A Multi-Component Framework for the Analysis and Design of Explainable Artificial Intelligence

The rapid growth of research in explainable artificial intelligence (XAI) follows on two substantial developments. First, the enormous application success of modern machine learning methods, especially deep and reinforcement learning, have created high expectations for industrial, commercial, and so...

Full description

Saved in:
Bibliographic Details
Published inMachine learning and knowledge extraction Vol. 3; no. 4; pp. 900 - 921
Main Authors Kim, Mi-Young, Atakishiyev, Shahin, Babiker, Housam Khalifa Bashier, Farruque, Nawshad, Goebel, Randy, Zaïane, Osmar R., Motallebi, Mohammad-Hossein, Rabelo, Juliano, Syed, Talat, Yao, Hengshuai, Chun, Peter
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2021
Subjects
Online AccessGet full text
ISSN2504-4990
2504-4990
DOI10.3390/make3040045

Cover

Loading…
Abstract The rapid growth of research in explainable artificial intelligence (XAI) follows on two substantial developments. First, the enormous application success of modern machine learning methods, especially deep and reinforcement learning, have created high expectations for industrial, commercial, and social value. Second, the emerging and growing concern for creating ethical and trusted AI systems, including compliance with regulatory principles to ensure transparency and trust. These two threads have created a kind of “perfect storm” of research activity, all motivated to create and deliver any set of tools and techniques to address the XAI demand. As some surveys of current XAI suggest, there is yet to appear a principled framework that respects the literature of explainability in the history of science and which provides a basis for the development of a framework for transparent XAI. We identify four foundational components, including the requirements for (1) explicit explanation knowledge representation, (2) delivery of alternative explanations, (3) adjusting explanations based on knowledge of the explainee, and (4) exploiting the advantage of interactive explanation. With those four components in mind, we intend to provide a strategic inventory of XAI requirements, demonstrate their connection to a basic history of XAI ideas, and then synthesize those ideas into a simple framework that can guide the design of AI systems that require XAI.
AbstractList The rapid growth of research in explainable artificial intelligence (XAI) follows on two substantial developments. First, the enormous application success of modern machine learning methods, especially deep and reinforcement learning, have created high expectations for industrial, commercial, and social value. Second, the emerging and growing concern for creating ethical and trusted AI systems, including compliance with regulatory principles to ensure transparency and trust. These two threads have created a kind of “perfect storm” of research activity, all motivated to create and deliver any set of tools and techniques to address the XAI demand. As some surveys of current XAI suggest, there is yet to appear a principled framework that respects the literature of explainability in the history of science and which provides a basis for the development of a framework for transparent XAI. We identify four foundational components, including the requirements for (1) explicit explanation knowledge representation, (2) delivery of alternative explanations, (3) adjusting explanations based on knowledge of the explainee, and (4) exploiting the advantage of interactive explanation. With those four components in mind, we intend to provide a strategic inventory of XAI requirements, demonstrate their connection to a basic history of XAI ideas, and then synthesize those ideas into a simple framework that can guide the design of AI systems that require XAI.
Author Kim, Mi-Young
Babiker, Housam Khalifa Bashier
Farruque, Nawshad
Rabelo, Juliano
Syed, Talat
Goebel, Randy
Zaïane, Osmar R.
Yao, Hengshuai
Chun, Peter
Atakishiyev, Shahin
Motallebi, Mohammad-Hossein
Author_xml – sequence: 1
  givenname: Mi-Young
  surname: Kim
  fullname: Kim, Mi-Young
– sequence: 2
  givenname: Shahin
  orcidid: 0000-0002-3666-4656
  surname: Atakishiyev
  fullname: Atakishiyev, Shahin
– sequence: 3
  givenname: Housam Khalifa Bashier
  surname: Babiker
  fullname: Babiker, Housam Khalifa Bashier
– sequence: 4
  givenname: Nawshad
  orcidid: 0000-0002-6127-8220
  surname: Farruque
  fullname: Farruque, Nawshad
– sequence: 5
  givenname: Randy
  orcidid: 0000-0002-0739-2946
  surname: Goebel
  fullname: Goebel, Randy
– sequence: 6
  givenname: Osmar R.
  orcidid: 0000-0002-0060-5988
  surname: Zaïane
  fullname: Zaïane, Osmar R.
– sequence: 7
  givenname: Mohammad-Hossein
  orcidid: 0000-0003-0540-7531
  surname: Motallebi
  fullname: Motallebi, Mohammad-Hossein
– sequence: 8
  givenname: Juliano
  orcidid: 0000-0002-2982-3401
  surname: Rabelo
  fullname: Rabelo, Juliano
– sequence: 9
  givenname: Talat
  surname: Syed
  fullname: Syed, Talat
– sequence: 10
  givenname: Hengshuai
  surname: Yao
  fullname: Yao, Hengshuai
– sequence: 11
  givenname: Peter
  surname: Chun
  fullname: Chun, Peter
BookMark eNptkU9rVDEUxYNUsNau_AIBl_Js8vLnJcthbHWg4ka3hvvykjHTTDImGWq_vbGjUMTVvVx-53C45yU6Szk5hF5T8o4xTa72cOcY4YRw8Qydj4LwgWtNzp7sL9BlrTtCyDhpTgk_R99W-NMxtjCs8_7Q_VLDNwX27j6XO-xzwe27w6sE8aGGiiEt-L2rYZtw9vj65yFCSDDHjpQWfLABIt6k5mIMW5ese4Wee4jVXf6ZF-jrzfWX9cfh9vOHzXp1O1gmeRtmAZqwqSefudWLEE5M4JTwk5qo0tKKntjCNHpGpPWEKTuPgnM9UTkJz9gF2px8lww7cyhhD-XBZAjm8ZDL1kBPaKMzS1dIDdKrRXHCpILFKfCO8nG2DHj3enPyOpT84-hqM7t8LP0F1YySjooQKnWn6ImyJddanDc2NGghp1YgREOJ-d2KedJK17z9R_M36f_oX1g9jmA
CitedBy_id crossref_primary_10_32604_cmc_2022_029473
crossref_primary_10_26599_IJCS_2022_9100034
crossref_primary_10_3390_diagnostics12020237
crossref_primary_10_1109_MTS_2023_3340238
crossref_primary_10_3390_en17133295
crossref_primary_10_3390_make6010016
crossref_primary_10_32604_cmc_2024_046880
crossref_primary_10_3390_a17060227
crossref_primary_10_3390_asi6010026
crossref_primary_10_1038_s41598_022_06726_2
crossref_primary_10_1109_TAI_2022_3227225
crossref_primary_10_2196_33717
crossref_primary_10_1007_s41060_024_00527_8
crossref_primary_10_1109_OJCOMS_2022_3215676
crossref_primary_10_3390_smartcities7010007
crossref_primary_10_1016_j_asej_2024_102740
Cites_doi 10.1109/CVPR.2009.5206848
10.3233/AAC-160001
10.1109/TVCG.2011.279
10.1038/s42256-019-0048-x
10.18653/v1/D16-1011
10.1109/TNSM.2021.3098157
10.1613/jair.5714
10.1007/978-3-030-01216-8_17
10.1016/j.cognition.2016.10.024
10.1016/j.artint.2018.07.007
10.18653/v1/2021.eacl-main.263
10.1145/3387514.3405859
10.1111/j.1471-6712.1997.tb00455.x
10.1007/978-3-319-07341-5
10.3115/1073083.1073135
10.2307/2017635
10.5840/monist18911211
10.18653/v1/D16-1230
10.1016/S0020-7373(86)80004-9
10.18653/v1/N16-1174
10.1109/CVPR.2019.01152
10.1007/978-1-4612-4792-0_13
10.1145/3359992.3366639
10.1109/DSAA.2018.00018
10.1109/HSI.2018.8430788
10.1201/b18519
10.1007/978-94-011-1735-7
10.1007/BF03037089
10.1017/S0140525X00057046
10.1086/286983
10.1109/ICCV.2017.74
10.1145/2939672.2939778
10.1145/360018.360022
10.1109/ICCV.2015.169
10.1109/IV.2013.95
10.1016/j.inffus.2019.12.012
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/make3040045
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2504-4990
EndPage 921
ExternalDocumentID oai_doaj_org_article_d67569a6f8d840368ade8afe142bc3a4
10_3390_make3040045
GroupedDBID AADQD
AAFWJ
AAYXX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
K7-
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
8FE
8FG
ABUWG
AZQEC
COVID
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c364t-b5a9037045b4c9d55e57ae85f7871896c5027ca72f306cf038cb2544971675f33
IEDL.DBID BENPR
ISSN 2504-4990
IngestDate Wed Aug 27 01:13:04 EDT 2025
Fri Jul 25 23:03:30 EDT 2025
Thu Apr 24 22:55:08 EDT 2025
Tue Jul 01 03:11:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-b5a9037045b4c9d55e57ae85f7871896c5027ca72f306cf038cb2544971675f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6127-8220
0000-0003-0540-7531
0000-0002-0060-5988
0000-0002-0739-2946
0000-0002-3666-4656
0000-0002-2982-3401
OpenAccessLink https://www.proquest.com/docview/2612800169?pq-origsite=%requestingapplication%
PQID 2612800169
PQPubID 5046881
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_d67569a6f8d840368ade8afe142bc3a4
proquest_journals_2612800169
crossref_citationtrail_10_3390_make3040045
crossref_primary_10_3390_make3040045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Machine learning and knowledge extraction
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Hempel (ref_48) 1942; 39
Hempel (ref_49) 1958; 2
ref_14
ref_58
ref_13
Eriksson (ref_45) 1997; 11
ref_57
ref_12
ref_56
ref_11
ref_55
ref_54
ref_53
ref_52
Bex (ref_10) 2016; 7
ref_19
ref_17
ref_16
ref_15
ref_59
Ramsey (ref_38) 1986; 24
Bear (ref_68) 2017; 167
ref_61
ref_60
ref_25
ref_69
ref_24
Peirce (ref_40) 1891; 1
Hempel (ref_51) 1948; 15
ref_23
ref_67
ref_22
ref_66
ref_21
ref_20
ref_64
ref_63
ref_62
ref_29
ref_28
ref_27
ref_35
ref_34
Thagard (ref_44) 1989; 12
ref_33
ref_32
ref_31
ref_30
Newell (ref_7) 1976; 19
Lam (ref_36) 2012; 18
ref_39
ref_37
Evans (ref_26) 2018; 61
ref_47
Miller (ref_9) 2019; 267
ref_46
Rudin (ref_18) 2019; 1
ref_43
ref_42
ref_41
ref_1
ref_3
ref_2
ref_8
ref_5
ref_4
ref_6
Arrieta (ref_65) 2020; 58
References_xml – ident: ref_5
– ident: ref_27
  doi: 10.1109/CVPR.2009.5206848
– volume: 7
  start-page: 55
  year: 2016
  ident: ref_10
  article-title: Combining explanation and argumentation in dialogue
  publication-title: Argum. Comput.
  doi: 10.3233/AAC-160001
– volume: 18
  start-page: 1520
  year: 2012
  ident: ref_36
  article-title: Empirical Studies in Information Visualization: Seven Scenarios
  publication-title: IEEE Trans. Graph. Vis. Comput.
  doi: 10.1109/TVCG.2011.279
– volume: 1
  start-page: 206
  year: 2019
  ident: ref_18
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0048-x
– ident: ref_16
– ident: ref_39
– volume: 2
  start-page: 173
  year: 1958
  ident: ref_49
  article-title: The Theoretician’s Dilemma: A Study in the Logic of Theory Construction
  publication-title: Minn. Stud. Philos. Sci.
– ident: ref_55
  doi: 10.18653/v1/D16-1011
– ident: ref_61
– ident: ref_1
– ident: ref_12
  doi: 10.1109/TNSM.2021.3098157
– ident: ref_23
– volume: 61
  start-page: 1
  year: 2018
  ident: ref_26
  article-title: Learning Explanatory Rules from Noisy Data
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.5714
– ident: ref_58
– ident: ref_63
  doi: 10.1007/978-3-030-01216-8_17
– volume: 167
  start-page: 25
  year: 2017
  ident: ref_68
  article-title: Normality: Part descriptive, Part prescriptive
  publication-title: Cognition
  doi: 10.1016/j.cognition.2016.10.024
– volume: 267
  start-page: 1
  year: 2019
  ident: ref_9
  article-title: Explanation in Artificial Intelligence: Insights from the Social Sciences
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2018.07.007
– ident: ref_8
  doi: 10.18653/v1/2021.eacl-main.263
– ident: ref_13
  doi: 10.1145/3387514.3405859
– volume: 11
  start-page: 195
  year: 1997
  ident: ref_45
  article-title: Abduction—A way to deeper understanding of the world of caring
  publication-title: Scand. J. Caring Sci.
  doi: 10.1111/j.1471-6712.1997.tb00455.x
– ident: ref_4
– ident: ref_31
– ident: ref_52
– ident: ref_35
  doi: 10.1007/978-3-319-07341-5
– ident: ref_69
– ident: ref_32
  doi: 10.3115/1073083.1073135
– ident: ref_41
– ident: ref_66
– ident: ref_62
– ident: ref_20
– volume: 39
  start-page: 35
  year: 1942
  ident: ref_48
  article-title: The function of general laws in history
  publication-title: J. Philos.
  doi: 10.2307/2017635
– ident: ref_28
– ident: ref_30
– volume: 1
  start-page: 161
  year: 1891
  ident: ref_40
  article-title: The architecture of theories
  publication-title: Monist
  doi: 10.5840/monist18911211
– ident: ref_24
– ident: ref_34
  doi: 10.18653/v1/D16-1230
– volume: 24
  start-page: 475
  year: 1986
  ident: ref_38
  article-title: A comparative analysis of methods for expert systems
  publication-title: Int. J. Man-Mach. Stud.
  doi: 10.1016/S0020-7373(86)80004-9
– ident: ref_56
  doi: 10.18653/v1/N16-1174
– ident: ref_47
– ident: ref_3
  doi: 10.1109/CVPR.2019.01152
– ident: ref_42
  doi: 10.1007/978-1-4612-4792-0_13
– ident: ref_14
  doi: 10.1145/3359992.3366639
– ident: ref_17
  doi: 10.1109/DSAA.2018.00018
– ident: ref_67
– ident: ref_11
  doi: 10.1109/HSI.2018.8430788
– ident: ref_19
  doi: 10.1201/b18519
– ident: ref_21
– ident: ref_53
  doi: 10.1007/978-94-011-1735-7
– ident: ref_43
  doi: 10.1007/BF03037089
– volume: 12
  start-page: 435
  year: 1989
  ident: ref_44
  article-title: Explanatory coherence
  publication-title: Behav. Brain Sci.
  doi: 10.1017/S0140525X00057046
– ident: ref_6
– ident: ref_50
– ident: ref_29
– ident: ref_33
– volume: 15
  start-page: 135
  year: 1948
  ident: ref_51
  article-title: Studies in the Logic of Explanation
  publication-title: Philos. Sci.
  doi: 10.1086/286983
– ident: ref_54
– ident: ref_2
– ident: ref_46
– ident: ref_59
  doi: 10.1109/ICCV.2017.74
– ident: ref_60
  doi: 10.1145/2939672.2939778
– ident: ref_15
– ident: ref_64
– volume: 19
  start-page: 113
  year: 1976
  ident: ref_7
  article-title: Computer science as empirical inquiry: Symbols and search
  publication-title: Commun. ACM
  doi: 10.1145/360018.360022
– ident: ref_25
  doi: 10.1109/ICCV.2015.169
– ident: ref_37
  doi: 10.1109/IV.2013.95
– ident: ref_22
– ident: ref_57
– volume: 58
  start-page: 82
  year: 2020
  ident: ref_65
  article-title: Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.12.012
SSID ssj0002794104
Score 2.3863966
Snippet The rapid growth of research in explainable artificial intelligence (XAI) follows on two substantial developments. First, the enormous application success of...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 900
SubjectTerms Artificial intelligence
causal explanation
Causality
Deep learning
Ethical standards
evaluation of explainable AI
Explainable artificial intelligence
explainee-specific explanation
explanation
Explicit knowledge
History
Hypotheses
interpretation
Knowledge representation
Machine learning
Semantics
Trust
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QTlwQCBCDgXLYCala1yRtchyPaSDBiUk7USVxc-CxIRj_HzttpyKQuHDpobLaxI5rf6r9mbFhCGEsQWRJmtoskYjdEktEkM7p3IErTGapG_nuPp_N5e1CLTqjvqgmrKYHrhU3Asxoc2PzoAGxiMi1hUrbUI1l5rywkQkUY14HTD3F32lGItCoG_IE4vrRq32uRDyx6lsIikz9Pz7EMbpMd9lOkxbySb2cPbZVLffZ44TH_tiEnHa1xPDAp20tFcdkk2PyxltWEW6XwK9iPQZfBU61dU1jVHxqTRTBbzoMnAdsPr1-uJwlzTyExItcrhOnrElFgTtw0htQqlKFrbQK6HRjbXKvcN_eFllAHOBDKrR3xEBGLFGFCkIcst4SV3vEOAAUgjxWey0BL9aBlWB0CoAAQvbZeaui0jdk4TSz4qVE0ED6LDv67LPhRvit5sj4XeyCdL0RIWLreAPNXTbmLv8yd58NWkuVjbd9lESDpil5Ncf_8Y4Ttp1R5UosWhmw3vr9szrF1GPtzuIp-wJvgtfB
  priority: 102
  providerName: Directory of Open Access Journals
Title A Multi-Component Framework for the Analysis and Design of Explainable Artificial Intelligence
URI https://www.proquest.com/docview/2612800169
https://doaj.org/article/d67569a6f8d840368ade8afe142bc3a4
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELZoWVgQCBDlUXnohBSRxnbiTIhCS0ECIUSlTkR-xAxAWqCs_HbuXKcUgVg8JFZkn-_s-5y77wjpOOe63LIkimOVRBywW6SQCFJrmWqrszxRmI18fZMOR_xqLMbhwu09hFXWe6LfqO3E4B35MVJdSXRQ8pPpa4RVo_Dvaiih0SCrsAVL0SSrvf7N7d3iliUBdQPAMU_MY4Dvj1_UU8m85oofR5Fn7P-1IftTZrBB1oN7SE_n67lJVspqizycUp8nG6HxTio4Juigjqmi4HRScOJozS5CVWXpuY_LoBNHMcYuJEj5r84JI-jlEhPnNhkN-vdnwyjURYgMS_ks0kLlMctgBpqb3ApRikyVUjgwvq7MUyNg3kZliQM8YFzMpNHIRIZsUZlwjO2QZgWj3SXUWpsxtFxpJLfQKG0Vt7mMrQUgwVvkqBZRYQJpONaueC4APKA8iyV5tkhn0Xk658r4u1sPZb3oggTX_sHk7bEI9lJYGGmaq9RJCxCUpVLZUipXdnmiDVMwsIN6pYpgde_Ft47s_f96n6wlGJviw1IOSHP29lEegnMx023SkIOLdtCjtofo0F5_9r8AYszTFA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF4hOLSXCgRVaXnsAS6VLJx92LsHhHhFSROiCoHEqe4-vBwKSQhBiD_Fb2RmbQcQqDcuPtgrazWexzfrmW8I2QohtITnLElTwxIBuVtikAjSWpVZb3PNDHYjnwyyzrn4dSEv5shj0wuDZZWNT4yO2o8cnpHvINWVQoCi98Y3CU6Nwr-rzQiNSi165cM9pGy3u90j-L7bjLWPzw47ST1VIHE8E9PESqNTngOUscJpL2Upc1MqGUB1W0pnTkKm5kzOAqBpF1KunEUeL-RaymXAA1Bw-QsAMzRY0cLB8eD36exUh4F6Q4JTNQJyrtOda_Ov5NFS5KvQFycEvAkAMaq1F8mXGo7S_Up_lshcOVwmf_Zp7MtN0FmMhhCWaLup4aIAcimARtqwmVAz9PQo1oHQUaBY01c3ZMW3VgQVtPuC-XOFnH-IxL6S-SHs9huh3vuco6dQTgkPF2O9EV6r1HtIXMQq-dmIqHA1STnOyrgqIFlBeRYv5LlKtmaLxxU3x_vLDlDWsyVIqB1vjCaXRW2fhYedZtpkQXlIeXmmjC-VCWVLMOu4gY2tNV-qqK38tnjWye__f7xJPnXOTvpFvzvo_SCfGdbFxJKYNTI_ndyV6wBspnaj1iZK_n60Aj8BOFcKvg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF6MA6GXkpCGus1jD-klICzvQ1odQkjimDgPY0INPlXdhzaHtlYeDqV_rb-uMyvJcWjILRcdpEUss9_OY3fmG0L2vPc94TiL4lizSEDsFmkkgjRGJcaZNGMaq5GvRsnZRJxP5bRF_ja1MJhW2ejEoKhdafGMvItUVwodlKzr67SIcX9weHsXYQcpvGlt2mlUELko_vyG8O3hYNiHtf7C2OD068lZVHcYiCxPxDwyUmcxT8GtMcJmTspCprpQ0gOMeypLrISozeqUefCsrY-5sgY5vZB3KZUeD0NB_a-kYBVVm6wcn47G14sTHgZQh2CnKgrkPIu7v_SPgoddI5-ZwdAt4D9jECzcYI28r11TelRhaZ20itkG-XZEQ41uhIqjnIGJooMmn4uCw0vBgaQNswnVM0f7ISeElp5ifl9dnBX-WpFV0OESC-gHMnkTiW2S9gxm-5FQ51zKUWsoq4SDhzZOC5ep2DkIYkSH7Dciym1NWI59M37mELigPPMleXbI3mLwbcXT8fKwY5T1YgiSa4cX5f1NXu_V3MFMk0wnXjkIf3mitCuU9kVPMGO5holtNSuV1zv-IX_C56fXP--SVQBufjkcXXwm7ximyITsmC3Snt8_Ftvg48zNTg0mSr6_NX7_AVwkDuo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi-Component+Framework+for+the+Analysis+and+Design+of+Explainable+Artificial+Intelligence&rft.jtitle=Machine+learning+and+knowledge+extraction&rft.au=Mi-Young%2C+Kim&rft.au=Atakishiyev%2C+Shahin&rft.au=Housam+Khalifa+Bashier+Babiker&rft.au=Nawshad+Farruque&rft.date=2021-12-01&rft.pub=MDPI+AG&rft.eissn=2504-4990&rft.volume=3&rft.issue=4&rft.spage=900&rft_id=info:doi/10.3390%2Fmake3040045&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-4990&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-4990&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-4990&client=summon