Tunneling of massive dirac fermions in graphene through time-periodic potential

The energy spectrum of a graphene sheet subject to a single barrier potential having a time periodic oscillating height and subject to a magnetic field is analyzed. The corresponding transmission is studied as function of the incident energy and potential parameters. Quantum interference within the...

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. B, Condensed matter physics Vol. 87; no. 6
Main Authors Jellal, Ahmed, Mekkaoui, Miloud, Choubabi, El Bouâzzaoui, Bahlouli, Hocine
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2014
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The energy spectrum of a graphene sheet subject to a single barrier potential having a time periodic oscillating height and subject to a magnetic field is analyzed. The corresponding transmission is studied as function of the incident energy and potential parameters. Quantum interference within the oscillating barrier has an important effect on quasiparticles tunneling. In particular the time-periodic electrostatic potential generates additional sidebands at energies ϵ + l ħ ω ( l = 0, ±1, ... ) in the transmission probability originating from the photon absorption or emission within the oscillating barrier. Due to numerical difficulties in truncating the resulting coupled channel equations we limited ourselves to low quantum channels, i.e. l = 0, ± 1.
AbstractList The energy spectrum of a graphene sheet subject to a single barrier potential having a time periodic oscillating height and subject to a magnetic field is analyzed. The corresponding transmission is studied as function of the incident energy and potential parameters. Quantum interference within the oscillating barrier has an important effect on quasiparticles tunneling. In particular the time-periodic electrostatic potential generates additional sidebands at energies ϵ + l ħ ω ( l = 0, ±1, ... ) in the transmission probability originating from the photon absorption or emission within the oscillating barrier. Due to numerical difficulties in truncating the resulting coupled channel equations we limited ourselves to low quantum channels, i.e. l = 0, ± 1.
The energy spectrum of a graphene sheet subject to a single barrier potential having a time periodic oscillating height and subject to a magnetic field is analyzed. The corresponding transmission is studied as function of the incident energy and potential parameters. Quantum interference within the oscillating barrier has an important effect on quasiparticles tunneling. In particular the time-periodic electrostatic potential generates additional sidebands at energies e + lhw (l = 0, ± 1, ...) in the transmission probability originating from the photon absorption or emission within the oscillating barrier. Due to numerical difficulties in truncating the resulting coupled channel equations we limited ourselves to low quantum channels, i.e. l = 0, ± 1.
ArticleNumber 123
Audience Academic
Author Mekkaoui, Miloud
Choubabi, El Bouâzzaoui
Bahlouli, Hocine
Jellal, Ahmed
Author_xml – sequence: 1
  givenname: Ahmed
  surname: Jellal
  fullname: Jellal, Ahmed
  email: ahmed.jellal@gmail.com
  organization: Saudi Center for Theoretical Physics, Theoretical Physics Group, Faculty of Sciences, Chouaïb Doukkali University
– sequence: 2
  givenname: Miloud
  surname: Mekkaoui
  fullname: Mekkaoui, Miloud
  organization: Theoretical Physics Group, Faculty of Sciences, Chouaïb Doukkali University
– sequence: 3
  givenname: El Bouâzzaoui
  surname: Choubabi
  fullname: Choubabi, El Bouâzzaoui
  organization: Theoretical Physics Group, Faculty of Sciences, Chouaïb Doukkali University, Physics Department, Faculty Polydisciplinary, Sultan Moulay Slimane University
– sequence: 4
  givenname: Hocine
  surname: Bahlouli
  fullname: Bahlouli, Hocine
  organization: Saudi Center for Theoretical Physics, Physics Department, King Fahd University of Petroleum and Minerals
BookMark eNp9kMtKxDAUhoMoOF5ewFW2LqpJT9ppl8PgDQTByzqk7UknQ5uUJCP69mYcEXQxZHFC-L-Tn--EHFpnkZALzq44F-wap3VzjTnjIhOc1WUGB2TGBYisZFAe_t7z6pichLBmjPGSixl5et1Yi4OxPXWajioE8460M161VKMfjbOBGkt7r6YVWqRx5d2mX9FoRswm9MZ1pqWTi2ijUcMZOdJqCHj-M0_J2-3N6_I-e3y6e1guHrMWShGzpkEO0JYcKwBRMIFYdHWT50XDOOuqosY5FKBF19QcoeNz3XFdi3KOrK1KgFNytdvbqwGlsdrFVDmdDkfTJjnapPcFVAKgAl4n4PIPkDIRP2KvNiHIh5fnv9l8l229C8GjlpM3o_KfkjO59S23vuW3b_ntW24bVf-g1kQVk8DUzAz7UdihIf1je_Ry7TbeJn_7qC_YRJk5
CitedBy_id crossref_primary_10_1016_j_physb_2016_10_005
crossref_primary_10_1007_s00339_024_08168_1
crossref_primary_10_1103_PhysRevB_103_155433
crossref_primary_10_1088_2053_1591_4_3_035002
crossref_primary_10_1016_j_physleta_2020_126734
crossref_primary_10_1016_j_jpcs_2020_109509
crossref_primary_10_1016_j_physe_2020_114502
crossref_primary_10_1016_j_physe_2025_116227
crossref_primary_10_1140_epjb_e2015_50549_0
crossref_primary_10_1209_0295_5075_129_27001
crossref_primary_10_2139_ssrn_4059802
crossref_primary_10_1016_j_physb_2023_415149
crossref_primary_10_1016_j_physleta_2017_02_045
crossref_primary_10_1016_j_physe_2022_115645
crossref_primary_10_1016_j_physe_2023_115865
crossref_primary_10_1038_s41598_021_92614_0
crossref_primary_10_1016_j_physe_2020_113950
crossref_primary_10_2139_ssrn_3991819
crossref_primary_10_1088_1361_648X_ac671d
crossref_primary_10_1140_epjb_e2019_90731_8
crossref_primary_10_1016_j_physb_2023_414975
crossref_primary_10_1016_j_physleta_2022_128288
crossref_primary_10_1002_andp_202400010
crossref_primary_10_1016_j_ssc_2022_114916
Cites_doi 10.1038/nmat1849
10.1103/PhysRevB.84.035428
10.1103/PhysRevB.88.195419
10.1103/PhysRevLett.8.246
10.1063/1.4758695
10.1140/epjb/e2013-40691-0
10.1126/science.1102896
10.1103/PhysRevB.49.16544
10.1103/PhysRevLett.98.066802
10.1103/PhysRevA.51.798
10.1103/PhysRevB.78.165420
10.1103/PhysRevLett.98.256803
10.1103/PhysRev.129.647
10.1103/RevModPhys.81.109
10.1103/PhysRevB.66.035306
10.1063/1.3479912
10.1063/1.3597412
10.1140/epjb/e2013-40122-4
10.1103/RevModPhys.70.223
10.1103/PhysRevLett.109.226602
10.1103/PhysRevLett.67.516
10.1063/1.3460291
10.1140/epjb/e2012-30716-7
ContentType Journal Article
Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014
COPYRIGHT 2014 Springer
Copyright_xml – notice: EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014
– notice: COPYRIGHT 2014 Springer
DBID AAYXX
CITATION
ISR
DOI 10.1140/epjb/e2014-41096-3
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1434-6036
ExternalDocumentID A384338319
10_1140_epjb_e2014_41096_3
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
-~X
.VR
06D
0R~
199
203
28-
29G
29Q
29~
2J2
2JY
2KG
2KM
2LR
2P1
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
ABAKF
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACUHS
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFQWF
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHSBF
AHYZX
AI.
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IGS
IHE
IKXTQ
ISR
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9T
PF-
PT5
QOS
R89
R9I
RED
RID
RIG
RNS
ROL
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
~8M
2JN
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
AEIIB
ID FETCH-LOGICAL-c364t-bbe133c61e8334504ee5d9b225b010d859e7353f4db91e3d17fd1f9467e0c8633
IEDL.DBID U2A
ISSN 1434-6028
IngestDate Tue Jun 10 20:46:00 EDT 2025
Fri Jun 27 04:53:22 EDT 2025
Tue Jul 01 01:17:19 EDT 2025
Thu Apr 24 23:05:26 EDT 2025
Fri Feb 21 02:29:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Mesoscopic and Nanoscale Systems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-bbe133c61e8334504ee5d9b225b010d859e7353f4db91e3d17fd1f9467e0c8633
ParticipantIDs gale_infotracacademiconefile_A384338319
gale_incontextgauss_ISR_A384338319
crossref_primary_10_1140_epjb_e2014_41096_3
crossref_citationtrail_10_1140_epjb_e2014_41096_3
springer_journals_10_1140_epjb_e2014_41096_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140600
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 6
  year: 2014
  text: 20140600
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle Condensed Matter and Complex Systems
PublicationTitle The European physical journal. B, Condensed matter physics
PublicationTitleAbbrev Eur. Phys. J. B
PublicationYear 2014
Publisher Springer Berlin Heidelberg
Springer
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
References LiuT.L.ChangL.ChuC.S.Phys. Rev. B2013881954192013PhRvB..88s5419L10.1103/PhysRevB.88.195419
MoskaletsM.ButtikerM.Phys. Rev. B2002660353062002PhRvB..66c5306M10.1103/PhysRevB.66.035306
GeimA.K.NovoselovK.S.Nat. Mater.200761832007NatMa...6..183G10.1038/nmat1849
San-JoseP.PradaE.SchomerusH.KohlerS.Appl. Phys. Lett.20121011535062012ApPhL.101o3506S10.1063/1.4758695
GrichukE.ManykinE.Eur. Phys. J. B2013862102013EPJB...86..210G10.1140/epjb/e2013-40122-4
Savel’evS.E.HauslerW.HänggiP.Phys. Rev. Lett.20121092266022012PhRvL.109v6602S10.1103/PhysRevLett.109.226602
NovoselovK.S.GeimA.K.MorozovS.V.JiangD.ZhangY.DubonosS.V.GrigorievaI.V.FirsovA.A.Science20043066662004Sci...306..666N10.1126/science.1102896
Savel’evS.E.HauslerW.HänggiP.Eur. Phys. J. B2013864332013EPJB...86..433S10.1140/epjb/e2013-40691-03116035
Castro NetoA.H.GuineaF.PeresN.M.R.NovoselovK.S.GeimA.K.Rev. Mod. Phys.2009811092009RvMP...81..109C10.1103/RevModPhys.81.109
GrossmannF.DittrichT.JungP.HänggiP.Phys. Rev. Lett.1991675161991PhRvL..67..516G10.1103/PhysRevLett.67.516
TienP.K.GordonJ.P.Phys. Rev.19631296471963PhRv..129..647T10.1103/PhysRev.129.647
GammaitoniL.HänggiP.JungP.MarchesoniF.Rev. Mod. Phys.1998702231998RvMP...70..223G10.1103/RevModPhys.70.223
Savel’evS.E.AlexandrovA.S.Phys. Rev. B2011840354282011PhRvB..84c5428S10.1103/PhysRevB.84.035428
De MartinoA.Dell’AnnaL.EggerR.Phys. Rev. Lett.2007980668022007PhRvL..98f6802D10.1103/PhysRevLett.98.066802
JiangL.-L.HuangL.YangR.LaiY.-C.Appl. Phys. Lett.2010962621142010ApPhL..96z2114J10.1063/1.3460291
WagnerM.Phys. Rev. B199449165441994PhRvB..4916544W10.1103/PhysRevB.49.16544
WagnerM.Phys. Rev. A1995517981995PhRvA..51..798W10.1103/PhysRevA.51.798
JiangP.YoungA.F.ChangW.KimP.EngelL.W.TsuiD.C.Appl. Phys. Lett.2010970621132010ApPhL..97f2113J10.1063/1.3479912
CalvoH.L.PastawskiH.M.RocheS.Foa TorresL.E.F.Appl. Phys. Lett.2011982321032011ApPhL..98w2103C10.1063/1.3597412
DayemA.H.MartinR.J.Phys. Rev. Lett.196282461962PhRvL...8..246D10.1103/PhysRevLett.8.246
PototskyA.MarchesoniF.KusmartsevF.V.HänggiP.Savel’evS.E.Eur. Phys. J. B2012853510.1140/epjb/e2012-30716-7
Ahsan ZebM.SabeehK.TahirM.Phys. Rev. B2008781654202008PhRvB..78p5420Z10.1103/PhysRevB.78.165420
FistulM.V.EfetovK.B.Phys. Rev. Lett.2007982568032007PhRvL..98y6803F10.1103/PhysRevLett.98.256803
P.K. Tien (1294_CR5) 1963; 129
A.K. Geim (1294_CR1) 2007; 6
L.-L. Jiang (1294_CR21) 2010; 96
S.E. Savel’ev (1294_CR14) 2011; 84
A.H. Dayem (1294_CR4) 1962; 8
M.V. Fistul (1294_CR17) 2007; 98
L. Gammaitoni (1294_CR20) 1998; 70
P. Jiang (1294_CR11) 2010; 97
T.L. Liu (1294_CR16) 2013; 88
E. Grichuk (1294_CR18) 2013; 86
S.E. Savel’ev (1294_CR15) 2012; 109
A. De Martino (1294_CR23) 2007; 98
M. Moskalets (1294_CR6) 2002; 66
M. Wagner (1294_CR7) 1995; 51
M. Wagner (1294_CR8) 1994; 49
F. Grossmann (1294_CR9) 1991; 67
S.E. Savel’ev (1294_CR19) 2013; 86
K.S. Novoselov (1294_CR2) 2004; 306
P. San-Jose (1294_CR13) 2012; 101
A. Pototsky (1294_CR22) 2012; 85
A.H. Castro Neto (1294_CR3) 2009; 81
M. Ahsan Zeb (1294_CR10) 2008; 78
H.L. Calvo (1294_CR12) 2011; 98
References_xml – reference: LiuT.L.ChangL.ChuC.S.Phys. Rev. B2013881954192013PhRvB..88s5419L10.1103/PhysRevB.88.195419
– reference: De MartinoA.Dell’AnnaL.EggerR.Phys. Rev. Lett.2007980668022007PhRvL..98f6802D10.1103/PhysRevLett.98.066802
– reference: Ahsan ZebM.SabeehK.TahirM.Phys. Rev. B2008781654202008PhRvB..78p5420Z10.1103/PhysRevB.78.165420
– reference: FistulM.V.EfetovK.B.Phys. Rev. Lett.2007982568032007PhRvL..98y6803F10.1103/PhysRevLett.98.256803
– reference: WagnerM.Phys. Rev. A1995517981995PhRvA..51..798W10.1103/PhysRevA.51.798
– reference: GrossmannF.DittrichT.JungP.HänggiP.Phys. Rev. Lett.1991675161991PhRvL..67..516G10.1103/PhysRevLett.67.516
– reference: Savel’evS.E.HauslerW.HänggiP.Phys. Rev. Lett.20121092266022012PhRvL.109v6602S10.1103/PhysRevLett.109.226602
– reference: Castro NetoA.H.GuineaF.PeresN.M.R.NovoselovK.S.GeimA.K.Rev. Mod. Phys.2009811092009RvMP...81..109C10.1103/RevModPhys.81.109
– reference: DayemA.H.MartinR.J.Phys. Rev. Lett.196282461962PhRvL...8..246D10.1103/PhysRevLett.8.246
– reference: Savel’evS.E.AlexandrovA.S.Phys. Rev. B2011840354282011PhRvB..84c5428S10.1103/PhysRevB.84.035428
– reference: TienP.K.GordonJ.P.Phys. Rev.19631296471963PhRv..129..647T10.1103/PhysRev.129.647
– reference: Savel’evS.E.HauslerW.HänggiP.Eur. Phys. J. B2013864332013EPJB...86..433S10.1140/epjb/e2013-40691-03116035
– reference: San-JoseP.PradaE.SchomerusH.KohlerS.Appl. Phys. Lett.20121011535062012ApPhL.101o3506S10.1063/1.4758695
– reference: WagnerM.Phys. Rev. B199449165441994PhRvB..4916544W10.1103/PhysRevB.49.16544
– reference: JiangL.-L.HuangL.YangR.LaiY.-C.Appl. Phys. Lett.2010962621142010ApPhL..96z2114J10.1063/1.3460291
– reference: GammaitoniL.HänggiP.JungP.MarchesoniF.Rev. Mod. Phys.1998702231998RvMP...70..223G10.1103/RevModPhys.70.223
– reference: CalvoH.L.PastawskiH.M.RocheS.Foa TorresL.E.F.Appl. Phys. Lett.2011982321032011ApPhL..98w2103C10.1063/1.3597412
– reference: NovoselovK.S.GeimA.K.MorozovS.V.JiangD.ZhangY.DubonosS.V.GrigorievaI.V.FirsovA.A.Science20043066662004Sci...306..666N10.1126/science.1102896
– reference: MoskaletsM.ButtikerM.Phys. Rev. B2002660353062002PhRvB..66c5306M10.1103/PhysRevB.66.035306
– reference: GeimA.K.NovoselovK.S.Nat. Mater.200761832007NatMa...6..183G10.1038/nmat1849
– reference: GrichukE.ManykinE.Eur. Phys. J. B2013862102013EPJB...86..210G10.1140/epjb/e2013-40122-4
– reference: PototskyA.MarchesoniF.KusmartsevF.V.HänggiP.Savel’evS.E.Eur. Phys. J. B2012853510.1140/epjb/e2012-30716-7
– reference: JiangP.YoungA.F.ChangW.KimP.EngelL.W.TsuiD.C.Appl. Phys. Lett.2010970621132010ApPhL..97f2113J10.1063/1.3479912
– volume: 6
  start-page: 183
  year: 2007
  ident: 1294_CR1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 84
  start-page: 035428
  year: 2011
  ident: 1294_CR14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.035428
– volume: 88
  start-page: 195419
  year: 2013
  ident: 1294_CR16
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.195419
– volume: 8
  start-page: 246
  year: 1962
  ident: 1294_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.8.246
– volume: 101
  start-page: 153506
  year: 2012
  ident: 1294_CR13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4758695
– volume: 86
  start-page: 433
  year: 2013
  ident: 1294_CR19
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2013-40691-0
– volume: 306
  start-page: 666
  year: 2004
  ident: 1294_CR2
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 49
  start-page: 16544
  year: 1994
  ident: 1294_CR8
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.16544
– volume: 98
  start-page: 066802
  year: 2007
  ident: 1294_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.066802
– volume: 51
  start-page: 798
  year: 1995
  ident: 1294_CR7
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.51.798
– volume: 78
  start-page: 165420
  year: 2008
  ident: 1294_CR10
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.165420
– volume: 98
  start-page: 256803
  year: 2007
  ident: 1294_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.256803
– volume: 129
  start-page: 647
  year: 1963
  ident: 1294_CR5
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.129.647
– volume: 81
  start-page: 109
  year: 2009
  ident: 1294_CR3
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.109
– volume: 66
  start-page: 035306
  year: 2002
  ident: 1294_CR6
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.035306
– volume: 97
  start-page: 062113
  year: 2010
  ident: 1294_CR11
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3479912
– volume: 98
  start-page: 232103
  year: 2011
  ident: 1294_CR12
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3597412
– volume: 86
  start-page: 210
  year: 2013
  ident: 1294_CR18
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2013-40122-4
– volume: 70
  start-page: 223
  year: 1998
  ident: 1294_CR20
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.70.223
– volume: 109
  start-page: 226602
  year: 2012
  ident: 1294_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.226602
– volume: 67
  start-page: 516
  year: 1991
  ident: 1294_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.67.516
– volume: 96
  start-page: 262114
  year: 2010
  ident: 1294_CR21
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3460291
– volume: 85
  start-page: 35
  year: 2012
  ident: 1294_CR22
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2012-30716-7
SSID ssj0001614
Score 2.2673187
Snippet The energy spectrum of a graphene sheet subject to a single barrier potential having a time periodic oscillating height and subject to a magnetic field is...
SourceID gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Analysis
Complex Systems
Condensed Matter Physics
Fluid- and Aerodynamics
Graphene
Graphite
Magnetic fields
Physics
Physics and Astronomy
Regular Article
Solid State Physics
Title Tunneling of massive dirac fermions in graphene through time-periodic potential
URI https://link.springer.com/article/10.1140/epjb/e2014-41096-3
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEA-tUuiLaKt4fhyhFPqgwY2T5HYf79SrWlpBPbBPYfNVLLp7uHf_v5PcrnAggk_7Mpuwk8l87Mz8hpDvNpR24IVgYcAdE9IplquYcFWZBRfCsS9jRvf3H3U-EZd38q5tCmu6avcuJZk09QLPNjvy0__myKO9EkxwdLwZfCSrMsbuKMWT4-GL_kUfJuWSBQim0Hx2rTKvrrFkjjqlvJwSTZZmvE7WWheRDhdnukE--OoL-ZRKNW3zlVzdzmNtCr5K60Af0flFhUXRNJWWhljagnJE7yuaoKhRk9F2FA-NY-RZBDau3b2l03oWC4XKh00yGZ_dnpyzdiwCs6DEjBnjMbC0ivscQMhMeC9dYfBiGgyuXC4LPwAJQThTcA-OD4LjoUCN6DObK4AtslLVld8m1EARnJIhgBEC18FwRnJwwLm16DeoHuEdd7RtMcPj6IoHvehnznTkqE4c1YmjGnrk4OWd6QIx403qb5HpOkJRVLHW5V85bxp9cXOth5CLGEDzokd-tEShxu1t2bYO4EdE9KolysPu8HR7GZs3dt95H_ku-ZxkJ_2E2SMrs6e530efZGb6ZHU4Oh2N4_Pn319n_SSSz70f3VE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdrR1lfytZuLG23iVLoQytq5WTFfgxjIV2_oE0gb8L6KhmtHerk_-9JsQOBEej7ScKn0334fndHyKnxhek5IZjvcctEaiXLZEi4ysSA9b7ripDRvb2Tw7H4O0knTVFY3aLd25Rk1NTLfrbJpZv905cO7ZVggqPjzWCLfERnIAtArnG3v9K_6MPEXLIAwSSaz7ZU5r97rJmjVimvp0SjpRl8JnuNi0j7yzv9Qj64cp_sRKimqQ_I_WgRsCm4lFaevqDziwqLomkqDPUB2oJyRKclja2oUZPRZhQPDWPkWWhsXNmpobNqHoBCxfNXMh78Gf0esmYsAjMgxZxp7TCwNJK7DECkiXAutbnGh6kxuLJZmrsepOCF1Tl3YHnPW-5z1IguMZkE-Ea2y6p03wnVkHsrU-9BC4H7YDiTcrDAuTHoN8gO4S13lGl6hofRFc9qWc-cqMBRFTmqIkcVdMj5as1s2TFjI_VJYLoKrSjKgHV5KhZ1ra4eH1QfMhECaJ53yFlD5Cs83hRN6QB-ROhetUZ50V6eah5jveH0w_eR_yKfhqPbG3VzdXd9RHajHMUfMsdke_66cD_QP5nrn1Ec3wBzhN0-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELcYaBMvaLBNdLBhTUh7YFZjznGSxwqo2m2UCajEmxV_TUwsqWj6_3N2k4pKE9Lez7F8Pt9H7u53hBwbX5rMCcF8xi0TqZUslyHhKhMD1vtTV4aM7uVEjqbi-11696yLP1a7dynJZU9DQGmqmv7M-hbbNum72R_dd2i7BBMcnXAGr8gWqmMe5Hp6OljpYvRnYl5ZgGASTWnXNvPPb6yZpk5Br6dHo9UZviU7rbtIB8v73SUbrtojr2PZppm_I1e3i1Cngktp7elfdIRReVE0U6WhPpS5oEzR-4pGWGrUarQdy0PDSHkWQI5re2_orA5nR0l8T6bDi9uzEWtHJDADUjRMa4dBppHc5QAiTYRzqS00PlKNgZbN08JlkIIXVhfcgeWZt9wXqB1dYnIJ8IFsVnXl9gnVUHgrU-9BC4HfwdAm5WCBc2PQh5A9wjvuKNPih4cxFg9q2ducqMBRFTmqIkcV9MjJas1siZ7xIvWXwHQVYCmqUPfyu1zM52p8c60GkIsQTPOiR762RL7G7U3ZthHgIQKS1Rrlt-7yVPsw5y_s_vH_yI_Im1_nQ_VzPPlxQLajGMV_M4dks3lcuE_oqjT6c5TGJzi24Xo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunneling+of+massive+dirac+fermions+in+graphene+through+time-periodic+potential&rft.jtitle=The+European+physical+journal.+B%2C+Condensed+matter+physics&rft.au=Jellal%2C+Ahmed&rft.au=Mekkaoui%2C+Miloud&rft.au=Choubabi%2C+El+Bou%C3%A2zzaoui&rft.au=Bahlouli%2C+Hocine&rft.date=2014-06-01&rft.issn=1434-6028&rft.eissn=1434-6036&rft.volume=87&rft.issue=6&rft_id=info:doi/10.1140%2Fepjb%2Fe2014-41096-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1140_epjb_e2014_41096_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6028&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6028&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6028&client=summon