi7PPUeNZgwVfr8HQOoXAd1pq5P2YfGoDqnecwatP1WF2xkp2dn_I-P78Y8n10iY4NKirkQH2zAz-JmV4VG0aiaoYRMrsnC2Hfa1Pjv3EEv8cvYPQYcnwJS1Vd-VfAJEYJzjuXqjSozLsycUo56zD4FKXrmA342IpO2wa5nAg0fmncwZCc9ZycN2B71vlqCtjx_277pINZF0LZji_qvz91M2l1kciOlUXi845TTtnC5EEJwsvB0RUeB7bZalA3U3-s7w319cPN72C5Pxoe6-PBydEbWBFUVxGT2zZhCfXktzDamZi30cYY6Ee26TvHZxNj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLSAKBTYQ5EAadX17vqRA0KENEooCVEbUG8r74sL2IVEQvw0_h0zjp1GAnHrxQd7Za9mxjOzuzPfB3AUPPFoZ56rNGqurZW8dMpzmUbij1PRNR1y01k2_qTfX6QXO_C764WhssrOJzaO2teO9siPMXBLRQaUHse2LGI-HL25_M6JQYpOWjs6jbWJnIZfP3H5tnw9GaKun0s5Olm8G_OWYYA7lekVty66JIY-RsWYZCHrFzHBlCPiijGLwWrhMN9JXRnTaAVeLT4XZVkmuQoWTRdfewN2c1wUiR7sDk5m87PNBg8BbhaJWPcEKtUXdCSdSIIFpki2FQUbsoC_YkET4EZ34U6bmbK3a1Pag51Q7cPtLbzCfdhrPcGSvWjhql_eg0VXvMfqipVsfv6Rj_n55ykfYID0bFJRWwdqnw3Dqqn7qti0oa1mmC-zK-oQdlbbGr-NM_i2vA-L65DkA-hVdRUeAlOYM_jgfaKTqNPgS-G19s5jKipLn9sDeNWJzrgWx5zoNL4aXM-QnM2WnA_gaDP4cg3f8e9hA9LBZghhbjc36h9fTPsLm0Ko3KlChCz32mtX2CxqSeg5OLsi4MQOOw2a1hEszZXZPvr_42dwE-3ZfJjMTh_DLUlNFk2l2yH0UE3hCaY-K_u0NTIG5prN-g_0Shj1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+a+PSO-H-SVM-Based+Intrusion+Detection+Method+for+Industrial+Robotic+Arms&rft.jtitle=Applied+sciences&rft.au=Zhou%2C+Yulin&rft.au=Xie%2C+Lun&rft.au=Pan%2C+Hang&rft.date=2022-03-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=6&rft.spage=2765&rft_id=info:doi/10.3390%2Fapp12062765&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon