A Multi-Component Framework for the Analysis and Design of Explainable Artificial Intelligence
The rapid growth of research in explainable artificial intelligence (XAI) follows on two substantial developments. First, the enormous application success of modern machine learning methods, especially deep and reinforcement learning, have created high expectations for industrial, commercial, and so...
Saved in:
Published in | Machine learning and knowledge extraction Vol. 3; no. 4; pp. 900 - 921 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2504-4990 2504-4990 |
DOI | 10.3390/make3040045 |
Cover
Loading…
Abstract | The rapid growth of research in explainable artificial intelligence (XAI) follows on two substantial developments. First, the enormous application success of modern machine learning methods, especially deep and reinforcement learning, have created high expectations for industrial, commercial, and social value. Second, the emerging and growing concern for creating ethical and trusted AI systems, including compliance with regulatory principles to ensure transparency and trust. These two threads have created a kind of “perfect storm” of research activity, all motivated to create and deliver any set of tools and techniques to address the XAI demand. As some surveys of current XAI suggest, there is yet to appear a principled framework that respects the literature of explainability in the history of science and which provides a basis for the development of a framework for transparent XAI. We identify four foundational components, including the requirements for (1) explicit explanation knowledge representation, (2) delivery of alternative explanations, (3) adjusting explanations based on knowledge of the explainee, and (4) exploiting the advantage of interactive explanation. With those four components in mind, we intend to provide a strategic inventory of XAI requirements, demonstrate their connection to a basic history of XAI ideas, and then synthesize those ideas into a simple framework that can guide the design of AI systems that require XAI. |
---|---|
AbstractList | The rapid growth of research in explainable artificial intelligence (XAI) follows on two substantial developments. First, the enormous application success of modern machine learning methods, especially deep and reinforcement learning, have created high expectations for industrial, commercial, and social value. Second, the emerging and growing concern for creating ethical and trusted AI systems, including compliance with regulatory principles to ensure transparency and trust. These two threads have created a kind of “perfect storm” of research activity, all motivated to create and deliver any set of tools and techniques to address the XAI demand. As some surveys of current XAI suggest, there is yet to appear a principled framework that respects the literature of explainability in the history of science and which provides a basis for the development of a framework for transparent XAI. We identify four foundational components, including the requirements for (1) explicit explanation knowledge representation, (2) delivery of alternative explanations, (3) adjusting explanations based on knowledge of the explainee, and (4) exploiting the advantage of interactive explanation. With those four components in mind, we intend to provide a strategic inventory of XAI requirements, demonstrate their connection to a basic history of XAI ideas, and then synthesize those ideas into a simple framework that can guide the design of AI systems that require XAI. |
Author | Kim, Mi-Young Babiker, Housam Khalifa Bashier Farruque, Nawshad Rabelo, Juliano Syed, Talat Goebel, Randy Zaïane, Osmar R. Yao, Hengshuai Chun, Peter Atakishiyev, Shahin Motallebi, Mohammad-Hossein |
Author_xml | – sequence: 1 givenname: Mi-Young surname: Kim fullname: Kim, Mi-Young – sequence: 2 givenname: Shahin orcidid: 0000-0002-3666-4656 surname: Atakishiyev fullname: Atakishiyev, Shahin – sequence: 3 givenname: Housam Khalifa Bashier surname: Babiker fullname: Babiker, Housam Khalifa Bashier – sequence: 4 givenname: Nawshad orcidid: 0000-0002-6127-8220 surname: Farruque fullname: Farruque, Nawshad – sequence: 5 givenname: Randy orcidid: 0000-0002-0739-2946 surname: Goebel fullname: Goebel, Randy – sequence: 6 givenname: Osmar R. orcidid: 0000-0002-0060-5988 surname: Zaïane fullname: Zaïane, Osmar R. – sequence: 7 givenname: Mohammad-Hossein orcidid: 0000-0003-0540-7531 surname: Motallebi fullname: Motallebi, Mohammad-Hossein – sequence: 8 givenname: Juliano orcidid: 0000-0002-2982-3401 surname: Rabelo fullname: Rabelo, Juliano – sequence: 9 givenname: Talat surname: Syed fullname: Syed, Talat – sequence: 10 givenname: Hengshuai surname: Yao fullname: Yao, Hengshuai – sequence: 11 givenname: Peter surname: Chun fullname: Chun, Peter |
BookMark | eNptkU9rVDEUxYNUsNau_AIBl_Js8vLnJcthbHWg4ka3hvvykjHTTDImGWq_vbGjUMTVvVx-53C45yU6Szk5hF5T8o4xTa72cOcY4YRw8Qydj4LwgWtNzp7sL9BlrTtCyDhpTgk_R99W-NMxtjCs8_7Q_VLDNwX27j6XO-xzwe27w6sE8aGGiiEt-L2rYZtw9vj65yFCSDDHjpQWfLABIt6k5mIMW5ese4Wee4jVXf6ZF-jrzfWX9cfh9vOHzXp1O1gmeRtmAZqwqSefudWLEE5M4JTwk5qo0tKKntjCNHpGpPWEKTuPgnM9UTkJz9gF2px8lww7cyhhD-XBZAjm8ZDL1kBPaKMzS1dIDdKrRXHCpILFKfCO8nG2DHj3enPyOpT84-hqM7t8LP0F1YySjooQKnWn6ImyJddanDc2NGghp1YgREOJ-d2KedJK17z9R_M36f_oX1g9jmA |
CitedBy_id | crossref_primary_10_32604_cmc_2022_029473 crossref_primary_10_26599_IJCS_2022_9100034 crossref_primary_10_3390_diagnostics12020237 crossref_primary_10_1109_MTS_2023_3340238 crossref_primary_10_3390_en17133295 crossref_primary_10_3390_make6010016 crossref_primary_10_32604_cmc_2024_046880 crossref_primary_10_3390_a17060227 crossref_primary_10_3390_asi6010026 crossref_primary_10_1038_s41598_022_06726_2 crossref_primary_10_1109_TAI_2022_3227225 crossref_primary_10_2196_33717 crossref_primary_10_1007_s41060_024_00527_8 crossref_primary_10_1109_OJCOMS_2022_3215676 crossref_primary_10_3390_smartcities7010007 crossref_primary_10_1016_j_asej_2024_102740 |
Cites_doi | 10.1109/CVPR.2009.5206848 10.3233/AAC-160001 10.1109/TVCG.2011.279 10.1038/s42256-019-0048-x 10.18653/v1/D16-1011 10.1109/TNSM.2021.3098157 10.1613/jair.5714 10.1007/978-3-030-01216-8_17 10.1016/j.cognition.2016.10.024 10.1016/j.artint.2018.07.007 10.18653/v1/2021.eacl-main.263 10.1145/3387514.3405859 10.1111/j.1471-6712.1997.tb00455.x 10.1007/978-3-319-07341-5 10.3115/1073083.1073135 10.2307/2017635 10.5840/monist18911211 10.18653/v1/D16-1230 10.1016/S0020-7373(86)80004-9 10.18653/v1/N16-1174 10.1109/CVPR.2019.01152 10.1007/978-1-4612-4792-0_13 10.1145/3359992.3366639 10.1109/DSAA.2018.00018 10.1109/HSI.2018.8430788 10.1201/b18519 10.1007/978-94-011-1735-7 10.1007/BF03037089 10.1017/S0140525X00057046 10.1086/286983 10.1109/ICCV.2017.74 10.1145/2939672.2939778 10.1145/360018.360022 10.1109/ICCV.2015.169 10.1109/IV.2013.95 10.1016/j.inffus.2019.12.012 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/make3040045 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2504-4990 |
EndPage | 921 |
ExternalDocumentID | oai_doaj_org_article_d67569a6f8d840368ade8afe142bc3a4 10_3390_make3040045 |
GroupedDBID | AADQD AAFWJ AAYXX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ K7- MODMG M~E OK1 PHGZM PHGZT PIMPY 8FE 8FG ABUWG AZQEC COVID DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c364t-b5a9037045b4c9d55e57ae85f7871896c5027ca72f306cf038cb2544971675f33 |
IEDL.DBID | BENPR |
ISSN | 2504-4990 |
IngestDate | Wed Aug 27 01:13:04 EDT 2025 Fri Jul 25 23:03:30 EDT 2025 Thu Apr 24 22:55:08 EDT 2025 Tue Jul 01 03:11:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-b5a9037045b4c9d55e57ae85f7871896c5027ca72f306cf038cb2544971675f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6127-8220 0000-0003-0540-7531 0000-0002-0060-5988 0000-0002-0739-2946 0000-0002-3666-4656 0000-0002-2982-3401 |
OpenAccessLink | https://www.proquest.com/docview/2612800169?pq-origsite=%requestingapplication% |
PQID | 2612800169 |
PQPubID | 5046881 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d67569a6f8d840368ade8afe142bc3a4 proquest_journals_2612800169 crossref_citationtrail_10_3390_make3040045 crossref_primary_10_3390_make3040045 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Machine learning and knowledge extraction |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Hempel (ref_48) 1942; 39 Hempel (ref_49) 1958; 2 ref_14 ref_58 ref_13 Eriksson (ref_45) 1997; 11 ref_57 ref_12 ref_56 ref_11 ref_55 ref_54 ref_53 ref_52 Bex (ref_10) 2016; 7 ref_19 ref_17 ref_16 ref_15 ref_59 Ramsey (ref_38) 1986; 24 Bear (ref_68) 2017; 167 ref_61 ref_60 ref_25 ref_69 ref_24 Peirce (ref_40) 1891; 1 Hempel (ref_51) 1948; 15 ref_23 ref_67 ref_22 ref_66 ref_21 ref_20 ref_64 ref_63 ref_62 ref_29 ref_28 ref_27 ref_35 ref_34 Thagard (ref_44) 1989; 12 ref_33 ref_32 ref_31 ref_30 Newell (ref_7) 1976; 19 Lam (ref_36) 2012; 18 ref_39 ref_37 Evans (ref_26) 2018; 61 ref_47 Miller (ref_9) 2019; 267 ref_46 Rudin (ref_18) 2019; 1 ref_43 ref_42 ref_41 ref_1 ref_3 ref_2 ref_8 ref_5 ref_4 ref_6 Arrieta (ref_65) 2020; 58 |
References_xml | – ident: ref_5 – ident: ref_27 doi: 10.1109/CVPR.2009.5206848 – volume: 7 start-page: 55 year: 2016 ident: ref_10 article-title: Combining explanation and argumentation in dialogue publication-title: Argum. Comput. doi: 10.3233/AAC-160001 – volume: 18 start-page: 1520 year: 2012 ident: ref_36 article-title: Empirical Studies in Information Visualization: Seven Scenarios publication-title: IEEE Trans. Graph. Vis. Comput. doi: 10.1109/TVCG.2011.279 – volume: 1 start-page: 206 year: 2019 ident: ref_18 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0048-x – ident: ref_16 – ident: ref_39 – volume: 2 start-page: 173 year: 1958 ident: ref_49 article-title: The Theoretician’s Dilemma: A Study in the Logic of Theory Construction publication-title: Minn. Stud. Philos. Sci. – ident: ref_55 doi: 10.18653/v1/D16-1011 – ident: ref_61 – ident: ref_1 – ident: ref_12 doi: 10.1109/TNSM.2021.3098157 – ident: ref_23 – volume: 61 start-page: 1 year: 2018 ident: ref_26 article-title: Learning Explanatory Rules from Noisy Data publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.5714 – ident: ref_58 – ident: ref_63 doi: 10.1007/978-3-030-01216-8_17 – volume: 167 start-page: 25 year: 2017 ident: ref_68 article-title: Normality: Part descriptive, Part prescriptive publication-title: Cognition doi: 10.1016/j.cognition.2016.10.024 – volume: 267 start-page: 1 year: 2019 ident: ref_9 article-title: Explanation in Artificial Intelligence: Insights from the Social Sciences publication-title: Artif. Intell. doi: 10.1016/j.artint.2018.07.007 – ident: ref_8 doi: 10.18653/v1/2021.eacl-main.263 – ident: ref_13 doi: 10.1145/3387514.3405859 – volume: 11 start-page: 195 year: 1997 ident: ref_45 article-title: Abduction—A way to deeper understanding of the world of caring publication-title: Scand. J. Caring Sci. doi: 10.1111/j.1471-6712.1997.tb00455.x – ident: ref_4 – ident: ref_31 – ident: ref_52 – ident: ref_35 doi: 10.1007/978-3-319-07341-5 – ident: ref_69 – ident: ref_32 doi: 10.3115/1073083.1073135 – ident: ref_41 – ident: ref_66 – ident: ref_62 – ident: ref_20 – volume: 39 start-page: 35 year: 1942 ident: ref_48 article-title: The function of general laws in history publication-title: J. Philos. doi: 10.2307/2017635 – ident: ref_28 – ident: ref_30 – volume: 1 start-page: 161 year: 1891 ident: ref_40 article-title: The architecture of theories publication-title: Monist doi: 10.5840/monist18911211 – ident: ref_24 – ident: ref_34 doi: 10.18653/v1/D16-1230 – volume: 24 start-page: 475 year: 1986 ident: ref_38 article-title: A comparative analysis of methods for expert systems publication-title: Int. J. Man-Mach. Stud. doi: 10.1016/S0020-7373(86)80004-9 – ident: ref_56 doi: 10.18653/v1/N16-1174 – ident: ref_47 – ident: ref_3 doi: 10.1109/CVPR.2019.01152 – ident: ref_42 doi: 10.1007/978-1-4612-4792-0_13 – ident: ref_14 doi: 10.1145/3359992.3366639 – ident: ref_17 doi: 10.1109/DSAA.2018.00018 – ident: ref_67 – ident: ref_11 doi: 10.1109/HSI.2018.8430788 – ident: ref_19 doi: 10.1201/b18519 – ident: ref_21 – ident: ref_53 doi: 10.1007/978-94-011-1735-7 – ident: ref_43 doi: 10.1007/BF03037089 – volume: 12 start-page: 435 year: 1989 ident: ref_44 article-title: Explanatory coherence publication-title: Behav. Brain Sci. doi: 10.1017/S0140525X00057046 – ident: ref_6 – ident: ref_50 – ident: ref_29 – ident: ref_33 – volume: 15 start-page: 135 year: 1948 ident: ref_51 article-title: Studies in the Logic of Explanation publication-title: Philos. Sci. doi: 10.1086/286983 – ident: ref_54 – ident: ref_2 – ident: ref_46 – ident: ref_59 doi: 10.1109/ICCV.2017.74 – ident: ref_60 doi: 10.1145/2939672.2939778 – ident: ref_15 – ident: ref_64 – volume: 19 start-page: 113 year: 1976 ident: ref_7 article-title: Computer science as empirical inquiry: Symbols and search publication-title: Commun. ACM doi: 10.1145/360018.360022 – ident: ref_25 doi: 10.1109/ICCV.2015.169 – ident: ref_37 doi: 10.1109/IV.2013.95 – ident: ref_22 – ident: ref_57 – volume: 58 start-page: 82 year: 2020 ident: ref_65 article-title: Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.12.012 |
SSID | ssj0002794104 |
Score | 2.3863966 |
Snippet | The rapid growth of research in explainable artificial intelligence (XAI) follows on two substantial developments. First, the enormous application success of... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 900 |
SubjectTerms | Artificial intelligence causal explanation Causality Deep learning Ethical standards evaluation of explainable AI Explainable artificial intelligence explainee-specific explanation explanation Explicit knowledge History Hypotheses interpretation Knowledge representation Machine learning Semantics Trust |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QTlwQCBCDgXLYCala1yRtchyPaSDBiUk7USVxc-CxIRj_HzttpyKQuHDpobLaxI5rf6r9mbFhCGEsQWRJmtoskYjdEktEkM7p3IErTGapG_nuPp_N5e1CLTqjvqgmrKYHrhU3Asxoc2PzoAGxiMi1hUrbUI1l5rywkQkUY14HTD3F32lGItCoG_IE4vrRq32uRDyx6lsIikz9Pz7EMbpMd9lOkxbySb2cPbZVLffZ44TH_tiEnHa1xPDAp20tFcdkk2PyxltWEW6XwK9iPQZfBU61dU1jVHxqTRTBbzoMnAdsPr1-uJwlzTyExItcrhOnrElFgTtw0htQqlKFrbQK6HRjbXKvcN_eFllAHOBDKrR3xEBGLFGFCkIcst4SV3vEOAAUgjxWey0BL9aBlWB0CoAAQvbZeaui0jdk4TSz4qVE0ED6LDv67LPhRvit5sj4XeyCdL0RIWLreAPNXTbmLv8yd58NWkuVjbd9lESDpil5Ncf_8Y4Ttp1R5UosWhmw3vr9szrF1GPtzuIp-wJvgtfB priority: 102 providerName: Directory of Open Access Journals |
Title | A Multi-Component Framework for the Analysis and Design of Explainable Artificial Intelligence |
URI | https://www.proquest.com/docview/2612800169 https://doaj.org/article/d67569a6f8d840368ade8afe142bc3a4 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELZoWVgQCBDlUXnohBSRxnbiTIhCS0ECIUSlTkR-xAxAWqCs_HbuXKcUgVg8JFZkn-_s-5y77wjpOOe63LIkimOVRBywW6SQCFJrmWqrszxRmI18fZMOR_xqLMbhwu09hFXWe6LfqO3E4B35MVJdSXRQ8pPpa4RVo_Dvaiih0SCrsAVL0SSrvf7N7d3iliUBdQPAMU_MY4Dvj1_UU8m85oofR5Fn7P-1IftTZrBB1oN7SE_n67lJVspqizycUp8nG6HxTio4Juigjqmi4HRScOJozS5CVWXpuY_LoBNHMcYuJEj5r84JI-jlEhPnNhkN-vdnwyjURYgMS_ks0kLlMctgBpqb3ApRikyVUjgwvq7MUyNg3kZliQM8YFzMpNHIRIZsUZlwjO2QZgWj3SXUWpsxtFxpJLfQKG0Vt7mMrQUgwVvkqBZRYQJpONaueC4APKA8iyV5tkhn0Xk658r4u1sPZb3oggTX_sHk7bEI9lJYGGmaq9RJCxCUpVLZUipXdnmiDVMwsIN6pYpgde_Ft47s_f96n6wlGJviw1IOSHP29lEegnMx023SkIOLdtCjtofo0F5_9r8AYszTFA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF4hOLSXCgRVaXnsAS6VLJx92LsHhHhFSROiCoHEqe4-vBwKSQhBiD_Fb2RmbQcQqDcuPtgrazWexzfrmW8I2QohtITnLElTwxIBuVtikAjSWpVZb3PNDHYjnwyyzrn4dSEv5shj0wuDZZWNT4yO2o8cnpHvINWVQoCi98Y3CU6Nwr-rzQiNSi165cM9pGy3u90j-L7bjLWPzw47ST1VIHE8E9PESqNTngOUscJpL2Upc1MqGUB1W0pnTkKm5kzOAqBpF1KunEUeL-RaymXAA1Bw-QsAMzRY0cLB8eD36exUh4F6Q4JTNQJyrtOda_Ov5NFS5KvQFycEvAkAMaq1F8mXGo7S_Up_lshcOVwmf_Zp7MtN0FmMhhCWaLup4aIAcimARtqwmVAz9PQo1oHQUaBY01c3ZMW3VgQVtPuC-XOFnH-IxL6S-SHs9huh3vuco6dQTgkPF2O9EV6r1HtIXMQq-dmIqHA1STnOyrgqIFlBeRYv5LlKtmaLxxU3x_vLDlDWsyVIqB1vjCaXRW2fhYedZtpkQXlIeXmmjC-VCWVLMOu4gY2tNV-qqK38tnjWye__f7xJPnXOTvpFvzvo_SCfGdbFxJKYNTI_ndyV6wBspnaj1iZK_n60Aj8BOFcKvg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF6MA6GXkpCGus1jD-klICzvQ1odQkjimDgPY0INPlXdhzaHtlYeDqV_rb-uMyvJcWjILRcdpEUss9_OY3fmG0L2vPc94TiL4lizSEDsFmkkgjRGJcaZNGMaq5GvRsnZRJxP5bRF_ja1MJhW2ejEoKhdafGMvItUVwodlKzr67SIcX9weHsXYQcpvGlt2mlUELko_vyG8O3hYNiHtf7C2OD068lZVHcYiCxPxDwyUmcxT8GtMcJmTspCprpQ0gOMeypLrISozeqUefCsrY-5sgY5vZB3KZUeD0NB_a-kYBVVm6wcn47G14sTHgZQh2CnKgrkPIu7v_SPgoddI5-ZwdAt4D9jECzcYI28r11TelRhaZ20itkG-XZEQ41uhIqjnIGJooMmn4uCw0vBgaQNswnVM0f7ISeElp5ifl9dnBX-WpFV0OESC-gHMnkTiW2S9gxm-5FQ51zKUWsoq4SDhzZOC5ep2DkIYkSH7Dciym1NWI59M37mELigPPMleXbI3mLwbcXT8fKwY5T1YgiSa4cX5f1NXu_V3MFMk0wnXjkIf3mitCuU9kVPMGO5holtNSuV1zv-IX_C56fXP--SVQBufjkcXXwm7ximyITsmC3Snt8_Ftvg48zNTg0mSr6_NX7_AVwkDuo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi-Component+Framework+for+the+Analysis+and+Design+of+Explainable+Artificial+Intelligence&rft.jtitle=Machine+learning+and+knowledge+extraction&rft.au=Mi-Young%2C+Kim&rft.au=Atakishiyev%2C+Shahin&rft.au=Housam+Khalifa+Bashier+Babiker&rft.au=Nawshad+Farruque&rft.date=2021-12-01&rft.pub=MDPI+AG&rft.eissn=2504-4990&rft.volume=3&rft.issue=4&rft.spage=900&rft_id=info:doi/10.3390%2Fmake3040045&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-4990&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-4990&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-4990&client=summon |