Comprehensive analysis of nasal IgA antibodies induced by intranasal administration of the SARS-CoV-2 spike protein
Intranasal vaccination is an attractive strategy for preventing COVID-19 disease as it stimulates the production of multimeric secretory immunoglobulin A (IgA), the predominant antibody isotype in the mucosal immune system, at the target site of severe acute respiratory syndrome coronavirus 2 (SARS-...
Saved in:
Published in | eLife Vol. 12 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
eLife Sciences Publications Ltd
08.05.2025
eLife Sciences Publications, Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Intranasal vaccination is an attractive strategy for preventing COVID-19 disease as it stimulates the production of multimeric secretory immunoglobulin A (IgA), the predominant antibody isotype in the mucosal immune system, at the target site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry. Currently, intranasal vaccine efficacy is evaluated based on the measurement of polyclonal antibody titers in nasal lavage fluid. However, how individual multimeric secretory IgA protects the mucosa from SARS-CoV-2 infection remains to be elucidated. To understand the precise contribution and molecular nature of multimeric secretory IgA induced by intranasal vaccines, we developed 99 monoclonal IgA clones from nasal mucosa and 114 monoclonal IgA or IgG clones from nonmucosal tissues of mice that were intranasally immunized with the SARS-CoV-2 spike protein. The nonmucosal IgA clones exhibited shared origins and common and unique somatic mutations with the related nasal IgA clones, indicating that the antigen-specific plasma cells in the nonmucosal tissues originated from B cells stimulated at the nasal mucosa. Comparing the spike protein binding reactivity, angiotensin-converting enzyme-2-blocking, and in vitro SARS-CoV-2 virus neutralization of monomeric and multimeric secretory IgA pairs recognizing different epitopes showed that even non-neutralizing monomeric IgAs, which represent 70% of the nasal IgA repertoire, can protect against SARS-CoV-2 infection when expressed as multimeric secretory IgAs. We also demonstrated that the intranasal administration of multimeric secretory IgA delivered as prophylaxis in the hamster model reduced infection-induced weight loss. Our investigation is the first to demonstrate the function of nasal IgA at the monoclonal level, showing that nasal immunization can provide effective immunity against SARS-CoV-2 by inducing multimeric secretory IgAs at the target site of the virus infection. |
---|---|
AbstractList | Intranasal vaccination is an attractive strategy for preventing COVID-19 disease as it stimulates the production of multimeric secretory immunoglobulin A (IgA), the predominant antibody isotype in the mucosal immune system, at the target site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry. Currently, intranasal vaccine efficacy is evaluated based on the measurement of polyclonal antibody titers in nasal lavage fluid. However, how individual multimeric secretory IgA protects the mucosa from SARS-CoV-2 infection remains to be elucidated. To understand the precise contribution and molecular nature of multimeric secretory IgA induced by intranasal vaccines, we developed 99 monoclonal IgA clones from nasal mucosa and 114 monoclonal IgA or IgG clones from nonmucosal tissues of mice that were intranasally immunized with the SARS-CoV-2 spike protein. The nonmucosal IgA clones exhibited shared origins and common and unique somatic mutations with the related nasal IgA clones, indicating that the antigen-specific plasma cells in the nonmucosal tissues originated from B cells stimulated at the nasal mucosa. Comparing the spike protein binding reactivity, angiotensin-converting enzyme-2-blocking, and in vitro SARS-CoV-2 virus neutralization of monomeric and multimeric secretory IgA pairs recognizing different epitopes showed that even non-neutralizing monomeric IgAs, which represent 70% of the nasal IgA repertoire, can protect against SARS-CoV-2 infection when expressed as multimeric secretory IgAs. We also demonstrated that the intranasal administration of multimeric secretory IgA delivered as prophylaxis in the hamster model reduced infection-induced weight loss. Our investigation is the first to demonstrate the function of nasal IgA at the monoclonal level, showing that nasal immunization can provide effective immunity against SARS-CoV-2 by inducing multimeric secretory IgAs at the target site of the virus infection.Intranasal vaccination is an attractive strategy for preventing COVID-19 disease as it stimulates the production of multimeric secretory immunoglobulin A (IgA), the predominant antibody isotype in the mucosal immune system, at the target site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry. Currently, intranasal vaccine efficacy is evaluated based on the measurement of polyclonal antibody titers in nasal lavage fluid. However, how individual multimeric secretory IgA protects the mucosa from SARS-CoV-2 infection remains to be elucidated. To understand the precise contribution and molecular nature of multimeric secretory IgA induced by intranasal vaccines, we developed 99 monoclonal IgA clones from nasal mucosa and 114 monoclonal IgA or IgG clones from nonmucosal tissues of mice that were intranasally immunized with the SARS-CoV-2 spike protein. The nonmucosal IgA clones exhibited shared origins and common and unique somatic mutations with the related nasal IgA clones, indicating that the antigen-specific plasma cells in the nonmucosal tissues originated from B cells stimulated at the nasal mucosa. Comparing the spike protein binding reactivity, angiotensin-converting enzyme-2-blocking, and in vitro SARS-CoV-2 virus neutralization of monomeric and multimeric secretory IgA pairs recognizing different epitopes showed that even non-neutralizing monomeric IgAs, which represent 70% of the nasal IgA repertoire, can protect against SARS-CoV-2 infection when expressed as multimeric secretory IgAs. We also demonstrated that the intranasal administration of multimeric secretory IgA delivered as prophylaxis in the hamster model reduced infection-induced weight loss. Our investigation is the first to demonstrate the function of nasal IgA at the monoclonal level, showing that nasal immunization can provide effective immunity against SARS-CoV-2 by inducing multimeric secretory IgAs at the target site of the virus infection. Intranasal vaccination is an attractive strategy for preventing COVID-19 disease as it stimulates the production of multimeric secretory immunoglobulin A (IgA), the predominant antibody isotype in the mucosal immune system, at the target site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry. Currently, intranasal vaccine efficacy is evaluated based on the measurement of polyclonal antibody titers in nasal lavage fluid. However, how individual multimeric secretory IgA protects the mucosa from SARS-CoV-2 infection remains to be elucidated. To understand the precise contribution and molecular nature of multimeric secretory IgA induced by intranasal vaccines, we developed 99 monoclonal IgA clones from nasal mucosa and 114 monoclonal IgA or IgG clones from nonmucosal tissues of mice that were intranasally immunized with the SARS-CoV-2 spike protein. The nonmucosal IgA clones exhibited shared origins and common and unique somatic mutations with the related nasal IgA clones, indicating that the antigen-specific plasma cells in the nonmucosal tissues originated from B cells stimulated at the nasal mucosa. Comparing the spike protein binding reactivity, angiotensin-converting enzyme-2-blocking, and in vitro SARS-CoV-2 virus neutralization of monomeric and multimeric secretory IgA pairs recognizing different epitopes showed that even non-neutralizing monomeric IgAs, which represent 70% of the nasal IgA repertoire, can protect against SARS-CoV-2 infection when expressed as multimeric secretory IgAs. We also demonstrated that the intranasal administration of multimeric secretory IgA delivered as prophylaxis in the hamster model reduced infection-induced weight loss. Our investigation is the first to demonstrate the function of nasal IgA at the monoclonal level, showing that nasal immunization can provide effective immunity against SARS-CoV-2 by inducing multimeric secretory IgAs at the target site of the virus infection. |
Author | Waki, Kentarou Saga, Yumiko Kawahara, Eigo Shimada, Takahisa Koike, Seiichi Kurosawa, Nobuyuki Tani, Hideki Isobe, Masaharu Yamazaki, Emiko Morinaga, Yoshitomo |
Author_xml | – sequence: 1 givenname: Kentarou surname: Waki fullname: Waki, Kentarou – sequence: 2 givenname: Hideki orcidid: 0000-0002-6309-277X surname: Tani fullname: Tani, Hideki – sequence: 3 givenname: Eigo surname: Kawahara fullname: Kawahara, Eigo – sequence: 4 givenname: Yumiko surname: Saga fullname: Saga, Yumiko – sequence: 5 givenname: Takahisa surname: Shimada fullname: Shimada, Takahisa – sequence: 6 givenname: Emiko surname: Yamazaki fullname: Yamazaki, Emiko – sequence: 7 givenname: Seiichi orcidid: 0000-0001-8203-4498 surname: Koike fullname: Koike, Seiichi – sequence: 8 givenname: Yoshitomo surname: Morinaga fullname: Morinaga, Yoshitomo – sequence: 9 givenname: Masaharu surname: Isobe fullname: Isobe, Masaharu – sequence: 10 givenname: Nobuyuki orcidid: 0000-0002-1548-4541 surname: Kurosawa fullname: Kurosawa, Nobuyuki |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40338637$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk1r3DAQhkVJadI0p96LoZdCcapvyaeyLP1YWCg0belNSPZ4V1tbciRvYP997d00JNVFM6NnXkbM-xKdhRgAodcEXysh-AdY-xautWZaPUMXFAtcYs1_nz2Kz9FVzjs8HcW1JtULdM4xY1oydYHyMvZDgi2E7O-gsMF2h-xzEdsi2Gy7YrVZTNXRu9h4yIUPzb6GpnCHKRyTPUG26X3wecpHH8PcPG6huFl8vymX8VdJizz4P1AMKY7gwyv0vLVdhqv7-xL9_Pzpx_Jruf72ZbVcrMuaST6WTlhBWyCUgWLSOSIECFbx2nHhKFaCKdXYFhrqnKwcJ-CoxEAYFwxg6rlEq5NuE-3ODMn3Nh1MtN4cCzFtjE2jrzswlRLaCmkdt4wD1U6wBirhiNJUSwmT1seT1rB3PTQ1zJ_vnog-fQl-azbxzhCKJeFqnubdvUKKt3vIo-l9rqHrbIC4z4ZRTDjmWlYT-vY_dBf3aVrNkeJCaMVn6s3jkR5m-bfcCXh_AuoUc07QPiAEm9k95ugec3QP-wto7be9 |
Cites_doi | 10.1016/j.immuni.2020.05.002 10.1038/s41591-020-01179-4 10.1084/jem.194.11.1597 10.1371/journal.ppat.1000908 10.1016/j.ebiom.2022.103841 10.1371/journal.ppat.1009542 10.1186/1472-6750-11-39 10.1016/j.celrep.2021.109400 10.4049/jimmunol.168.6.2930 10.3389/fimmu.2018.00934 10.1038/s41541-022-00451-7 10.1073/pnas.1200024109 10.1002/jmv.20173 10.1172/JCI149412 10.1016/j.drudis.2021.07.021 10.1038/s41591-020-0868-6 10.3390/vaccines11010030 10.1016/j.cell.2022.02.005 10.1172/jci.insight.148494 10.3390/v12070780 10.1016/j.ebiom.2021.103788 10.1038/s41591-020-01194-5 10.1056/NEJMoa2034577 10.1073/pnas.2315354120 10.1038/s41590-022-01405-w 10.1371/journal.ppat.1007427 10.1128/JVI.75.11.5141-5150.2001 10.1038/s41385-022-00511-0 10.1002/eji.202149167 10.1016/j.vaccine.2021.01.040 10.1016/j.isci.2021.103379 10.1016/j.cell.2015.01.016 10.1080/22221751.2023.2245921 10.1016/S2213-2600(23)00349-1 10.15252/embr.202153956 10.1186/1741-7007-10-80 10.1038/s41467-020-18058-8 10.1146/annurev-immunol-101320-123742 10.1080/19420862.2022.2072455 10.1126/scitranslmed.abf1555 10.1038/s41580-021-00418-x 10.1002/path.1877 10.1051/medsci/2021154 10.1371/journal.pone.0085582 10.1186/1472-6750-11-75 10.1038/s41587-020-0732-8 10.1128/JVI.00408-20 10.1155/2020/2032057 10.1111/irv.12664 10.1038/s41467-021-27063-4 |
ContentType | Journal Article |
Copyright | 2023, Waki et al. 2023, Waki et al This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023, Waki et al 2023 Waki et al |
Copyright_xml | – notice: 2023, Waki et al. – notice: 2023, Waki et al This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023, Waki et al 2023 Waki et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.7554/eLife.88387 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2050-084X |
ExternalDocumentID | oai_doaj_org_article_9758a56ab4a34e28b53de95b1782866e PMC12061477 40338637 10_7554_eLife_88387 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Japan Agency for Medical Research and Development grantid: 22723616 – fundername: Japan Agency for Medical Research and Development grantid: 20333128 – fundername: Japan Agency for Medical Research and Development grantid: 19187977 – fundername: Japan Society for the Promotion of Science grantid: 22H02875 – fundername: ; grantid: 19187977 – fundername: ; grantid: 22H02875 – fundername: ; grantid: 20333128 – fundername: ; grantid: 22723616 |
GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RHI RNS RPM UKHRP CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK COVID K9. M48 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c364t-b5a52fe123e736bb155e5394cb45b2075377dafed2bb69b41eb260e13453eee73 |
IEDL.DBID | 7X7 |
ISSN | 2050-084X |
IngestDate | Wed Aug 27 01:20:42 EDT 2025 Thu Aug 21 18:27:19 EDT 2025 Fri Jul 11 18:27:57 EDT 2025 Fri Jul 25 10:41:00 EDT 2025 Sun May 11 01:41:04 EDT 2025 Tue Jul 01 04:43:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | COVID-19 mouse IgA SARS-CoV-2 intranasal vaccination inflammation monoclonal antibody immunology plasma cell |
Language | English |
License | 2023, Waki et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-b5a52fe123e736bb155e5394cb45b2075377dafed2bb69b41eb260e13453eee73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1548-4541 0000-0001-8203-4498 0000-0002-6309-277X |
OpenAccessLink | https://www.proquest.com/docview/3204558749?pq-origsite=%requestingapplication% |
PMID | 40338637 |
PQID | 3204558749 |
PQPubID | 2045579 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9758a56ab4a34e28b53de95b1782866e pubmedcentral_primary_oai_pubmedcentral_nih_gov_12061477 proquest_miscellaneous_3201404869 proquest_journals_3204558749 pubmed_primary_40338637 crossref_primary_10_7554_eLife_88387 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-08 |
PublicationDateYYYYMMDD | 2025-05-08 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | eLife |
PublicationTitleAlternate | Elife |
PublicationYear | 2025 |
Publisher | eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Publisher_xml | – name: eLife Sciences Publications Ltd – name: eLife Sciences Publications, Ltd |
References | Alu (bib2) 2022; 76 Galimidi (bib16) 2015; 160 Tudor (bib42) 2012; 109 Sui (bib40) 2021; 6 Okuya (bib32) 2020; 12 D’Arco (bib11) 2021; 39 Ejemel (bib14) 2020; 11 Muramatsu (bib30) 2014; 9 Dhakal (bib13) 2018; 9 Wong (bib46) 2022; 7 Klein (bib22) 2010; 6 Haga (bib18) 2021; 17 Zhou (bib49) 2023; 12 Gianchecchi (bib17) 2019; 13 Kurosawa (bib23) 2011; 11 DeFrancesco (bib12) 2020; 38 Maltseva (bib27) 2022; 11 Jackson (bib20) 2022; 23 Budinger (bib8) 2021; 131 Matsumoto (bib29) 2022; 40 Sheikh-Mohamed (bib37) 2022; 15 Tumpey (bib43) 2001; 75 Kim (bib21) 2021; 51 Azzi (bib5) 2022; 75 Saito (bib36) 2019; 15 Chavda (bib10) 2021; 26 Zhu (bib50) 2023; 11 Barrett (bib6) 2021; 27 Ozawa (bib34) 2022; 14 Callegari (bib9) 2022; 23 Wang (bib45) 2021; 13 Asahi-Ozaki (bib4) 2004; 74 Shimoda (bib38) 2001; 194 Lapuente (bib25) 2021; 12 Woof (bib47) 2006; 208 Bricker (bib7) 2021; 36 Li (bib26) 2020; 2020 Vabret (bib44) 2020; 52 Asahi (bib3) 2002; 168 Houston (bib19) 2023; 24 Sungnak (bib41) 2020; 26 Ewer (bib15) 2021; 27 Sterlin (bib39) 2021; 37 Ohtsuka (bib31) 2021; 24 Afkhami (bib1) 2022; 185 Marcotte (bib28) 2024; 121 Yoshioka (bib48) 2011; 11 Kurosawa (bib24) 2012; 10 Polack (bib35) 2020; 383 Okuya (bib33) 2020; 94 |
References_xml | – volume: 52 start-page: 910 year: 2020 ident: bib44 article-title: Immunology of COVID-19: current state of the science publication-title: Immunity doi: 10.1016/j.immuni.2020.05.002 – volume: 27 start-page: 279 year: 2021 ident: bib6 article-title: Phase 1/2 trial of SARS-CoV-2 vaccine ChAdOx1 nCoV-19 with a booster dose induces multifunctional antibody responses publication-title: Nature Medicine doi: 10.1038/s41591-020-01179-4 – volume: 194 start-page: 1597 year: 2001 ident: bib38 article-title: Isotype-specific selection of high affinity memory B cells in nasal-associated lymphoid tissue publication-title: The Journal of Experimental Medicine doi: 10.1084/jem.194.11.1597 – volume: 6 year: 2010 ident: bib22 article-title: Few and far between: how HIV may be evading antibody avidity publication-title: PLOS Pathogens doi: 10.1371/journal.ppat.1000908 – volume: 76 year: 2022 ident: bib2 article-title: Intranasal COVID-19 vaccines: from bench to bed publication-title: EBioMedicine doi: 10.1016/j.ebiom.2022.103841 – volume: 17 year: 2021 ident: bib18 article-title: Nasal delivery of single-domain antibody improves symptoms of SARS-CoV-2 infection in an animal model publication-title: PLOS Pathogens doi: 10.1371/journal.ppat.1009542 – volume: 11 year: 2011 ident: bib23 article-title: Target-selective homologous recombination cloning for high-throughput generation of monoclonal antibodies from single plasma cells publication-title: BMC Biotechnology doi: 10.1186/1472-6750-11-39 – volume: 36 year: 2021 ident: bib7 article-title: A single intranasal or intramuscular immunization with chimpanzee adenovirus-vectored SARS-CoV-2 vaccine protects against pneumonia in hamsters publication-title: Cell Reports doi: 10.1016/j.celrep.2021.109400 – volume: 168 start-page: 2930 year: 2002 ident: bib3 article-title: Protection against influenza virus infection in polymeric Ig receptor knockout mice immunized intranasally with adjuvant-combined vaccines publication-title: Journal of Immunology doi: 10.4049/jimmunol.168.6.2930 – volume: 9 year: 2018 ident: bib13 article-title: Mucosal immunity and protective efficacy of intranasal inactivated influenza vaccine is improved by chitosan nanoparticle delivery in pigs publication-title: Frontiers in Immunology doi: 10.3389/fimmu.2018.00934 – volume: 7 year: 2022 ident: bib46 article-title: Intranasal administration of BReC-CoV-2 COVID-19 vaccine protects K18-hACE2 mice against lethal SARS-CoV-2 challenge publication-title: NPJ Vaccines doi: 10.1038/s41541-022-00451-7 – volume: 109 start-page: 12680 year: 2012 ident: bib42 article-title: Isotype modulates epitope specificity, affinity, and antiviral activities of anti-HIV-1 human broadly neutralizing 2F5 antibody publication-title: PNAS doi: 10.1073/pnas.1200024109 – volume: 74 start-page: 328 year: 2004 ident: bib4 article-title: Secretory IgA antibodies provide cross-protection against infection with different strains of influenza B virus publication-title: Journal of Medical Virology doi: 10.1002/jmv.20173 – volume: 131 year: 2021 ident: bib8 article-title: Distinctive features of severe SARS-CoV-2 pneumonia publication-title: The Journal of Clinical Investigation doi: 10.1172/JCI149412 – volume: 26 start-page: 2619 year: 2021 ident: bib10 article-title: Intranasal vaccines for SARS-CoV-2: From challenges to potential in COVID-19 management publication-title: Drug Discovery Today doi: 10.1016/j.drudis.2021.07.021 – volume: 26 start-page: 681 year: 2020 ident: bib41 article-title: SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes publication-title: Nature Medicine doi: 10.1038/s41591-020-0868-6 – volume: 11 year: 2022 ident: bib27 article-title: Characterization of systemic and mucosal humoral immune responses to an adjuvanted intranasal SARS-CoV-2 protein subunit vaccine candidate in mice publication-title: Vaccines doi: 10.3390/vaccines11010030 – volume: 185 start-page: 896 year: 2022 ident: bib1 article-title: Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2 publication-title: Cell doi: 10.1016/j.cell.2022.02.005 – volume: 6 year: 2021 ident: bib40 article-title: Protection against SARS-CoV-2 infection by a mucosal vaccine in rhesus macaques publication-title: JCI Insight doi: 10.1172/jci.insight.148494 – volume: 12 year: 2020 ident: bib32 article-title: Comparative analyses of the antiviral activities of IgG and IgA antibodies to influenza a virus M2 protein publication-title: Viruses doi: 10.3390/v12070780 – volume: 75 year: 2022 ident: bib5 article-title: Mucosal immune response in BNT162b2 COVID-19 vaccine recipients publication-title: EBioMedicine doi: 10.1016/j.ebiom.2021.103788 – volume: 27 start-page: 270 year: 2021 ident: bib15 article-title: T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial publication-title: Nature Medicine doi: 10.1038/s41591-020-01194-5 – volume: 383 start-page: 2603 year: 2020 ident: bib35 article-title: Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine publication-title: The New England Journal of Medicine doi: 10.1056/NEJMoa2034577 – volume: 121 year: 2024 ident: bib28 article-title: Conversion of monoclonal IgG to dimeric and secretory IgA restores neutralizing ability and prevents infection of Omicron lineages publication-title: PNAS doi: 10.1073/pnas.2315354120 – volume: 24 year: 2023 ident: bib19 article-title: SARS-CoV-2 mucosal vaccine publication-title: Nature Immunology doi: 10.1038/s41590-022-01405-w – volume: 15 year: 2019 ident: bib36 article-title: IgA tetramerization improves target breadth but not peak potency of functionality of anti-influenza virus broadly neutralizing antibody publication-title: PLOS Pathogens doi: 10.1371/journal.ppat.1007427 – volume: 75 start-page: 5141 year: 2001 ident: bib43 article-title: Mucosal delivery of inactivated influenza vaccine induces B-cell-dependent heterosubtypic cross-protection against lethal influenza A H5N1 virus infection publication-title: Journal of Virology doi: 10.1128/JVI.75.11.5141-5150.2001 – volume: 15 start-page: 799 year: 2022 ident: bib37 article-title: Systemic and mucosal IgA responses are variably induced in response to SARS-CoV-2 mRNA vaccination and are associated with protection against subsequent infection publication-title: Mucosal Immunology doi: 10.1038/s41385-022-00511-0 – volume: 51 start-page: 1774 year: 2021 ident: bib21 article-title: A single subcutaneous or intranasal immunization with adenovirus-based SARS-CoV-2 vaccine induces robust humoral and cellular immune responses in mice publication-title: European Journal of Immunology doi: 10.1002/eji.202149167 – volume: 39 start-page: 1435 year: 2021 ident: bib11 article-title: Single-dose intranasal subunit vaccine rapidly clears secondary sepsis in a high-dose pneumonic plague infection publication-title: Vaccine doi: 10.1016/j.vaccine.2021.01.040 – volume: 24 year: 2021 ident: bib31 article-title: Non-propagative human parainfluenza virus type 2 nasal vaccine robustly protects the upper and lower airways against SARS-CoV-2 publication-title: iScience doi: 10.1016/j.isci.2021.103379 – volume: 160 start-page: 433 year: 2015 ident: bib16 article-title: Intra-spike crosslinking overcomes antibody evasion by HIV-1 publication-title: Cell doi: 10.1016/j.cell.2015.01.016 – volume: 12 year: 2023 ident: bib49 article-title: SARS-CoV-2 hijacks neutralizing dimeric IgA for nasal infection and injury in Syrian hamsters1 publication-title: Emerging Microbes & Infections doi: 10.1080/22221751.2023.2245921 – volume: 11 start-page: 1075 year: 2023 ident: bib50 article-title: Safety and efficacy of the intranasal spray SARS-CoV-2 vaccine dNS1-RBD: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial publication-title: The Lancet. Respiratory Medicine doi: 10.1016/S2213-2600(23)00349-1 – volume: 23 year: 2022 ident: bib9 article-title: Potent neutralization by monoclonal human IgM against SARS-CoV-2 is impaired by class switch publication-title: EMBO Reports doi: 10.15252/embr.202153956 – volume: 10 year: 2012 ident: bib24 article-title: Rapid production of antigen-specific monoclonal antibodies from a variety of animals publication-title: BMC Biology doi: 10.1186/1741-7007-10-80 – volume: 11 year: 2020 ident: bib14 article-title: A cross-reactive human IgA monoclonal antibody blocks SARS-CoV-2 spike-ACE2 interaction publication-title: Nature Communications doi: 10.1038/s41467-020-18058-8 – volume: 40 start-page: 221 year: 2022 ident: bib29 article-title: Molecular mechanisms of multimeric assembly of IgM and IgA publication-title: Annual Review of Immunology doi: 10.1146/annurev-immunol-101320-123742 – volume: 14 year: 2022 ident: bib34 article-title: Novel super-neutralizing antibody UT28K is capable of protecting against infection from a wide variety of SARS-CoV-2 variants publication-title: mAbs doi: 10.1080/19420862.2022.2072455 – volume: 13 year: 2021 ident: bib45 article-title: Enhanced SARS-CoV-2 neutralization by dimeric IgA publication-title: Science Translational Medicine doi: 10.1126/scitranslmed.abf1555 – volume: 23 start-page: 3 year: 2022 ident: bib20 article-title: Mechanisms of SARS-CoV-2 entry into cells publication-title: Nature Reviews. Molecular Cell Biology doi: 10.1038/s41580-021-00418-x – volume: 208 start-page: 270 year: 2006 ident: bib47 article-title: The function of immunoglobulin A in immunity publication-title: The Journal of Pathology doi: 10.1002/path.1877 – volume: 37 start-page: 968 year: 2021 ident: bib39 article-title: IgA dominates the early neutralizing antibody response to SARS-CoV-2 virus publication-title: M S-Medecine Sciences doi: 10.1051/medsci/2021154 – volume: 9 year: 2014 ident: bib30 article-title: Comparison of antiviral activity between IgA and IgG specific to influenza virus hemagglutinin: increased potential of IgA for heterosubtypic immunity publication-title: PLOS ONE doi: 10.1371/journal.pone.0085582 – volume: 11 year: 2011 ident: bib48 article-title: Target-selective joint polymerase chain reaction: a robust and rapid method for high-throughput production of recombinant monoclonal antibodies from single cells publication-title: BMC Biotechnology doi: 10.1186/1472-6750-11-75 – volume: 38 start-page: 1242 year: 2020 ident: bib12 article-title: COVID-19 antibodies on trial publication-title: Nature Biotechnology doi: 10.1038/s41587-020-0732-8 – volume: 94 year: 2020 ident: bib33 article-title: Potential role of nonneutralizing iga antibodies in cross-protective immunity against influenza a viruses of multiple hemagglutinin subtypes publication-title: Journal of Virology doi: 10.1128/JVI.00408-20 – volume: 2020 year: 2020 ident: bib26 article-title: The effects of secretory IgA in the mucosal immune system publication-title: BioMed Research International doi: 10.1155/2020/2032057 – volume: 13 start-page: 429 year: 2019 ident: bib17 article-title: How to assess the effectiveness of nasal influenza vaccines? Role and measurement of sIgA in mucosal secretions publication-title: Influenza and Other Respiratory Viruses doi: 10.1111/irv.12664 – volume: 12 year: 2021 ident: bib25 article-title: Protective mucosal immunity against SARS-CoV-2 after heterologous systemic prime-mucosal boost immunization publication-title: Nature Communications doi: 10.1038/s41467-021-27063-4 |
SSID | ssj0000748819 |
Score | 2.4116807 |
Snippet | Intranasal vaccination is an attractive strategy for preventing COVID-19 disease as it stimulates the production of multimeric secretory immunoglobulin A... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
SubjectTerms | ACE2 Administration, Intranasal Angiotensin Angiotensin-converting enzyme 2 Animals Antibodies, Monoclonal - immunology Antibodies, Neutralizing - immunology Antibodies, Viral - immunology Antigens Coronaviruses COVID-19 COVID-19 - immunology COVID-19 - prevention & control COVID-19 vaccines COVID-19 Vaccines - administration & dosage COVID-19 Vaccines - immunology Disease transmission Endoplasmic reticulum Enzymes Epitopes Female Humans IgA Immune response Immunoglobulin A Immunoglobulin A - immunology Immunoglobulin A, Secretory - immunology Immunoglobulin G Immunology and Inflammation Infections Intranasal administration intranasal vaccination Lavage Lymphocytes B Medical research Mice Mice, Inbred BALB C Monoclonal antibodies monoclonal antibody Mucosal immunity Nasal Mucosa - immunology Peptidyl-dipeptidase A Plasma plasma cell Plasma cells Polyclonal antibodies Prophylaxis Proteins SARS-CoV-2 SARS-CoV-2 - immunology Severe acute respiratory syndrome coronavirus 2 Spike Glycoprotein, Coronavirus - administration & dosage Spike Glycoprotein, Coronavirus - immunology Spike protein Spleen Vaccine efficacy Vaccines Viral infections |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQEhIX1BbabksrI3G12MTv4xYVUdRy4CVukSeZlKhSgtjlwL_v2A6rXYTUS2-RM04m_mzPjDL-hrHDwjSgvZLCuMYK1RgUEIIWMrRkbV0RahcPCv86N6fX6uxW366U-oo5YZkeOA_ckSeHNmgTQAWpsHSgZYNeQ2HjAWiDcfclm7cSTKU92NLELHw-kGfJZB7hz65FmhYyJs-tmKDE1P-ae_kyS3LF7Jy8YTujv8hnWc-3bAP7d2wrV5B82mXzuJ4f8C6nofMwUozwoeV9mFPHH79n1LroYIjpgpwicMKy4fBEl_S-LBTWGHRjZ3IL-eXs4lIcDzei5PP77g_yxOnQ9Xvs-uT71fGpGOsoiFoatRCggy5bJBuFVhoAciFQS69qUBpK8hmktU1osSkBjAdVULRtplhIpSUi9XnPNvuhx4-MT9HRk6AuMSgFNkBRK92C93VjyVOCCTt8HtrqPtNlVBRmRASqhECVEJiwb3HYlyKR4zo1EPLViHz1L-QnbP8ZtGpcePNKRnp97azyE3awvE1LJv4HCT0Oj0kmkgo5QzIfMsZLTdSUYnYjSUO3hv6aqut3-u4u0XIXZYyurf30Pz7uM9suY6XhmFrp9tnm4uERv5D7s4Cvaab_BbIbBcE priority: 102 providerName: Directory of Open Access Journals |
Title | Comprehensive analysis of nasal IgA antibodies induced by intranasal administration of the SARS-CoV-2 spike protein |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40338637 https://www.proquest.com/docview/3204558749 https://www.proquest.com/docview/3201404869 https://pubmed.ncbi.nlm.nih.gov/PMC12061477 https://doaj.org/article/9758a56ab4a34e28b53de95b1782866e |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdby2AvY99L1wUN-moaW59-Gmlp6cZWRruOvBmdfW7NwM6S9KH_fe9kJ2vG2JuRT_ahk3QfOv1OiIPUVmByrRLrK5foymICIZhEhZq0rU9D6fmi8Ldze3alv8zMbAi4LYe0yvWeGDfqqis5Rn6oGDfdeKfzT_PfCVeN4tPVoYTGY7HL0GWc0uVmbhNjIfXoSeP11_IcKc5D_NrUSJNDcQrdA0UU8fr_ZWT-nSv5QPmcPhfPBqtRTnsxvxCPsH0pnvR1JO9eiSWv6gXe9MnoMgxAI7KrZRuW1PHz9ZRaVw10nDQoyQ8niVYS7uiR_tcThS0cXe5MxqG8nF5cJsfdzySTy3nzC2VEdmja1-Lq9OTH8VkyVFNISmX1KgETTFYjaSp0ygKQIYFG5boEbSAjy0E5V4UaqwzA5qBT8rntBFOljUKkPm_ETtu1-E7ICXr6EpQZBq3BBUhLbWrI87JyZC_BSBysh7aY96AZBTkbLIEiSqCIEhiJIx72DQkjXceGbnFdDAunyMmhCcYG0EFpzDwYVWFuIHV8Ad7iSOyvhVYMy29Z_JksI_Fx85oWDp-GhBa720jD0ELeEs3bXsYbTvSEPHeriEO_Jf0tVrfftM1NBOdOM_axndv7P1_vxdOMKwlz6qTfFzurxS1-IPNmBeM4h8di9-jk_PvFOAYJ7gF66ABf |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFVSIbgg3gQKLFI5Wo29Tx8QSkurhKYR6gP1ZnbscWtVstMkFcpP8Y3M2k5oEOLWm7Uvj3beu7MzjG2HOgMVSxFom5lAZhoDcE4FwuWkbW3oUusfCh-N9eBMfj1X5xvs1_ItjA-rXMrEWlBnVerPyHeEz5uurJHx58l14KtG-dvVZQmNhiwOcfGTXLbZp-EXwu_HKDrYP90bBG1VgSAVWs4DUE5FOZLERiM0AClUVCKWKUgFEWlQYUzmcswiAB2DDMn31D0MhVQCkebQuvfYphTkynTY5u7--Nvx6lSHFLIlHds8BDSkqndwVORI5Ch80N4t1VdXCPiXWft3dOYtdXfwmD1q7VTebwjrCdvA8im731SuXDxjMy9HpnjZhL9z16Y24VXOSzejicOLPrXOC6h8mCInz59oKOOwoE_6XzPIrWXu9ZPJHOUn_eOTYK_6HkR8NimukNe5JIryOTu7k51-wTplVeIrxntoaSVII3RSgnEQplLlEMdpZshCgy7bXm5tMmnSdCTk3ngMJDUGkhoDXbbrt301xOfWrhuq6UXSsmoSkwvllHYgnZAYWVAiw1hBaPyTe41dtrVEWtIy_Cz5Q55d9mHVTazq719cidVNPcYnM7KaxrxscLyCRPaEsFoQhHYN-2ugrveUxWWdDjyMvFdvzOv_w_WePRicHo2S0XB8-IY9jHwdYx-4abdYZz69wbdkXM3hXUvRnP24ayb6DVzwPBs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9QwLBpDIF4Q3xwMCNJ4rO7afPYBoWPjtGNjQoyhe-vi1t0qpPa43oTur_HrcPpx7BDibW9V4qRWbMd24tiM7YY6AxVLEWibmUBmGgNwTgXC5aRtbehS6x8KfzrWB6fy40zNttiv_i2MD6vs98Rmo86q1J-RD4XPm66skfEw78IiPu9P3s1_BL6ClL9p7ctptCxyiKuf5L7Vb6f7ROs3UTT58HXvIOgqDASp0HIZgHIqypF2bzRCA5ByRSVimYJUEJE2FcZkLscsAtAxyJD8UD3CUEglEGkMzXuD3TRChV7GzMysz3dINVvStu2TQENKe4hHRY7EmMKH711Rgk2tgH8ZuH_HaV5RfJN77G5nsfJxy2L32RaWD9ittobl6iGr_Y6ywIs2EJ67LskJr3JeupoGTs_H1LosoPIBi7woM-KmjMOKPul_LZDbyOHrB5Nhyk_GX06CvepbEPF6XnxH3mSVKMpH7PRa1vkx2y6rEp8yPkJLM0EaoZMSjIMwlSqHOE4zQ7YaDNhuv7TJvE3YkZCj4ymQNBRIGgoM2Hu_7GsQn2W7aagW50kntElMzpRT2oF0QmJkQYkMYwWh8Y_vNQ7YTk-0pBP9OvnDqAP2et1NQutvYlyJ1WUD49MaWU0wT1oarzGRIyGsFoSh3aD-BqqbPWVx0SQGDyPv3xvz7P94vWK3SXSSo-nx4XN2J_IFjX0Ep91h28vFJb4gK2sJLxt25uzsuuXnN2IIPus |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+analysis+of+nasal+IgA+antibodies+induced+by+intranasal+administration+of+the+SARS-CoV-2+spike+protein&rft.jtitle=eLife&rft.au=Waki%2C+Kentarou&rft.au=Tani%2C+Hideki&rft.au=Kawahara%2C+Eigo&rft.au=Saga%2C+Yumiko&rft.date=2025-05-08&rft.issn=2050-084X&rft.eissn=2050-084X&rft.volume=12&rft_id=info:doi/10.7554%2FeLife.88387&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |