Defect Healing of MAPbI3 Perovskite Single Crystal Surface by Benzylamine
Controlling the surface traps in metal halide perovskites (MHPs) is essential for device performance, stability, and commercialization. Here, a facile approach is introduced to passivate the methylammonium lead iodide (MAPbI3) perovskite single crystal (PSC) surface defects by benzylamine (BA) ligan...
Saved in:
Published in | Symmetry (Basel) Vol. 14; no. 6; p. 1099 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Controlling the surface traps in metal halide perovskites (MHPs) is essential for device performance, stability, and commercialization. Here, a facile approach is introduced to passivate the methylammonium lead iodide (MAPbI3) perovskite single crystal (PSC) surface defects by benzylamine (BA) ligand treatment, and the natural crystallographic (100) facets surface of PSC is chosen as the research platform to provide a deeper understanding of the passivation process. The confocal photoluminescence (PL) results show that the pristine three-dimensional (3D) MAPbI3 PSC surface with a symmetric emission spectrum is normally converted to a pure two-dimensional (2D) BA2PbI4, and also forms a quasi-2D Ruddlesden–Popper perovskite (RPP) BA2MAn−1PbnI3n+1 (n = 2, 3, 4, … ∞) after BA exchange with cation defects. The blue shift in the PL peak, as well as the extended exciton lifetimes of time-resolved photoluminescence (TRPL), indicate the realization of surface defect passivation. Additionally, changes in surface morphology are also investigated. The reaction starts with the formation of small, layered crystallites over the surface; as time elapses, the layered crystallites spread and merge in contact with each other, eventually resulting in smooth features. Our findings present a simple approach for MAPbI3 PSC surface defect passivation, which aims to advance MHP optimization processes toward practical perovskite device applications. |
---|---|
AbstractList | Controlling the surface traps in metal halide perovskites (MHPs) is essential for device performance, stability, and commercialization. Here, a facile approach is introduced to passivate the methylammonium lead iodide (MAPbI3) perovskite single crystal (PSC) surface defects by benzylamine (BA) ligand treatment, and the natural crystallographic (100) facets surface of PSC is chosen as the research platform to provide a deeper understanding of the passivation process. The confocal photoluminescence (PL) results show that the pristine three-dimensional (3D) MAPbI3 PSC surface with a symmetric emission spectrum is normally converted to a pure two-dimensional (2D) BA2PbI4, and also forms a quasi-2D Ruddlesden–Popper perovskite (RPP) BA2MAn−1PbnI3n+1 (n = 2, 3, 4, … ∞) after BA exchange with cation defects. The blue shift in the PL peak, as well as the extended exciton lifetimes of time-resolved photoluminescence (TRPL), indicate the realization of surface defect passivation. Additionally, changes in surface morphology are also investigated. The reaction starts with the formation of small, layered crystallites over the surface; as time elapses, the layered crystallites spread and merge in contact with each other, eventually resulting in smooth features. Our findings present a simple approach for MAPbI3 PSC surface defect passivation, which aims to advance MHP optimization processes toward practical perovskite device applications. |
Author | Cai, Molang Cheng, Bin Ji, Kangyu Wu, Yunzhao Liu, Xuepeng Dai, Songyuan Wang, Wenjun Lv, Hui |
Author_xml | – sequence: 1 givenname: Wenjun orcidid: 0000-0001-9735-4339 surname: Wang fullname: Wang, Wenjun – sequence: 2 givenname: Molang surname: Cai fullname: Cai, Molang – sequence: 3 givenname: Yunzhao surname: Wu fullname: Wu, Yunzhao – sequence: 4 givenname: Kangyu surname: Ji fullname: Ji, Kangyu – sequence: 5 givenname: Bin surname: Cheng fullname: Cheng, Bin – sequence: 6 givenname: Xuepeng surname: Liu fullname: Liu, Xuepeng – sequence: 7 givenname: Hui surname: Lv fullname: Lv, Hui – sequence: 8 givenname: Songyuan surname: Dai fullname: Dai, Songyuan |
BookMark | eNptkE9LAzEQxYNUsNae_AIBj7KaP5vs5lhrtYWKhep5yWYnkrrdrUkqrJ_elXoo4jAwA-_3ZuCdo0HTNoDQJSU3nCtyG7otTYmkRKkTNGQk40muVDo42s_QOIQN6UsQkUoyRIt7sGAinoOuXfOGW4ufJqtywfEKfPsZ3l0EvO6VGvDUdyHqGq_33moDuOzwHTRfXa23roELdGp1HWD8O0fo9WH2Mp0ny-fHxXSyTAyXaUzKUqhKUJKDynNGoTKGGl5WVlKZc0GsNRVnQqqU6ww0A6EyISnr1b4V4SN0dbi78-3HHkIsNu3eN_3LgslM5SljQvUUPVDGtyF4sIVxUUfXNtFrVxeUFD-hFUeh9Z7rP56dd1vtu3_pb5GWbWE |
CitedBy_id | crossref_primary_10_3390_sym16030332 crossref_primary_10_1002_adom_202300267 crossref_primary_10_1002_adfm_202307648 crossref_primary_10_1039_D3QM00970J crossref_primary_10_1021_acsmaterialslett_4c01039 crossref_primary_10_1016_j_jallcom_2023_168712 crossref_primary_10_1038_s41467_022_35122_7 crossref_primary_10_1039_D3NR02003G |
Cites_doi | 10.1002/adma.201705998 10.1038/nenergy.2016.93 10.1021/acs.jpcc.8b02299 10.1038/srep35685 10.1038/ncomms6404 10.1038/nenergy.2016.149 10.1126/sciadv.abg6716 10.1002/adma.201603062 10.1021/acsami.1c21948 10.1021/ja512833n 10.1002/er.6183 10.1021/acs.cgd.1c00721 10.1021/acs.jpcc.9b00943 10.1002/adma.202001981 10.1039/C6CE02317G 10.1039/C4CE02106A 10.1021/acsenergylett.6b00680 10.1038/s41586-020-2526-z 10.1002/anie.201504379 10.1002/aenm.201700979 10.1126/science.1254050 10.1038/ncomms8586 10.1126/science.aaa2725 10.1002/adma.202006010 10.1021/acsenergylett.9b00847 10.1002/adfm.202104880 10.1021/acs.jpcc.8b03681 10.1126/science.aaa5760 10.1002/slct.201904218 10.1016/j.cej.2020.126712 10.1021/acs.jpclett.6b00269 10.1021/jacs.8b10851 10.1021/acsenergylett.6b00002 10.1039/C7TA00894E 10.1088/0953-8984/5/35/006 10.1063/1.5088342 10.1021/acs.jpcc.0c11095 10.1038/s41467-018-02978-7 10.1021/jacs.6b12581 10.1021/acs.jpclett.7b02679 10.1038/ncomms15684 10.1002/adma.201502597 10.1038/nmat4271 10.1002/adma.201502889 10.1039/c3ta10518k 10.1038/nnano.2016.110 10.3390/engproc2021012001 10.1002/adom.202000311 10.1038/nnano.2014.149 10.1021/jp106469x |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ JG9 JQ2 L6V L7M L~C L~D M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.3390/sym14061099 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Aerospace Database SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2073-8994 |
ExternalDocumentID | 10_3390_sym14061099 |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GroupedDBID | 5VS 8FE 8FG AADQD AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV BENPR BGLVJ CCPQU CITATION E3Z ESX GX1 HCIFZ IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7SC 7SR 7U5 8BQ 8FD ABUWG AZQEC DWQXO H8D JG9 JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c364t-bb59d5108e98821edcc1c3bdf6168350ffcd3256943a7ea2e5975612168168903 |
IEDL.DBID | BENPR |
ISSN | 2073-8994 |
IngestDate | Fri Jul 25 11:56:57 EDT 2025 Tue Jul 01 03:25:51 EDT 2025 Thu Apr 24 23:13:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-bb59d5108e98821edcc1c3bdf6168350ffcd3256943a7ea2e5975612168168903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9735-4339 |
OpenAccessLink | https://www.proquest.com/docview/2679842259?pq-origsite=%requestingapplication% |
PQID | 2679842259 |
PQPubID | 2032326 |
ParticipantIDs | proquest_journals_2679842259 crossref_citationtrail_10_3390_sym14061099 crossref_primary_10_3390_sym14061099 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Symmetry (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Tie (ref_5) 2020; 32 Tavakoli (ref_41) 2018; 30 Liu (ref_20) 2021; 125 Dang (ref_32) 2015; 17 Liu (ref_37) 2017; 139 Li (ref_19) 2020; 405 Hafner (ref_44) 2010; 114 Duim (ref_45) 2019; 6 Mao (ref_35) 2018; 141 He (ref_51) 2021; 31 Zhumekenov (ref_39) 2016; 1 Chen (ref_13) 2019; 4 Wang (ref_22) 2021; 21 Yuan (ref_7) 2016; 11 Liu (ref_27) 2015; 27 Ball (ref_11) 2016; 1 Saidaminov (ref_26) 2015; 6 Whitfield (ref_31) 2016; 6 Ilin (ref_10) 2020; 5 Liu (ref_12) 2021; 33 Dou (ref_4) 2014; 5 Kim (ref_25) 2019; 123 Wang (ref_18) 2016; 28 Leblebici (ref_23) 2016; 1 Zhou (ref_50) 2021; 7 Naghadeh (ref_16) 2018; 122 Bi (ref_14) 2016; 7 Chen (ref_21) 2022; 14 Bouich (ref_2) 2021; 12 Grancini (ref_46) 2017; 8 Tan (ref_6) 2014; 9 Lei (ref_48) 2020; 583 Zhou (ref_1) 2014; 345 Zhou (ref_42) 2015; 54 Zhu (ref_8) 2015; 14 Younas (ref_47) 2020; 45 Zhang (ref_49) 2020; 8 Lu (ref_38) 2018; 122 Yang (ref_34) 2018; 9 Yoo (ref_9) 2015; 27 Murali (ref_15) 2017; 2 Sun (ref_36) 2017; 5 Wu (ref_33) 2015; 137 Warren (ref_43) 1993; 5 Dong (ref_28) 2015; 347 Shi (ref_30) 2015; 347 ref_3 Baikie (ref_29) 2013; 1 Lv (ref_24) 2017; 19 Soe (ref_40) 2017; 8 Lin (ref_17) 2018; 9 |
References_xml | – volume: 30 start-page: 1705998 year: 2018 ident: ref_41 article-title: Large-Grain Tin-Rich Perovskite Films for Efficient Solar Cells via Metal Alloying Technique publication-title: Adv. Mater. doi: 10.1002/adma.201705998 – volume: 1 start-page: 16093 year: 2016 ident: ref_23 article-title: Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite publication-title: Nat. Energy doi: 10.1038/nenergy.2016.93 – volume: 122 start-page: 11862 year: 2018 ident: ref_38 article-title: Investigation on Enhanced Moisture Resistance of Two-Dimensional Layered Hybrid Organic–Inorganic Perovskites (C4H9NH3)2PbI4 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b02299 – volume: 6 start-page: 35685 year: 2016 ident: ref_31 article-title: Structures, Phase Transitions and Tricritical Behavior of the Hybrid Perovskite Methyl Ammonium Lead Iodide publication-title: Sci. Rep. doi: 10.1038/srep35685 – volume: 5 start-page: 5404 year: 2014 ident: ref_4 article-title: Solution-processed hybrid perovskite photodetectors with high detectivity publication-title: Nat. Commun. doi: 10.1038/ncomms6404 – volume: 1 start-page: 16149 year: 2016 ident: ref_11 article-title: Defects in perovskite-halides and their effects in solar cells publication-title: Nat. Energy doi: 10.1038/nenergy.2016.149 – volume: 7 start-page: eabg6716 year: 2021 ident: ref_50 article-title: Heterojunction structures for reduced noise in large-area and sensitive perovskite X-ray detectors publication-title: Sci. Adv. doi: 10.1126/sciadv.abg6716 – volume: 28 start-page: 9986 year: 2016 ident: ref_18 article-title: Phenylalkylamine Passivation of Organolead Halide Perovskites Enabling High-Efficiency and Air-Stable Photovoltaic Cells publication-title: Adv. Mater. doi: 10.1002/adma.201603062 – volume: 14 start-page: 10917 year: 2022 ident: ref_21 article-title: Surface Passivation of MAPbBr3 Perovskite Single Crystals to Suppress Ion Migration and Enhance Photoelectronic Performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c21948 – volume: 137 start-page: 2089 year: 2015 ident: ref_33 article-title: Trap States in Lead Iodide Perovskites publication-title: J. Am. Chem. Soc. doi: 10.1021/ja512833n – volume: 45 start-page: 5555 year: 2020 ident: ref_47 article-title: Fabrication of perovskite solar cells using novel 2D/3D-blended perovskite single crystals publication-title: Int. J. Energy Res. doi: 10.1002/er.6183 – volume: 21 start-page: 5840 year: 2021 ident: ref_22 article-title: Facet Control of the Lead-Free Methylammonium Bismuth Iodide Perovskite Single Crystals via Ligand-Mediated Strategy publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.1c00721 – volume: 123 start-page: 14144 year: 2019 ident: ref_25 article-title: Probing Facet-Dependent Surface Defects in MAPbI3 Perovskite Single Crystals publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b00943 – volume: 32 start-page: e2001981 year: 2020 ident: ref_5 article-title: Robust Fabrication of Hybrid Lead-Free Perovskite Pellets for Stable X-ray Detectors with Low Detection Limit publication-title: Adv. Mater. doi: 10.1002/adma.202001981 – volume: 19 start-page: 901 year: 2017 ident: ref_24 article-title: Anisotropic moisture erosion of CH3NH3PbI3 single crystals publication-title: Crystengcomm doi: 10.1039/C6CE02317G – volume: 17 start-page: 665 year: 2015 ident: ref_32 article-title: Bulk crystal growth of hybrid perovskite material CH3NH3PbI3 publication-title: Crystengcomm doi: 10.1039/C4CE02106A – volume: 2 start-page: 846 year: 2017 ident: ref_15 article-title: The Surface of Hybrid Perovskite Crystals: A Boon or Bane publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00680 – volume: 583 start-page: 790 year: 2020 ident: ref_48 article-title: A fabrication process for flexible single-crystal perovskite devices publication-title: Nature doi: 10.1038/s41586-020-2526-z – volume: 54 start-page: 9705 year: 2015 ident: ref_42 article-title: Methylamine-Gas-Induced Defect-Healing Behavior of CH3NH3PbI3 Thin Films for Perovskite Solar Cells publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201504379 – volume: 8 start-page: 1700979 year: 2017 ident: ref_40 article-title: Understanding Film Formation Morphology and Orientation in High Member 2D Ruddlesden–Popper Perovskites for High-Efficiency Solar Cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700979 – volume: 345 start-page: 542 year: 2014 ident: ref_1 article-title: Interface engineering of highly efficient perovskite solar cells publication-title: Science doi: 10.1126/science.1254050 – volume: 6 start-page: 7586 year: 2015 ident: ref_26 article-title: High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization publication-title: Nat. Commun. doi: 10.1038/ncomms8586 – volume: 347 start-page: 519 year: 2015 ident: ref_30 article-title: Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals publication-title: Science doi: 10.1126/science.aaa2725 – volume: 33 start-page: 2006010 year: 2021 ident: ref_12 article-title: Triple-Cation and Mixed-Halide Perovskite Single Crystal for High-Performance X-ray Imaging publication-title: Adv. Mater. doi: 10.1002/adma.202006010 – volume: 4 start-page: 1258 year: 2019 ident: ref_13 article-title: Single-Crystal MAPbI3 Perovskite Solar Cells Exceeding 21% Power Conversion Efficiency publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00847 – volume: 31 start-page: 2104880 year: 2021 ident: ref_51 article-title: 3D/2D Perovskite Single Crystals Heterojunction for Suppressed Ions Migration in Hard X-ray Detection publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202104880 – volume: 122 start-page: 15799 year: 2018 ident: ref_16 article-title: Photophysical Properties and Improved Stability of Organic–Inorganic Perovskite by Surface Passivation publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b03681 – volume: 12 start-page: 81 year: 2021 ident: ref_2 article-title: Towards manufacture stable lead perovskite APbI3 (A = Cs, MA, FA) based solar cells with low-cost techniques publication-title: Eng. Proc. – volume: 347 start-page: 967 year: 2015 ident: ref_28 article-title: Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals publication-title: Science doi: 10.1126/science.aaa5760 – volume: 5 start-page: 6705 year: 2020 ident: ref_10 article-title: Humidity Sensing Properties of Organometallic Perovskite CH3NH3PbI3 publication-title: ChemistrySelect doi: 10.1002/slct.201904218 – volume: 405 start-page: 126712 year: 2020 ident: ref_19 article-title: Efficient and stable perovskite solar cells via surface passivation of an ultrathin hydrophobic organic molecular layer publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126712 – volume: 7 start-page: 923 year: 2016 ident: ref_14 article-title: Charge Carrier Lifetimes Exceeding 15 mu s in Methylammonium Lead Iodide Single Crystals publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00269 – volume: 141 start-page: 1171 year: 2018 ident: ref_35 article-title: Two-Dimensional Hybrid Halide Perovskites: Principles and Promises publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10851 – volume: 1 start-page: 32 year: 2016 ident: ref_39 article-title: Formamidinium Lead Halide Perovskite Crystals with Unprecedented Long Carrier Dynamics and Diffusion Length publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00002 – volume: 5 start-page: 13448 year: 2017 ident: ref_36 article-title: Tuning the crystal growth of perovskite thin-films by adding the 2-pyridylthiourea additive for highly efficient and stable solar cells prepared in ambient air publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00894E – volume: 5 start-page: 6407 year: 1993 ident: ref_43 article-title: Raman spectroscopy of new lead iodide intercalation compounds publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/5/35/006 – volume: 6 start-page: 031401 year: 2019 ident: ref_45 article-title: Mechanism of surface passivation of methylammonium lead tribromide single crystals by benzylamine publication-title: Appl. Phys. Rev. doi: 10.1063/1.5088342 – volume: 125 start-page: 2793 year: 2021 ident: ref_20 article-title: Enhancing the Photoluminescence and Stability of Methylammonium Lead Halide Perovskite Nanocrystals with Phenylalanine publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c11095 – volume: 9 start-page: 570 year: 2018 ident: ref_34 article-title: Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation publication-title: Nat. Commun. doi: 10.1038/s41467-018-02978-7 – volume: 139 start-page: 1432 year: 2017 ident: ref_37 article-title: Observation of Internal Photoinduced Electron and Hole Separation in Hybrid Two-Dimentional Perovskite Films publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12581 – volume: 9 start-page: 654 year: 2018 ident: ref_17 article-title: Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b02679 – volume: 8 start-page: 15684 year: 2017 ident: ref_46 article-title: One-Year stable perovskite solar cells by 2D/3D interface engineering publication-title: Nat. Commun. doi: 10.1038/ncomms15684 – volume: 27 start-page: 5176 year: 2015 ident: ref_27 article-title: Two-Inch-Sized Perovskite CH3NH3PbX3 (X = Cl, Br, I) Crystals: Growth and Characterization publication-title: Adv. Mater. doi: 10.1002/adma.201502597 – volume: 14 start-page: 636 year: 2015 ident: ref_8 article-title: Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors publication-title: Nat. Mater. doi: 10.1038/nmat4271 – volume: 27 start-page: 6170 year: 2015 ident: ref_9 article-title: Resistive Switching Behavior in Organic-Inorganic Hybrid CH3NH3PbI3-xClx Perovskite for Resistive Random Access Memory Devices publication-title: Adv. Mater. doi: 10.1002/adma.201502889 – volume: 1 start-page: 5628 year: 2013 ident: ref_29 article-title: Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications publication-title: J. Mater. Chem. A doi: 10.1039/c3ta10518k – volume: 11 start-page: 872 year: 2016 ident: ref_7 article-title: Perovskite energy funnels for efficient light-emitting diodes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.110 – ident: ref_3 doi: 10.3390/engproc2021012001 – volume: 8 start-page: 2000311 year: 2020 ident: ref_49 article-title: Solution-Grown Large-Sized Single-Crystalline 2D/3D Perovskite Heterostructure for Self-Powered Photodetection publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202000311 – volume: 9 start-page: 687 year: 2014 ident: ref_6 article-title: Bright light-emitting diodes based on organometal halide perovskite publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.149 – volume: 114 start-page: 11814 year: 2010 ident: ref_44 article-title: Improved Description of the Structure of Molecular and Layered Crystals: Ab Initio DFT Calculations with van der Waals Corrections publication-title: J. Phys. Chem. A doi: 10.1021/jp106469x |
SSID | ssj0000505460 |
Score | 2.2786934 |
Snippet | Controlling the surface traps in metal halide perovskites (MHPs) is essential for device performance, stability, and commercialization. Here, a facile approach... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1099 |
SubjectTerms | Commercialization Crystal defects Crystal surfaces Crystallites Crystallization Crystallography Excitons Ligands Metal halides Optimization Passivity Perovskites Photoluminescence Single crystals Surface defects |
Title | Defect Healing of MAPbI3 Perovskite Single Crystal Surface by Benzylamine |
URI | https://www.proquest.com/docview/2679842259 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LawIxEA5VL72U2gd9WMnBQ1tY3JcxORW1vgqK1ArelmweJ-taVwv213eyRmuhFBbCMjnNZGa-mWRmEKq4lLuyzpnDGWFOKAPuUKVjh5JQxuAAa74wqYHBkPQm4cu0NrUJt9Q-q9zZxMxQy0SYHHnVN9cFIZw-9rT4cMzUKHO7akdo5FABTDCleVRotoej132WxcxpC4m7LcwLIL6vppt3zzgxN-v2euCKflvizL10TtGJxYW4sRVkER2p-RkqWs1L8b1tD_1wjvrPyjzBwKaACPwOTjQeNEZxP8AjtUw-U5OOxWOgzBRuLTeA_mZ4vF5qLhSON7ip5l8bOAaALi_QpNN-a_UcOxDBEQEJV04c15gEJaKKATD2lBTCE0EsNfEIIClXayEDwDAsDHhdcV9BtGCmXwIVPuYGlyg_T-bqCmHf1ZQwDQvgP6YlN-1ANQQXhAKm4e41etzxJhK2W7gZWjGLIGowjIwOGHmNKvvNi22TjL-3lXZMjqympNGPXG_-J9-iY9-UHmQZkBLKr5ZrdQeAYBWXUY52umUre_jrTr1v8x22Ew |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HOCCGA_xJgeQAKkia7vQHBAaj7EBQ0iAxK2keZzGBusAlR_Fb8TuWh4S4oZUqQdHOThf7C9ObANs8Ehxs6ekp6SQXmgC5UXWJV4kQpOgA6z5mkID7UvRvA3P7mp3I_Be5sLQs8rSJuaG2vQ0xch3fbouCBF98uDxyaOuUXS7WrbQGMLi3GaveGRL91vHuL6bvt84uTlqekVXAU8HIhx4SVKTBpEYWYnssmqN1lUdJMaJqkA6wp3TJkAiIMNA7VnlW6Tc1EISpfhJHuC8ozAeBujJKTO9cfoZ06GucKHgwzRAlPPdNHuoksvkeW3Zb47vp93PnVljGqYKFsrqQ9hUYMR2Z6BS7POUbRXFqLdnoXVs6cEHo3Ql9HKs51i7fpW0AnZl-72XlIK_7BolHcuO-hlyzQ67fu47pS1LMnZou28Zgg657Bzc_oui5mGs2-vaBWA-d5GQDn_INqUzioqPOjzKiAgZlOKLsFPqJtZFbXJqkdGJ8YxCioy_KXIRNj4HPw5Lcvw-bKVUclzsyzT-QtHS3-J1mGjetC_ii9bl-TJM-pT0kMdeVmBs0H-2q0hFBslavv4M7v8bcB94iu4m |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSyNBEC40wuJF1F1Z331Q2BWGdKYnnemDiBqD0TUEH-Bttqcfp5hoJirjT_PXWZXM-ADxJgzMoZo51Hzd9VV1PQC2eKy5bWgVaCVVEFmhg9j5NIhlZFM0gPXQUGjgrCOPr6KT6_r1FDyXtTCUVlmeieOD2g4MxcirIV0XRIg-VfVFWkS32dq7vQtoghTdtJbjNCYQOXX5I7pv2W67if96OwxbR5eHx0ExYSAwQkajIE3ryiIqY6eQadacNaZmRGq9rEmkJtx7YwWSAhUJ3XA6dEi_aZwkSvFRXOB3p2GmQV5RBWYOjjrd89cID82IiySfFAUKoXg1y29qZED5uNPsOzP40QqMTVtrHuYKTsr2JyBagCnXX4SFYtdn7E_RmvrvT2g3HaV_MCpeQpvHBp6d7XfTtmBdNxw8ZBQKZhco6Tl2OMyRefbYxf3Qa-NYmrMD13_KEYLIbH_B1beoagkq_UHf_QYWch9L5fGF3FN5q6kVqUfHRsbIpzRfhp1SN4kpOpXTwIxegh4LKTJ5p8hl2HpdfDtp0PH5srVSyUmxS7PkDVMrX4s34QeCLfnX7pyuwmxIFRDjQMwaVEbDe7eOvGSUbhQAYPD_uzH3An-p87g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect+Healing+of+MAPbI3+Perovskite+Single+Crystal+Surface+by+Benzylamine&rft.jtitle=Symmetry+%28Basel%29&rft.au=Wang%2C+Wenjun&rft.au=Cai%2C+Molang&rft.au=Wu%2C+Yunzhao&rft.au=Ji%2C+Kangyu&rft.date=2022-06-01&rft.issn=2073-8994&rft.eissn=2073-8994&rft.volume=14&rft.issue=6&rft.spage=1099&rft_id=info:doi/10.3390%2Fsym14061099&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_sym14061099 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon |