Research on a PSO-H-SVM-Based Intrusion Detection Method for Industrial Robotic Arms
The automation and intelligence of industrial manufacturing is the core of the fourth industrial revolution, and robotic arms and proprietary networked information systems are an integral part of this vision. However, with the benefits come risks that have been overlooked, and robotic arms have beco...
Saved in:
Published in | Applied sciences Vol. 12; no. 6; p. 2765 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The automation and intelligence of industrial manufacturing is the core of the fourth industrial revolution, and robotic arms and proprietary networked information systems are an integral part of this vision. However, with the benefits come risks that have been overlooked, and robotic arms have become a heavily attacked area. In order to improve the security of the robotic arm system, this paper proposes an intrusion detection method based on a state classification model. The closure operation process of the robotic arm is divided into five consecutive states, while a support vector machine based on the particle swarm optimization algorithm (PSO-H-SVM) classifies the operation state of the robotic arm. In the detection process, the classifier predicts the operation state of the robotic arm in real time, and the detection method determines whether the state transfer meets the logical requirements, and then determines whether the intrusion occurs. In addition, a response mechanism is proposed on the basis of the intrusion detection system to make protection measures for the robotic arm system. Finally, a physical experiment platform was built to test the intrusion detection method. The results showed that the classification accuracy of the PSO-H-SVM algorithm reached 96.02%, and the detection accuracy of the intrusion detection method reached 90%, which verified the effectiveness and reliability of the intrusion detection method. |
---|---|
AbstractList | The automation and intelligence of industrial manufacturing is the core of the fourth industrial revolution, and robotic arms and proprietary networked information systems are an integral part of this vision. However, with the benefits come risks that have been overlooked, and robotic arms have become a heavily attacked area. In order to improve the security of the robotic arm system, this paper proposes an intrusion detection method based on a state classification model. The closure operation process of the robotic arm is divided into five consecutive states, while a support vector machine based on the particle swarm optimization algorithm (PSO-H-SVM) classifies the operation state of the robotic arm. In the detection process, the classifier predicts the operation state of the robotic arm in real time, and the detection method determines whether the state transfer meets the logical requirements, and then determines whether the intrusion occurs. In addition, a response mechanism is proposed on the basis of the intrusion detection system to make protection measures for the robotic arm system. Finally, a physical experiment platform was built to test the intrusion detection method. The results showed that the classification accuracy of the PSO-H-SVM algorithm reached 96.02%, and the detection accuracy of the intrusion detection method reached 90%, which verified the effectiveness and reliability of the intrusion detection method. Featured ApplicationThis research is mainly used for intrusion detection against physical process logic attacks that industrial robotic arms may be subject to, and the establishment of response mechanisms.AbstractThe automation and intelligence of industrial manufacturing is the core of the fourth industrial revolution, and robotic arms and proprietary networked information systems are an integral part of this vision. However, with the benefits come risks that have been overlooked, and robotic arms have become a heavily attacked area. In order to improve the security of the robotic arm system, this paper proposes an intrusion detection method based on a state classification model. The closure operation process of the robotic arm is divided into five consecutive states, while a support vector machine based on the particle swarm optimization algorithm (PSO-H-SVM) classifies the operation state of the robotic arm. In the detection process, the classifier predicts the operation state of the robotic arm in real time, and the detection method determines whether the state transfer meets the logical requirements, and then determines whether the intrusion occurs. In addition, a response mechanism is proposed on the basis of the intrusion detection system to make protection measures for the robotic arm system. Finally, a physical experiment platform was built to test the intrusion detection method. The results showed that the classification accuracy of the PSO-H-SVM algorithm reached 96.02%, and the detection accuracy of the intrusion detection method reached 90%, which verified the effectiveness and reliability of the intrusion detection method. |
Author | Zhou, Yulin Xie, Lun Pan, Hang |
Author_xml | – sequence: 1 givenname: Yulin surname: Zhou fullname: Zhou, Yulin – sequence: 2 givenname: Lun surname: Xie fullname: Xie, Lun – sequence: 3 givenname: Hang surname: Pan fullname: Pan, Hang |
BookMark | eNptUU1PAjEUbAwmInLyD2zi0ay22213e0T8gASCAeK16XZfZQlssS0H_71FjCHGd-ibdOZNJ32XqNPaFhC6JviOUoHv1W5HMsyzgrMz1M1wwVOak6Jzgi9Q3_s1jiUILQnuouUcPCinV4ltE5W8LmbpKF28TdMH5aFOxm1we99E7hEC6HBAUwgrWyfGukjXex9cozbJ3FY2NDoZuK2_QudGbTz0f3oPLZ-flsNROpm9jIeDSaopz0NaaaOJAUEENoQDF6UhghEjYlwDVY4144xpZZipcDyryGOlFCkoVILTHhofbWur1nLnmq1yn9KqRn5fWPculYuZNiBLTAtNSwy8qPM612XFTZ5hwVmt6xKq6HVz9No5-7EHH-Ta7l0b08uM5xllBBMWVbdHlXbWewfm91WC5WEJ8mQJUU3-qHUT1OEPg1PN5t-ZLwssipE |
CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3535225 crossref_primary_10_1007_s10846_023_01984_2 crossref_primary_10_3390_info13070322 crossref_primary_10_1016_j_isatra_2024_12_008 |
Cites_doi | 10.1109/TII.2018.2819677 10.1109/AERO50100.2021.9438315 10.1109/CCDC.2019.8832937 10.1145/3264888.3264894 10.1109/TIE.2016.2535119 10.1109/TrustCom/BigDataSE.2018.00079 10.1109/ICMTMA52658.2021.00087 10.1177/0278364907073776 10.1109/JSYST.2014.2322503 10.1109/TSMC.2015.2415763 10.1109/ICCWorkshops50388.2021.9473818 10.1109/ICIT46573.2021.9453596 10.1002/itl2.140 10.1109/ACC.2016.7524934 10.1109/iThings-GreenCom-CPSCom-SmartData.2017.20 10.1109/ICASSP.2019.8683667 10.1109/ACCESS.2020.2966764 10.1016/j.cose.2016.01.001 10.1109/ACCESS.2019.2960497 10.1016/j.neucom.2017.10.009 10.1109/TSG.2013.2294473 10.1109/TRO.2017.2723903 10.1145/3029798.3038437 10.1109/LRA.2020.2988430 10.1109/ICAS49788.2021.9551134 10.1109/TCYB.2020.2969320 10.1109/ICCONS.2018.8663079 10.1109/ACCESS.2020.2976624 10.1109/ACCESS.2020.2976706 10.1109/ICEAC.2010.5702317 10.1145/3134600.3134627 10.1109/ICCE.2017.7889391 10.1016/j.robot.2017.10.006 10.1109/ICSIMA50015.2021.9526304 10.1109/ICAMechS49982.2020.9310157 10.1109/CISCE50729.2020.00014 10.1109/JPROC.2020.3034595 10.1109/TII.2019.2960616 10.1109/UBMK50275.2020.9219391 10.1109/TSMC.2018.2875793 10.1109/ISEE51682.2021.9418680 10.1109/INFOCOMWKSHPS51825.2021.9484479 10.1109/IROS.2017.8205998 10.1109/TIM.2017.2749918 10.1109/TCNS.2020.3028035 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app12062765 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_8037c380e67d4d4c8b6f420965dcd8eb 10_3390_app12062765 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c364t-bcfc1fe9190f16e698f1951f9076feb40c5655caf5fb0af5b8f10aaa173eb963 |
IEDL.DBID | BENPR |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:32:00 EDT 2025 Mon Jun 30 07:28:57 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 Tue Jul 01 00:41:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-bcfc1fe9190f16e698f1951f9076feb40c5655caf5fb0af5b8f10aaa173eb963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2642351015?pq-origsite=%requestingapplication% |
PQID | 2642351015 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8037c380e67d4d4c8b6f420965dcd8eb proquest_journals_2642351015 crossref_primary_10_3390_app12062765 crossref_citationtrail_10_3390_app12062765 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 ref_14 ref_13 ref_11 Singh (ref_18) 2019; 3 Guerrero (ref_22) 2018; 99 Shang (ref_16) 2020; 5 Ding (ref_5) 2018; 275 ref_19 ref_17 Hong (ref_30) 2014; 5 Pan (ref_49) 2020; 79 Liu (ref_12) 2020; 8 ref_24 Tang (ref_29) 2020; 50 ref_21 Li (ref_7) 2020; 8 Ott (ref_15) 2007; 26 Li (ref_25) 2018; 15 ref_28 Khojasteh (ref_26) 2020; 8 ref_35 ref_32 Li (ref_10) 2016; 58 Khaitan (ref_31) 2015; 9 ref_39 Lawal (ref_47) 2020; 8 ref_38 Li (ref_20) 2020; 16 Vihonen (ref_4) 2017; 66 Akpinar (ref_36) 2019; 7 Zhou (ref_34) 2015; 45 Zhao (ref_27) 2020; 51 ref_46 ref_45 ref_44 ref_43 ref_42 Zhou (ref_33) 2021; 109 ref_41 ref_40 ref_1 Pang (ref_23) 2016; 63 ref_3 ref_2 ref_48 Haddadin (ref_6) 2017; 33 ref_9 Qiu (ref_37) 2015; 9 ref_8 |
References_xml | – volume: 15 start-page: 663 year: 2018 ident: ref_25 article-title: Two-Loop Covert Attacks against Constant-Value Control of Industrial Control Systems publication-title: IEEE Trans Ind. Inform. doi: 10.1109/TII.2018.2819677 – ident: ref_48 doi: 10.1109/AERO50100.2021.9438315 – ident: ref_40 doi: 10.1109/CCDC.2019.8832937 – ident: ref_39 doi: 10.1145/3264888.3264894 – volume: 63 start-page: 3242 year: 2016 ident: ref_23 article-title: Two-Channel False Data Injection Attacks Against Output Tracking Control of Networked Systems publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2535119 – ident: ref_24 doi: 10.1109/TrustCom/BigDataSE.2018.00079 – ident: ref_11 doi: 10.1109/ICMTMA52658.2021.00087 – volume: 26 start-page: 23 year: 2007 ident: ref_15 article-title: A Unified Passivity-based Control Framework for Position, Torque and Impedance Control of Flexible Joint Robots publication-title: Int. J. Robot. Res. doi: 10.1177/0278364907073776 – volume: 9 start-page: 350 year: 2015 ident: ref_31 article-title: Design Techniques and Applications of Cyberphysical Systems: A Survey publication-title: IEEE Syst J. doi: 10.1109/JSYST.2014.2322503 – volume: 45 start-page: 1345 year: 2015 ident: ref_34 article-title: Design and Analysis of Multimodel-Based Anomaly Intrusion Detection Systems in Industrial Process Automation publication-title: IEEE Trans. Syst. Man. Cybern. doi: 10.1109/TSMC.2015.2415763 – ident: ref_28 doi: 10.1109/ICCWorkshops50388.2021.9473818 – ident: ref_3 doi: 10.1109/ICIT46573.2021.9453596 – ident: ref_42 – volume: 3 start-page: 140 year: 2019 ident: ref_18 article-title: An efficient blockchain-based approach for cooperative decision making in swarm robotics publication-title: Internet Technol. Lett. doi: 10.1002/itl2.140 – ident: ref_14 doi: 10.1109/ACC.2016.7524934 – ident: ref_21 doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2017.20 – volume: 79 start-page: 1 year: 2020 ident: ref_49 article-title: Hierarchical support vector machine for facial micro-expression recognition publication-title: MTAP – ident: ref_50 doi: 10.1109/ICASSP.2019.8683667 – volume: 8 start-page: 17419 year: 2020 ident: ref_7 article-title: Data Logic Attack on Heavy-Duty Industrial Manipulators publication-title: IEEE Access. doi: 10.1109/ACCESS.2020.2966764 – volume: 58 start-page: 149 year: 2016 ident: ref_10 article-title: False sequential logic attack on SCADA system and its physical impact analysis publication-title: Comput. Secur. doi: 10.1016/j.cose.2016.01.001 – volume: 7 start-page: 184365 year: 2019 ident: ref_36 article-title: Analysis of Machine Learning Methods in EtherCAT-Based Anomaly Detection publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2960497 – volume: 275 start-page: 1674 year: 2018 ident: ref_5 article-title: A survey on security control and attack detection for industrial cyber-physical systems publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.10.009 – volume: 5 start-page: 1643 year: 2014 ident: ref_30 article-title: Integrated Anomaly Detection for Cyber Security of the Substations publication-title: IEEE T Smart GRID. doi: 10.1109/TSG.2013.2294473 – volume: 33 start-page: 1292 year: 2017 ident: ref_6 article-title: Robot Collisions: A Survey on Detection, Isolation, and Identification publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2017.2723903 – ident: ref_17 – ident: ref_9 doi: 10.1145/3029798.3038437 – volume: 5 start-page: 4110 year: 2020 ident: ref_16 article-title: Adaptive Cross-Coupled Control of Cable-Driven Parallel Robots With Model Uncertainties publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2020.2988430 – ident: ref_46 doi: 10.1109/ICAS49788.2021.9551134 – volume: 51 start-page: 6179 year: 2020 ident: ref_27 article-title: Data-Driven False Data-Injection Attack Design and Detection in Cyber-Physical Systems publication-title: IEEE Trans Cybern. doi: 10.1109/TCYB.2020.2969320 – ident: ref_2 doi: 10.1109/ICCONS.2018.8663079 – volume: 8 start-page: 43355 year: 2020 ident: ref_47 article-title: Security Analysis of Network Anomalies Mitigation Schemes in IoT Networks publication-title: IEEE Access. doi: 10.1109/ACCESS.2020.2976624 – volume: 8 start-page: 42120 year: 2020 ident: ref_12 article-title: CPSS LR-DDoS Detection and Defense in Edge Computing Utilizing DCNN Q-Learning publication-title: IEEE Access. doi: 10.1109/ACCESS.2020.2976706 – ident: ref_43 doi: 10.1109/ICEAC.2010.5702317 – ident: ref_8 doi: 10.1145/3134600.3134627 – ident: ref_32 doi: 10.1109/ICCE.2017.7889391 – volume: 9 start-page: 247 year: 2015 ident: ref_37 article-title: Research on intrusion detection algorithm based on BP neural network publication-title: Int. J. Secur. Its Appl. – volume: 99 start-page: 75 year: 2018 ident: ref_22 article-title: Detection of Cyber-attacks to indoor real time localization systems for autonomous robots publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2017.10.006 – ident: ref_1 doi: 10.1109/ICSIMA50015.2021.9526304 – ident: ref_41 doi: 10.1109/ICAMechS49982.2020.9310157 – ident: ref_44 doi: 10.1109/CISCE50729.2020.00014 – volume: 109 start-page: 517 year: 2021 ident: ref_33 article-title: A Unified Architectural Approach for Cyberattack-Resilient Industrial Control Systems publication-title: P IEEE. doi: 10.1109/JPROC.2020.3034595 – volume: 16 start-page: 5806 year: 2020 ident: ref_20 article-title: A Data-Driven Attack Detection Approach for DC Servo Motor Systems Based on Mixed Optimization Strategy publication-title: IEEE Trans. Industr. Inform. doi: 10.1109/TII.2019.2960616 – ident: ref_35 doi: 10.1109/UBMK50275.2020.9219391 – volume: 50 start-page: 3300 year: 2020 ident: ref_29 article-title: Event-Based Tracking Control of Mobile Robot With Denial-of-Service Attacks publication-title: IEEE Trans. Syst. Man. Cybern. doi: 10.1109/TSMC.2018.2875793 – ident: ref_45 doi: 10.1109/ISEE51682.2021.9418680 – ident: ref_13 doi: 10.1109/INFOCOMWKSHPS51825.2021.9484479 – ident: ref_38 doi: 10.1109/IROS.2017.8205998 – volume: 66 start-page: 3280 year: 2017 ident: ref_4 article-title: Joint-Space Kinematic Model for Gravity-Referenced Joint Angle Estimation of Heavy-Duty Manipulators publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2017.2749918 – ident: ref_19 – volume: 8 start-page: 437 year: 2020 ident: ref_26 article-title: Learning-based attacks in cyber-physical systems publication-title: IEEE Trans. Control. Netw. Syst. doi: 10.1109/TCNS.2020.3028035 |
SSID | ssj0000913810 |
Score | 2.3030615 |
Snippet | The automation and intelligence of industrial manufacturing is the core of the fourth industrial revolution, and robotic arms and proprietary networked... Featured ApplicationThis research is mainly used for intrusion detection against physical process logic attacks that industrial robotic arms may be subject to,... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2765 |
SubjectTerms | Algorithms Artificial intelligence Communication Design Expected values Fault diagnosis Global positioning systems GPS intrusion detection Logic Machine learning Manufacturing physical process logic attack PSO-H-SVM robotic arm system Robotics Robots security Security systems Sensors Support vector machines |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJz2IrYrVKnvoQYXFJLvZpkerlipUxVbpLeznSROh_f84s0lrQMGLlxyShV1mZufNkJk3hPSdxTna0jKeesGE1glThluWpB7nx3FvQofc9FFOXsXDIl00Rn1hTVhFD1wJ7iqL-MDwLHJyYIUVJtPSiwQ5S6yxmdPofQHzGslU8MHDGKmrqoY8Dnk9_g-OE-TkRRhpQFBg6v_hiAO6jPfIbh0W0uvqOG2y5YoO2WmQBXZIu76GS3pec0Vf7JP5unKOlgVV9Hn2xCZs9jZlI0AnS-8L7KkA0dNbtwpFVwWdhpnRFIJV-j23g76UuoS94QQfywMyH9_NbyasHpTADJdixbTxJvZuCODuY-nkMPMxRE4eEl_pnRaRgbAtNcqnXkfw1PA9UkrFA-403MBD0irKwh0RygGwrbM2FrEXqbMqskKAoCEOTJQd6C65XIsuNzWJOM6yeM8hmUA55w05d0l_s_iz4s74fdkIdbBZgoTX4QWYQV6bQf6XGXRJb63BvL6FyxyCvYSj00mP_2OPE7KdYPNDqEDrkRZo0J1CSLLSZ8H6vgByqN5N priority: 102 providerName: Directory of Open Access Journals |
Title | Research on a PSO-H-SVM-Based Intrusion Detection Method for Industrial Robotic Arms |
URI | https://www.proquest.com/docview/2642351015 https://doaj.org/article/8037c380e67d4d4c8b6f420965dcd8eb |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELaALjAgnqI8Kg8dAMkiiZ0HE6LQUpBaKiioWxS_WCAptP9f3LluqQRiyZBYiuXzvey77yOkaTTyaCea8dgKJqSMWKG4ZlFskT-OW-U65Hr9pPsiHkbxyB-4TXxZ5dwmOkOtK4Vn5BfguCOOGyi-Gn8yZI3C21VPobFKamCCM0i-aq12f_C0OGVB1MssDGaNeRzye7wXDiPE5kV3suSKHGL_L4PsvExni2z68JBez-S5TVZMuUM2lkADd8i2V8cJPfWY0We7ZDivoKNVSQs6eH5kXfb82mMt8FKa3pfYWwEioLdm6oqvStpz3NEUglb6w99BnypZwb9hBh-TPTLstIc3XeYJE5jiiZgyqawKrbkEJ2_DxCSXmQ0hgrKQACfWSBEoCN9iVdjYygCeEr4HRVGEKTcSNHGfrJVVaQ4I5eC4tdE6FKEVsdFFoIXQSkM8GBU6lXVyPl-6XHkwceS0eM8hqcB1zpfWuU6ai8HjGYbG38NaKIPFEAS-di-qr7fc61GeBTxVPAtMkmqhhcpkYkWEEDYwu8zAxI7nEsy9Nk7yn71z-P_nI7IeYXuDqzE7JmsgG3MCQcdUNshq1rlr-P3VcKn7N8KT2ME |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0BPUAPFdBWpYXWByqVSlYT28lmDwiV0mW3sIDKFnGz4q9e2oR2V0L8KP4jM95kWakVNy45xFZizYw9Y3vmPYBt74hHO3dcZkFxZYzgpZWOiywQf5wMNlbIDU_y_g_17TK7XIDbthaG0irbNTEu1K62dEb-CR23kGRA2d7VH06sUXS72lJoTM3iyN9c45ZtvDs4QP2-F6L3dfSlzxtWAW5lribc2GDT4LvoCUOa-7xbhBTDjIC7xDx4oxKLMU5my5AFk-DTYHtSlmXakd6gueJnF-GJkrJLE6roHc6OdAhis0iTaRUgtid0CZ0KAgIm3zXn9yI9wD-rf3RpvVV41sSi7PPUeNZgwVfr8HQOoXAd1pq5P2YfGoDqnecwatP1WF2xkp2dn_I-P78Y8n10iY4NKirkQH2zAz-JmV4VG0aiaoYRMrsnC2Hfa1Pjv3EEv8cvYPQYcnwJS1Vd-VfAJEYJzjuXqjSozLsycUo56zD4FKXrmA342IpO2wa5nAg0fmncwZCc9ZycN2B71vlqCtjx_277pINZF0LZji_qvz91M2l1kciOlUXi845TTtnC5EEJwsvB0RUeB7bZalA3U3-s7w319cPN72C5Pxoe6-PBydEbWBFUVxGT2zZhCfXktzDamZi30cYY6Ee26TvHZxNj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLSAKBTYQ5EAadX17vqRA0KENEooCVEbUG8r74sL2IVEQvw0_h0zjp1GAnHrxQd7Za9mxjOzuzPfB3AUPPFoZ56rNGqurZW8dMpzmUbij1PRNR1y01k2_qTfX6QXO_C764WhssrOJzaO2teO9siPMXBLRQaUHse2LGI-HL25_M6JQYpOWjs6jbWJnIZfP3H5tnw9GaKun0s5Olm8G_OWYYA7lekVty66JIY-RsWYZCHrFzHBlCPiijGLwWrhMN9JXRnTaAVeLT4XZVkmuQoWTRdfewN2c1wUiR7sDk5m87PNBg8BbhaJWPcEKtUXdCSdSIIFpki2FQUbsoC_YkET4EZ34U6bmbK3a1Pag51Q7cPtLbzCfdhrPcGSvWjhql_eg0VXvMfqipVsfv6Rj_n55ykfYID0bFJRWwdqnw3Dqqn7qti0oa1mmC-zK-oQdlbbGr-NM_i2vA-L65DkA-hVdRUeAlOYM_jgfaKTqNPgS-G19s5jKipLn9sDeNWJzrgWx5zoNL4aXM-QnM2WnA_gaDP4cg3f8e9hA9LBZghhbjc36h9fTPsLm0Ko3KlChCz32mtX2CxqSeg5OLsi4MQOOw2a1hEszZXZPvr_42dwE-3ZfJjMTh_DLUlNFk2l2yH0UE3hCaY-K_u0NTIG5prN-g_0Shj1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+a+PSO-H-SVM-Based+Intrusion+Detection+Method+for+Industrial+Robotic+Arms&rft.jtitle=Applied+sciences&rft.au=Zhou%2C+Yulin&rft.au=Xie%2C+Lun&rft.au=Pan%2C+Hang&rft.date=2022-03-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=6&rft.spage=2765&rft_id=info:doi/10.3390%2Fapp12062765&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |