Tunneling of massive dirac fermions in graphene through time-periodic potential
The energy spectrum of a graphene sheet subject to a single barrier potential having a time periodic oscillating height and subject to a magnetic field is analyzed. The corresponding transmission is studied as function of the incident energy and potential parameters. Quantum interference within the...
Saved in:
Published in | The European physical journal. B, Condensed matter physics Vol. 87; no. 6 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2014
Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The energy spectrum of a graphene sheet subject to a single barrier potential having a time periodic oscillating height and subject to a magnetic field is analyzed. The corresponding transmission is studied as function of the incident energy and potential parameters. Quantum interference within the oscillating barrier has an important effect on quasiparticles tunneling. In particular the time-periodic electrostatic potential generates additional sidebands at energies
ϵ
+
l
ħ
ω
(
l
= 0, ±1,
...
) in the transmission probability originating from the photon absorption or emission within the oscillating barrier. Due to numerical difficulties in truncating the resulting coupled channel equations we limited ourselves to low quantum channels, i.e.
l
= 0, ± 1. |
---|---|
AbstractList | The energy spectrum of a graphene sheet subject to a single barrier potential having a time periodic oscillating height and subject to a magnetic field is analyzed. The corresponding transmission is studied as function of the incident energy and potential parameters. Quantum interference within the oscillating barrier has an important effect on quasiparticles tunneling. In particular the time-periodic electrostatic potential generates additional sidebands at energies
ϵ
+
l
ħ
ω
(
l
= 0, ±1,
...
) in the transmission probability originating from the photon absorption or emission within the oscillating barrier. Due to numerical difficulties in truncating the resulting coupled channel equations we limited ourselves to low quantum channels, i.e.
l
= 0, ± 1. The energy spectrum of a graphene sheet subject to a single barrier potential having a time periodic oscillating height and subject to a magnetic field is analyzed. The corresponding transmission is studied as function of the incident energy and potential parameters. Quantum interference within the oscillating barrier has an important effect on quasiparticles tunneling. In particular the time-periodic electrostatic potential generates additional sidebands at energies e + lhw (l = 0, ± 1, ...) in the transmission probability originating from the photon absorption or emission within the oscillating barrier. Due to numerical difficulties in truncating the resulting coupled channel equations we limited ourselves to low quantum channels, i.e. l = 0, ± 1. |
ArticleNumber | 123 |
Audience | Academic |
Author | Mekkaoui, Miloud Choubabi, El Bouâzzaoui Bahlouli, Hocine Jellal, Ahmed |
Author_xml | – sequence: 1 givenname: Ahmed surname: Jellal fullname: Jellal, Ahmed email: ahmed.jellal@gmail.com organization: Saudi Center for Theoretical Physics, Theoretical Physics Group, Faculty of Sciences, Chouaïb Doukkali University – sequence: 2 givenname: Miloud surname: Mekkaoui fullname: Mekkaoui, Miloud organization: Theoretical Physics Group, Faculty of Sciences, Chouaïb Doukkali University – sequence: 3 givenname: El Bouâzzaoui surname: Choubabi fullname: Choubabi, El Bouâzzaoui organization: Theoretical Physics Group, Faculty of Sciences, Chouaïb Doukkali University, Physics Department, Faculty Polydisciplinary, Sultan Moulay Slimane University – sequence: 4 givenname: Hocine surname: Bahlouli fullname: Bahlouli, Hocine organization: Saudi Center for Theoretical Physics, Physics Department, King Fahd University of Petroleum and Minerals |
BookMark | eNp9kMtKxDAUhoMoOF5ewFW2LqpJT9ppl8PgDQTByzqk7UknQ5uUJCP69mYcEXQxZHFC-L-Tn--EHFpnkZALzq44F-wap3VzjTnjIhOc1WUGB2TGBYisZFAe_t7z6pichLBmjPGSixl5et1Yi4OxPXWajioE8460M161VKMfjbOBGkt7r6YVWqRx5d2mX9FoRswm9MZ1pqWTi2ijUcMZOdJqCHj-M0_J2-3N6_I-e3y6e1guHrMWShGzpkEO0JYcKwBRMIFYdHWT50XDOOuqosY5FKBF19QcoeNz3XFdi3KOrK1KgFNytdvbqwGlsdrFVDmdDkfTJjnapPcFVAKgAl4n4PIPkDIRP2KvNiHIh5fnv9l8l229C8GjlpM3o_KfkjO59S23vuW3b_ntW24bVf-g1kQVk8DUzAz7UdihIf1je_Ry7TbeJn_7qC_YRJk5 |
CitedBy_id | crossref_primary_10_1016_j_physb_2016_10_005 crossref_primary_10_1007_s00339_024_08168_1 crossref_primary_10_1103_PhysRevB_103_155433 crossref_primary_10_1088_2053_1591_4_3_035002 crossref_primary_10_1016_j_physleta_2020_126734 crossref_primary_10_1016_j_jpcs_2020_109509 crossref_primary_10_1016_j_physe_2020_114502 crossref_primary_10_1016_j_physe_2025_116227 crossref_primary_10_1140_epjb_e2015_50549_0 crossref_primary_10_1209_0295_5075_129_27001 crossref_primary_10_2139_ssrn_4059802 crossref_primary_10_1016_j_physb_2023_415149 crossref_primary_10_1016_j_physleta_2017_02_045 crossref_primary_10_1016_j_physe_2022_115645 crossref_primary_10_1016_j_physe_2023_115865 crossref_primary_10_1038_s41598_021_92614_0 crossref_primary_10_1016_j_physe_2020_113950 crossref_primary_10_2139_ssrn_3991819 crossref_primary_10_1088_1361_648X_ac671d crossref_primary_10_1140_epjb_e2019_90731_8 crossref_primary_10_1016_j_physb_2023_414975 crossref_primary_10_1016_j_physleta_2022_128288 crossref_primary_10_1002_andp_202400010 crossref_primary_10_1016_j_ssc_2022_114916 |
Cites_doi | 10.1038/nmat1849 10.1103/PhysRevB.84.035428 10.1103/PhysRevB.88.195419 10.1103/PhysRevLett.8.246 10.1063/1.4758695 10.1140/epjb/e2013-40691-0 10.1126/science.1102896 10.1103/PhysRevB.49.16544 10.1103/PhysRevLett.98.066802 10.1103/PhysRevA.51.798 10.1103/PhysRevB.78.165420 10.1103/PhysRevLett.98.256803 10.1103/PhysRev.129.647 10.1103/RevModPhys.81.109 10.1103/PhysRevB.66.035306 10.1063/1.3479912 10.1063/1.3597412 10.1140/epjb/e2013-40122-4 10.1103/RevModPhys.70.223 10.1103/PhysRevLett.109.226602 10.1103/PhysRevLett.67.516 10.1063/1.3460291 10.1140/epjb/e2012-30716-7 |
ContentType | Journal Article |
Copyright | EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014 COPYRIGHT 2014 Springer |
Copyright_xml | – notice: EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014 – notice: COPYRIGHT 2014 Springer |
DBID | AAYXX CITATION ISR |
DOI | 10.1140/epjb/e2014-41096-3 |
DatabaseName | CrossRef Gale In Context: Science |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1434-6036 |
ExternalDocumentID | A384338319 10_1140_epjb_e2014_41096_3 |
GroupedDBID | -5F -5G -BR -EM -Y2 -~C -~X .VR 06D 0R~ 199 203 28- 29G 29Q 29~ 2J2 2JY 2KG 2KM 2LR 2P1 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN ABAKF ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACPIV ACUHS ACZOJ ADHIR ADINQ ADKNI ADKPE ADMLS ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFFNX AFQWF AFWTZ AFZKB AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHSBF AHYZX AI. AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IGS IHE IKXTQ ISR ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J P9T PF- PT5 QOS R89 R9I RED RID RIG RNS ROL RSV RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UPT UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WJK WK8 YLTOR Z45 Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z88 ZMTXR ~8M 2JN AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION AEIIB |
ID | FETCH-LOGICAL-c364t-bbe133c61e8334504ee5d9b225b010d859e7353f4db91e3d17fd1f9467e0c8633 |
IEDL.DBID | U2A |
ISSN | 1434-6028 |
IngestDate | Tue Jun 10 20:46:00 EDT 2025 Fri Jun 27 04:53:22 EDT 2025 Tue Jul 01 01:17:19 EDT 2025 Thu Apr 24 23:05:26 EDT 2025 Fri Feb 21 02:29:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Mesoscopic and Nanoscale Systems |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-bbe133c61e8334504ee5d9b225b010d859e7353f4db91e3d17fd1f9467e0c8633 |
ParticipantIDs | gale_infotracacademiconefile_A384338319 gale_incontextgauss_ISR_A384338319 crossref_primary_10_1140_epjb_e2014_41096_3 crossref_citationtrail_10_1140_epjb_e2014_41096_3 springer_journals_10_1140_epjb_e2014_41096_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20140600 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 6 year: 2014 text: 20140600 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg |
PublicationSubtitle | Condensed Matter and Complex Systems |
PublicationTitle | The European physical journal. B, Condensed matter physics |
PublicationTitleAbbrev | Eur. Phys. J. B |
PublicationYear | 2014 |
Publisher | Springer Berlin Heidelberg Springer |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer |
References | LiuT.L.ChangL.ChuC.S.Phys. Rev. B2013881954192013PhRvB..88s5419L10.1103/PhysRevB.88.195419 MoskaletsM.ButtikerM.Phys. Rev. B2002660353062002PhRvB..66c5306M10.1103/PhysRevB.66.035306 GeimA.K.NovoselovK.S.Nat. Mater.200761832007NatMa...6..183G10.1038/nmat1849 San-JoseP.PradaE.SchomerusH.KohlerS.Appl. Phys. Lett.20121011535062012ApPhL.101o3506S10.1063/1.4758695 GrichukE.ManykinE.Eur. Phys. J. B2013862102013EPJB...86..210G10.1140/epjb/e2013-40122-4 Savel’evS.E.HauslerW.HänggiP.Phys. Rev. Lett.20121092266022012PhRvL.109v6602S10.1103/PhysRevLett.109.226602 NovoselovK.S.GeimA.K.MorozovS.V.JiangD.ZhangY.DubonosS.V.GrigorievaI.V.FirsovA.A.Science20043066662004Sci...306..666N10.1126/science.1102896 Savel’evS.E.HauslerW.HänggiP.Eur. Phys. J. B2013864332013EPJB...86..433S10.1140/epjb/e2013-40691-03116035 Castro NetoA.H.GuineaF.PeresN.M.R.NovoselovK.S.GeimA.K.Rev. Mod. Phys.2009811092009RvMP...81..109C10.1103/RevModPhys.81.109 GrossmannF.DittrichT.JungP.HänggiP.Phys. Rev. Lett.1991675161991PhRvL..67..516G10.1103/PhysRevLett.67.516 TienP.K.GordonJ.P.Phys. Rev.19631296471963PhRv..129..647T10.1103/PhysRev.129.647 GammaitoniL.HänggiP.JungP.MarchesoniF.Rev. Mod. Phys.1998702231998RvMP...70..223G10.1103/RevModPhys.70.223 Savel’evS.E.AlexandrovA.S.Phys. Rev. B2011840354282011PhRvB..84c5428S10.1103/PhysRevB.84.035428 De MartinoA.Dell’AnnaL.EggerR.Phys. Rev. Lett.2007980668022007PhRvL..98f6802D10.1103/PhysRevLett.98.066802 JiangL.-L.HuangL.YangR.LaiY.-C.Appl. Phys. Lett.2010962621142010ApPhL..96z2114J10.1063/1.3460291 WagnerM.Phys. Rev. B199449165441994PhRvB..4916544W10.1103/PhysRevB.49.16544 WagnerM.Phys. Rev. A1995517981995PhRvA..51..798W10.1103/PhysRevA.51.798 JiangP.YoungA.F.ChangW.KimP.EngelL.W.TsuiD.C.Appl. Phys. Lett.2010970621132010ApPhL..97f2113J10.1063/1.3479912 CalvoH.L.PastawskiH.M.RocheS.Foa TorresL.E.F.Appl. Phys. Lett.2011982321032011ApPhL..98w2103C10.1063/1.3597412 DayemA.H.MartinR.J.Phys. Rev. Lett.196282461962PhRvL...8..246D10.1103/PhysRevLett.8.246 PototskyA.MarchesoniF.KusmartsevF.V.HänggiP.Savel’evS.E.Eur. Phys. J. B2012853510.1140/epjb/e2012-30716-7 Ahsan ZebM.SabeehK.TahirM.Phys. Rev. B2008781654202008PhRvB..78p5420Z10.1103/PhysRevB.78.165420 FistulM.V.EfetovK.B.Phys. Rev. Lett.2007982568032007PhRvL..98y6803F10.1103/PhysRevLett.98.256803 P.K. Tien (1294_CR5) 1963; 129 A.K. Geim (1294_CR1) 2007; 6 L.-L. Jiang (1294_CR21) 2010; 96 S.E. Savel’ev (1294_CR14) 2011; 84 A.H. Dayem (1294_CR4) 1962; 8 M.V. Fistul (1294_CR17) 2007; 98 L. Gammaitoni (1294_CR20) 1998; 70 P. Jiang (1294_CR11) 2010; 97 T.L. Liu (1294_CR16) 2013; 88 E. Grichuk (1294_CR18) 2013; 86 S.E. Savel’ev (1294_CR15) 2012; 109 A. De Martino (1294_CR23) 2007; 98 M. Moskalets (1294_CR6) 2002; 66 M. Wagner (1294_CR7) 1995; 51 M. Wagner (1294_CR8) 1994; 49 F. Grossmann (1294_CR9) 1991; 67 S.E. Savel’ev (1294_CR19) 2013; 86 K.S. Novoselov (1294_CR2) 2004; 306 P. San-Jose (1294_CR13) 2012; 101 A. Pototsky (1294_CR22) 2012; 85 A.H. Castro Neto (1294_CR3) 2009; 81 M. Ahsan Zeb (1294_CR10) 2008; 78 H.L. Calvo (1294_CR12) 2011; 98 |
References_xml | – reference: LiuT.L.ChangL.ChuC.S.Phys. Rev. B2013881954192013PhRvB..88s5419L10.1103/PhysRevB.88.195419 – reference: De MartinoA.Dell’AnnaL.EggerR.Phys. Rev. Lett.2007980668022007PhRvL..98f6802D10.1103/PhysRevLett.98.066802 – reference: Ahsan ZebM.SabeehK.TahirM.Phys. Rev. B2008781654202008PhRvB..78p5420Z10.1103/PhysRevB.78.165420 – reference: FistulM.V.EfetovK.B.Phys. Rev. Lett.2007982568032007PhRvL..98y6803F10.1103/PhysRevLett.98.256803 – reference: WagnerM.Phys. Rev. A1995517981995PhRvA..51..798W10.1103/PhysRevA.51.798 – reference: GrossmannF.DittrichT.JungP.HänggiP.Phys. Rev. Lett.1991675161991PhRvL..67..516G10.1103/PhysRevLett.67.516 – reference: Savel’evS.E.HauslerW.HänggiP.Phys. Rev. Lett.20121092266022012PhRvL.109v6602S10.1103/PhysRevLett.109.226602 – reference: Castro NetoA.H.GuineaF.PeresN.M.R.NovoselovK.S.GeimA.K.Rev. Mod. Phys.2009811092009RvMP...81..109C10.1103/RevModPhys.81.109 – reference: DayemA.H.MartinR.J.Phys. Rev. Lett.196282461962PhRvL...8..246D10.1103/PhysRevLett.8.246 – reference: Savel’evS.E.AlexandrovA.S.Phys. Rev. B2011840354282011PhRvB..84c5428S10.1103/PhysRevB.84.035428 – reference: TienP.K.GordonJ.P.Phys. Rev.19631296471963PhRv..129..647T10.1103/PhysRev.129.647 – reference: Savel’evS.E.HauslerW.HänggiP.Eur. Phys. J. B2013864332013EPJB...86..433S10.1140/epjb/e2013-40691-03116035 – reference: San-JoseP.PradaE.SchomerusH.KohlerS.Appl. Phys. Lett.20121011535062012ApPhL.101o3506S10.1063/1.4758695 – reference: WagnerM.Phys. Rev. B199449165441994PhRvB..4916544W10.1103/PhysRevB.49.16544 – reference: JiangL.-L.HuangL.YangR.LaiY.-C.Appl. Phys. Lett.2010962621142010ApPhL..96z2114J10.1063/1.3460291 – reference: GammaitoniL.HänggiP.JungP.MarchesoniF.Rev. Mod. Phys.1998702231998RvMP...70..223G10.1103/RevModPhys.70.223 – reference: CalvoH.L.PastawskiH.M.RocheS.Foa TorresL.E.F.Appl. Phys. Lett.2011982321032011ApPhL..98w2103C10.1063/1.3597412 – reference: NovoselovK.S.GeimA.K.MorozovS.V.JiangD.ZhangY.DubonosS.V.GrigorievaI.V.FirsovA.A.Science20043066662004Sci...306..666N10.1126/science.1102896 – reference: MoskaletsM.ButtikerM.Phys. Rev. B2002660353062002PhRvB..66c5306M10.1103/PhysRevB.66.035306 – reference: GeimA.K.NovoselovK.S.Nat. Mater.200761832007NatMa...6..183G10.1038/nmat1849 – reference: GrichukE.ManykinE.Eur. Phys. J. B2013862102013EPJB...86..210G10.1140/epjb/e2013-40122-4 – reference: PototskyA.MarchesoniF.KusmartsevF.V.HänggiP.Savel’evS.E.Eur. Phys. J. B2012853510.1140/epjb/e2012-30716-7 – reference: JiangP.YoungA.F.ChangW.KimP.EngelL.W.TsuiD.C.Appl. Phys. Lett.2010970621132010ApPhL..97f2113J10.1063/1.3479912 – volume: 6 start-page: 183 year: 2007 ident: 1294_CR1 publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 84 start-page: 035428 year: 2011 ident: 1294_CR14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.035428 – volume: 88 start-page: 195419 year: 2013 ident: 1294_CR16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.195419 – volume: 8 start-page: 246 year: 1962 ident: 1294_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.8.246 – volume: 101 start-page: 153506 year: 2012 ident: 1294_CR13 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4758695 – volume: 86 start-page: 433 year: 2013 ident: 1294_CR19 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2013-40691-0 – volume: 306 start-page: 666 year: 2004 ident: 1294_CR2 publication-title: Science doi: 10.1126/science.1102896 – volume: 49 start-page: 16544 year: 1994 ident: 1294_CR8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.16544 – volume: 98 start-page: 066802 year: 2007 ident: 1294_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.066802 – volume: 51 start-page: 798 year: 1995 ident: 1294_CR7 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.51.798 – volume: 78 start-page: 165420 year: 2008 ident: 1294_CR10 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.165420 – volume: 98 start-page: 256803 year: 2007 ident: 1294_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.256803 – volume: 129 start-page: 647 year: 1963 ident: 1294_CR5 publication-title: Phys. Rev. doi: 10.1103/PhysRev.129.647 – volume: 81 start-page: 109 year: 2009 ident: 1294_CR3 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.109 – volume: 66 start-page: 035306 year: 2002 ident: 1294_CR6 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.66.035306 – volume: 97 start-page: 062113 year: 2010 ident: 1294_CR11 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3479912 – volume: 98 start-page: 232103 year: 2011 ident: 1294_CR12 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3597412 – volume: 86 start-page: 210 year: 2013 ident: 1294_CR18 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2013-40122-4 – volume: 70 start-page: 223 year: 1998 ident: 1294_CR20 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.70.223 – volume: 109 start-page: 226602 year: 2012 ident: 1294_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.226602 – volume: 67 start-page: 516 year: 1991 ident: 1294_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.67.516 – volume: 96 start-page: 262114 year: 2010 ident: 1294_CR21 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3460291 – volume: 85 start-page: 35 year: 2012 ident: 1294_CR22 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2012-30716-7 |
SSID | ssj0001614 |
Score | 2.2673187 |
Snippet | The energy spectrum of a graphene sheet subject to a single barrier potential having a time periodic oscillating height and subject to a magnetic field is... |
SourceID | gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Analysis Complex Systems Condensed Matter Physics Fluid- and Aerodynamics Graphene Graphite Magnetic fields Physics Physics and Astronomy Regular Article Solid State Physics |
Title | Tunneling of massive dirac fermions in graphene through time-periodic potential |
URI | https://link.springer.com/article/10.1140/epjb/e2014-41096-3 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEA-tUuiLaKt4fhyhFPqgwY2T5HYf79SrWlpBPbBPYfNVLLp7uHf_v5PcrnAggk_7Mpuwk8l87Mz8hpDvNpR24IVgYcAdE9IplquYcFWZBRfCsS9jRvf3H3U-EZd38q5tCmu6avcuJZk09QLPNjvy0__myKO9EkxwdLwZfCSrMsbuKMWT4-GL_kUfJuWSBQim0Hx2rTKvrrFkjjqlvJwSTZZmvE7WWheRDhdnukE--OoL-ZRKNW3zlVzdzmNtCr5K60Af0flFhUXRNJWWhljagnJE7yuaoKhRk9F2FA-NY-RZBDau3b2l03oWC4XKh00yGZ_dnpyzdiwCs6DEjBnjMbC0ivscQMhMeC9dYfBiGgyuXC4LPwAJQThTcA-OD4LjoUCN6DObK4AtslLVld8m1EARnJIhgBEC18FwRnJwwLm16DeoHuEdd7RtMcPj6IoHvehnznTkqE4c1YmjGnrk4OWd6QIx403qb5HpOkJRVLHW5V85bxp9cXOth5CLGEDzokd-tEShxu1t2bYO4EdE9KolysPu8HR7GZs3dt95H_ku-ZxkJ_2E2SMrs6e530efZGb6ZHU4Oh2N4_Pn319n_SSSz70f3VE |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdrR1lfytZuLG23iVLoQytq5WTFfgxjIV2_oE0gb8L6KhmtHerk_-9JsQOBEej7ScKn0334fndHyKnxhek5IZjvcctEaiXLZEi4ysSA9b7ripDRvb2Tw7H4O0knTVFY3aLd25Rk1NTLfrbJpZv905cO7ZVggqPjzWCLfERnIAtArnG3v9K_6MPEXLIAwSSaz7ZU5r97rJmjVimvp0SjpRl8JnuNi0j7yzv9Qj64cp_sRKimqQ_I_WgRsCm4lFaevqDziwqLomkqDPUB2oJyRKclja2oUZPRZhQPDWPkWWhsXNmpobNqHoBCxfNXMh78Gf0esmYsAjMgxZxp7TCwNJK7DECkiXAutbnGh6kxuLJZmrsepOCF1Tl3YHnPW-5z1IguMZkE-Ea2y6p03wnVkHsrU-9BC4H7YDiTcrDAuTHoN8gO4S13lGl6hofRFc9qWc-cqMBRFTmqIkcVdMj5as1s2TFjI_VJYLoKrSjKgHV5KhZ1ra4eH1QfMhECaJ53yFlD5Cs83hRN6QB-ROhetUZ50V6eah5jveH0w_eR_yKfhqPbG3VzdXd9RHajHMUfMsdke_66cD_QP5nrn1Ec3wBzhN0- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELcYaBMvaLBNdLBhTUh7YFZjznGSxwqo2m2UCajEmxV_TUwsqWj6_3N2k4pKE9Lez7F8Pt9H7u53hBwbX5rMCcF8xi0TqZUslyHhKhMD1vtTV4aM7uVEjqbi-11696yLP1a7dynJZU9DQGmqmv7M-hbbNum72R_dd2i7BBMcnXAGr8gWqmMe5Hp6OljpYvRnYl5ZgGASTWnXNvPPb6yZpk5Br6dHo9UZviU7rbtIB8v73SUbrtojr2PZppm_I1e3i1Cngktp7elfdIRReVE0U6WhPpS5oEzR-4pGWGrUarQdy0PDSHkWQI5re2_orA5nR0l8T6bDi9uzEWtHJDADUjRMa4dBppHc5QAiTYRzqS00PlKNgZbN08JlkIIXVhfcgeWZt9wXqB1dYnIJ8IFsVnXl9gnVUHgrU-9BC4HfwdAm5WCBc2PQh5A9wjvuKNPih4cxFg9q2ducqMBRFTmqIkcV9MjJas1siZ7xIvWXwHQVYCmqUPfyu1zM52p8c60GkIsQTPOiR762RL7G7U3ZthHgIQKS1Rrlt-7yVPsw5y_s_vH_yI_Im1_nQ_VzPPlxQLajGMV_M4dks3lcuE_oqjT6c5TGJzi24Xo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunneling+of+massive+dirac+fermions+in+graphene+through+time-periodic+potential&rft.jtitle=The+European+physical+journal.+B%2C+Condensed+matter+physics&rft.au=Jellal%2C+Ahmed&rft.au=Mekkaoui%2C+Miloud&rft.au=Choubabi%2C+El+Bou%C3%A2zzaoui&rft.au=Bahlouli%2C+Hocine&rft.date=2014-06-01&rft.issn=1434-6028&rft.eissn=1434-6036&rft.volume=87&rft.issue=6&rft_id=info:doi/10.1140%2Fepjb%2Fe2014-41096-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1140_epjb_e2014_41096_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6028&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6028&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6028&client=summon |