Pedestrian Detection at Night in Infrared Images Using an Attention-Guided Encoder-Decoder Convolutional Neural Network

Pedestrian-related accidents are much more likely to occur during nighttime when visible (VI) cameras are much less effective. Unlike VI cameras, infrared (IR) cameras can work in total darkness. However, IR images have several drawbacks, such as low-resolution, noise, and thermal energy characteris...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 10; no. 3; p. 809
Main Authors Chen, Yunfan, Shin, Hyunchul
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pedestrian-related accidents are much more likely to occur during nighttime when visible (VI) cameras are much less effective. Unlike VI cameras, infrared (IR) cameras can work in total darkness. However, IR images have several drawbacks, such as low-resolution, noise, and thermal energy characteristics that can differ depending on the weather. To overcome these drawbacks, we propose an IR camera system to identify pedestrians at night that uses a novel attention-guided encoder-decoder convolutional neural network (AED-CNN). In AED-CNN, encoder-decoder modules are introduced to generate multi-scale features, in which new skip connection blocks are incorporated into the decoder to combine the feature maps from the encoder and decoder module. This new architecture increases context information which is helpful for extracting discriminative features from low-resolution and noisy IR images. Furthermore, we propose an attention module to re-weight the multi-scale features generated by the encoder-decoder module. The attention mechanism effectively highlights pedestrians while eliminating background interference, which helps to detect pedestrians under various weather conditions. Empirical experiments on two challenging datasets fully demonstrate that our method shows superior performance. Our approach significantly improves the precision of the state-of-the-art method by 5.1% and 23.78% on the Keimyung University (KMU) and Computer Vision Center (CVC)-09 pedestrian dataset, respectively.
AbstractList Pedestrian-related accidents are much more likely to occur during nighttime when visible (VI) cameras are much less effective. Unlike VI cameras, infrared (IR) cameras can work in total darkness. However, IR images have several drawbacks, such as low-resolution, noise, and thermal energy characteristics that can differ depending on the weather. To overcome these drawbacks, we propose an IR camera system to identify pedestrians at night that uses a novel attention-guided encoder-decoder convolutional neural network (AED-CNN). In AED-CNN, encoder-decoder modules are introduced to generate multi-scale features, in which new skip connection blocks are incorporated into the decoder to combine the feature maps from the encoder and decoder module. This new architecture increases context information which is helpful for extracting discriminative features from low-resolution and noisy IR images. Furthermore, we propose an attention module to re-weight the multi-scale features generated by the encoder-decoder module. The attention mechanism effectively highlights pedestrians while eliminating background interference, which helps to detect pedestrians under various weather conditions. Empirical experiments on two challenging datasets fully demonstrate that our method shows superior performance. Our approach significantly improves the precision of the state-of-the-art method by 5.1% and 23.78% on the Keimyung University (KMU) and Computer Vision Center (CVC)-09 pedestrian dataset, respectively.
Author Shin, Hyunchul
Chen, Yunfan
Author_xml – sequence: 1
  givenname: Yunfan
  surname: Chen
  fullname: Chen, Yunfan
– sequence: 2
  givenname: Hyunchul
  surname: Shin
  fullname: Shin, Hyunchul
BookMark eNptkUFP3DAQha0KpNKFE3_AUo8orZ1JnPiIFkpXQrQHOFsTx956G-zFdkD99_XuFgmh-vJG1jdv7HmfyJEP3hByztkXAMm-4nbLGQPWM_mBnNSsExU0vDt6U38kZyltWDmSQ8_ZCXn5aUaTcnTo6ZXJRmcXPMVM79z6V6bO05W3EaMZ6eoR1ybRh-T8mhb8Mmfjd3h1M7uxANdeh9HE6srslS6Dfw7TvENwondmjnvJLyH-PiXHFqdkzv7pgjx8u75ffq9uf9yslpe3lQbR5Gqo-aBxEI0QKBGQg2Ytl6NsGXRcDjCIVmDdDlaXwo6W9wAgbC-lRVkjLMjq4DsG3KhtdI8Y_6iATu0vQlwrjNnpyaiua4qv0VgDNDWMKLTtbC_AAreiMcXr88FrG8PTXLamNmGO5W9J1W2JoBZdGb8g_EDpGFKKxirtMu6WkCO6SXGmdnGpN3GVnot3Pa8v_R_9F3UTl_M
CitedBy_id crossref_primary_10_3390_app12041799
crossref_primary_10_3390_electronics11213551
crossref_primary_10_1007_s00521_023_08239_z
crossref_primary_10_3390_s24010249
crossref_primary_10_3390_rs16203904
crossref_primary_10_3390_s24165108
crossref_primary_10_1007_s00371_021_02284_2
crossref_primary_10_1007_s11554_022_01203_5
crossref_primary_10_1007_s11760_021_01916_3
crossref_primary_10_1007_s11554_021_01182_z
crossref_primary_10_1016_j_ijleo_2021_167080
crossref_primary_10_3390_electronics10080934
crossref_primary_10_3788_IRLA20240256
crossref_primary_10_1371_journal_pone_0298677
crossref_primary_10_3390_app14010249
crossref_primary_10_1038_s41598_022_12001_1
crossref_primary_10_3390_electronics11071151
crossref_primary_10_1109_JSEN_2023_3341068
crossref_primary_10_1109_TNSE_2021_3139335
crossref_primary_10_3390_jimaging11030069
crossref_primary_10_1016_j_compeleceng_2022_107781
crossref_primary_10_1109_ACCESS_2020_3028656
crossref_primary_10_3390_rs12050859
crossref_primary_10_1016_j_imavis_2024_105106
crossref_primary_10_3390_s23094294
crossref_primary_10_1007_s11554_024_01607_5
crossref_primary_10_2478_amns_2024_1542
crossref_primary_10_1002_smll_202304237
crossref_primary_10_1016_j_isprsjprs_2022_02_006
crossref_primary_10_3390_rs13010069
crossref_primary_10_3390_rs14010177
crossref_primary_10_7717_peerj_cs_1064
crossref_primary_10_3390_app10196783
Cites_doi 10.3390/s18072272
10.1109/TITS.2004.838222
10.3390/s20010034
10.1016/j.patcog.2018.08.005
10.1007/978-3-319-46448-0_2
10.1109/TPAMI.2015.2389824
10.1109/CVPR.2015.7298706
10.1109/TIP.2016.2579306
10.1109/CVPR.2018.00442
10.1109/ICCV.2017.530
10.1007/s11263-015-0816-y
10.1109/TPAMI.2014.2300479
10.1109/ICCV.2015.221
10.1109/CVPR.2017.690
10.1109/TIP.2017.2705426
10.1109/CVPR.2018.00813
10.1109/CVPR.2016.90
10.5244/C.30.73
10.1109/TCSVT.2016.2539684
10.1109/CVPR.2017.106
10.1364/OL.37.004350
10.1109/CVPR.2018.00745
10.1109/CVPR.2014.276
10.1049/iet-cvi.2018.5315
10.1016/j.cviu.2006.07.016
10.1109/CVPRW.2017.36
10.1109/ICCV.2015.169
10.1109/TITS.2009.2018961
10.1109/TSMCB.2011.2175726
10.1016/j.patcog.2014.12.013
10.1016/j.infrared.2010.09.006
10.1007/978-3-319-46493-0_22
10.1109/CVPR.2018.00811
10.3390/app9040752
10.1109/ACCESS.2019.2932749
10.1007/978-3-030-01219-9_39
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app10030809
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_774d95eca233423da6cf7f863f31f64e
10_3390_app10030809
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c364t-b21bcab6466a9a3a13c0519d9503719b3b656a25bfc656fdf183336f899fa92a3
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:13:53 EDT 2025
Mon Jun 30 07:58:58 EDT 2025
Tue Jul 01 03:01:09 EDT 2025
Thu Apr 24 23:07:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-b21bcab6466a9a3a13c0519d9503719b3b656a25bfc656fdf183336f899fa92a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/774d95eca233423da6cf7f863f31f64e
PQID 2533926718
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_774d95eca233423da6cf7f863f31f64e
proquest_journals_2533926718
crossref_citationtrail_10_3390_app10030809
crossref_primary_10_3390_app10030809
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhao (ref_28) 2015; 48
Xu (ref_23) 2005; 6
Jones (ref_27) 2010; 53
Russakovsky (ref_42) 2015; 115
Chen (ref_12) 2018; 12
ref_14
ref_36
ref_35
Jeong (ref_21) 2016; 27
ref_11
ref_33
ref_10
ref_32
Xu (ref_44) 2012; 42
ref_19
Appel (ref_1) 2014; 36
ref_18
ref_17
ref_39
ref_16
ref_15
ref_37
Biswas (ref_29) 2017; 26
Li (ref_7) 2017; 20
ref_47
Li (ref_13) 2019; 85
ref_46
ref_45
ref_22
ref_43
ref_20
He (ref_34) 2015; 37
ref_41
ref_40
ref_3
Ko (ref_24) 2012; 37
ref_2
Li (ref_38) 2016; 25
Bertozzi (ref_26) 2007; 106
ref_9
ref_8
Ge (ref_25) 2009; 10
Heo (ref_30) 2018; 17
ref_5
ref_4
Cao (ref_31) 2019; 7
ref_6
References_xml – ident: ref_6
  doi: 10.3390/s18072272
– volume: 6
  start-page: 63
  year: 2005
  ident: ref_23
  article-title: Pedestrian detection and tracking with night vision
  publication-title: IEEE Trans. Intell. Trans. Syst.
  doi: 10.1109/TITS.2004.838222
– ident: ref_32
  doi: 10.3390/s20010034
– volume: 85
  start-page: 161
  year: 2019
  ident: ref_13
  article-title: Illumination-aware faster r-cnn for robust multispectral pedestrian detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.08.005
– ident: ref_16
  doi: 10.1007/978-3-319-46448-0_2
– volume: 37
  start-page: 1904
  year: 2015
  ident: ref_34
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal.
  doi: 10.1109/TPAMI.2015.2389824
– ident: ref_9
  doi: 10.1109/CVPR.2015.7298706
– volume: 25
  start-page: 3919
  year: 2016
  ident: ref_38
  article-title: Deepsaliency: Multi-task deep neural network model for salient object detection
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2579306
– ident: ref_19
  doi: 10.1109/CVPR.2018.00442
– ident: ref_5
  doi: 10.1109/ICCV.2017.530
– volume: 115
  start-page: 211
  year: 2015
  ident: ref_42
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– ident: ref_40
– volume: 36
  start-page: 1532
  year: 2014
  ident: ref_1
  article-title: Fast feature pyramids for object detection
  publication-title: IEEE Trans. Pattern Anal.
  doi: 10.1109/TPAMI.2014.2300479
– ident: ref_2
  doi: 10.1109/ICCV.2015.221
– ident: ref_20
  doi: 10.1109/CVPR.2017.690
– ident: ref_18
– volume: 26
  start-page: 4229
  year: 2017
  ident: ref_29
  article-title: Linear support tensor machine with LSK channels: Pedestrian detection in thermal infrared images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2705426
– ident: ref_35
– ident: ref_37
  doi: 10.1109/CVPR.2018.00813
– ident: ref_33
  doi: 10.1109/CVPR.2016.90
– ident: ref_10
  doi: 10.5244/C.30.73
– volume: 27
  start-page: 1368
  year: 2016
  ident: ref_21
  article-title: Early detection of sudden pedestrian crossing for safe driving during summer nights
  publication-title: IEEE Trans. Circ. Syst. Video
  doi: 10.1109/TCSVT.2016.2539684
– ident: ref_36
  doi: 10.1109/CVPR.2017.106
– volume: 37
  start-page: 4350
  year: 2012
  ident: ref_24
  article-title: Detecting humans using luminance saliency in thermal images
  publication-title: Opt. Lett.
  doi: 10.1364/OL.37.004350
– volume: 20
  start-page: 985
  year: 2017
  ident: ref_7
  article-title: Scale-aware fast r-cnn for pedestrian detection
  publication-title: IEEE Trans. Multimed.
– ident: ref_39
  doi: 10.1109/CVPR.2018.00745
– ident: ref_4
– volume: 17
  start-page: 1
  year: 2018
  ident: ref_30
  article-title: Pedestrian detection at night using deep neural networks and saliency maps
  publication-title: Electron. Imaging
– ident: ref_41
  doi: 10.1109/CVPR.2014.276
– volume: 12
  start-page: 1179
  year: 2018
  ident: ref_12
  article-title: Multi-layer fusion techniques using a CNN for multispectral pedestrian detection
  publication-title: IET Comput. Vis.
  doi: 10.1049/iet-cvi.2018.5315
– volume: 106
  start-page: 194
  year: 2007
  ident: ref_26
  article-title: Pedestrian detection by means of far-infrared stereo vision
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2006.07.016
– ident: ref_11
  doi: 10.1109/CVPRW.2017.36
– ident: ref_14
  doi: 10.1109/ICCV.2015.169
– volume: 10
  start-page: 283
  year: 2009
  ident: ref_25
  article-title: Real-time pedestrian detection and tracking at nighttime for driver-assistance systems
  publication-title: IEEE Trans. Intell. Trans. Syst.
  doi: 10.1109/TITS.2009.2018961
– volume: 42
  start-page: 729
  year: 2012
  ident: ref_44
  article-title: Detection of sudden pedestrian crossings for driving assistance systems
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/TSMCB.2011.2175726
– volume: 48
  start-page: 1947
  year: 2015
  ident: ref_28
  article-title: Robust pedestrian detection in thermal infrared imagery using a shape distribution histogram feature and modified sparse representation classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.12.013
– ident: ref_15
– ident: ref_17
– ident: ref_45
– ident: ref_43
– ident: ref_22
– volume: 53
  start-page: 439
  year: 2010
  ident: ref_27
  article-title: Detection of pedestrians in far-infrared automotive night vision using region-growing and clothing distortion compensation
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2010.09.006
– ident: ref_3
  doi: 10.1007/978-3-319-46493-0_22
– ident: ref_47
  doi: 10.1109/CVPR.2018.00811
– ident: ref_8
  doi: 10.3390/app9040752
– volume: 7
  start-page: 135023
  year: 2019
  ident: ref_31
  article-title: A new region proposal network for far-infrared pedestrian detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2932749
– ident: ref_46
  doi: 10.1007/978-3-030-01219-9_39
SSID ssj0000913810
Score 2.322806
Snippet Pedestrian-related accidents are much more likely to occur during nighttime when visible (VI) cameras are much less effective. Unlike VI cameras, infrared (IR)...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 809
SubjectTerms attention
Cameras
convolutional neural network
Datasets
encoder-decoder
infrared pedestrian detection
Methods
Neural networks
Proposals
Semantics
Sensors
Support vector machines
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED-N8gIPiI8hOmDyAw8wKaKxHTd5QnyUwSQqNA2Jt8jxB6q0uawN8O9z57pdpU17SpScoiR3Pt_Zv_sdwFHVL5yqpMyKfo4JCtUAa1mUGRqP59x6WRZU4Hw3VDcP8ttj8ZgW3KYJVjn3idFR27GhNfJTjnFJxRW60rPn3xl1jaLd1dRCYwVW0QWXZQdWLwbD---LVRZivSzz3qwwDx_Qo33hPJK0EARxaSqKjP1_OeQ4y1xvwkYKD9n5TJ9b8MGFbVhfIg3chq00HKfsOHFGn-zA272zLrbgCOzKtRFfFZhu2ZCSbzYK7Db4CYHN2e0vdCFTFrECDMXP23YGecy-vowsCgwC1blPsisXj-xyHF6TgeKrEZtHPET4-Ed4uB78uLzJUk-FzAgl26zheWN0o6RSutJC58JQEGergrj7qkY0GOBpXjTe4Im3Hoe8EMpjWuZ1xbXYhU4YB7cHrGeE9hhxGNVIGTOTPpeaO2WJJU7bLnyZ_97aJMJx6nvxs8bEg3RRL-miC0cL4ecZz8a_xS5ITwsRIseOF8aTpzqNtRojWvweZzQXxG9otTK-70slvMi9kq4LB3Mt12nETus_9vXp_7f3YY1Tzh2R2wfQaScv7hADk7b5nKzvHabx4nE
  priority: 102
  providerName: ProQuest
Title Pedestrian Detection at Night in Infrared Images Using an Attention-Guided Encoder-Decoder Convolutional Neural Network
URI https://www.proquest.com/docview/2533926718
https://doaj.org/article/774d95eca233423da6cf7f863f31f64e
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50vehBfOL6WHLwoELRJml2e_Sx667gIqLgraRpAoJmZberf9-ZtEpBwYunlDLQkJnMg37zDcBh2k2sSqWMkm6MBQr1AGuZ9CI0Hsd54WQvoQbn27EaPsqbp-SpMeqLMGEVPXB1cKeYnhRpYo3mgsjqCq2M67qeEk7ETklL3hdjXqOYCj44jYm6qmrIE1jX0__gOJCzEPSwEYICU_8PRxyiy2ANVuu0kJ1X21mHBes3YKVBFrgB6_U1nLGjmiv6eBM-7mxhw-gNz65sGXBVnumSjanoZs-ejbybEsicjV7RdcxYwAgwFD8vywrqGF3PnwsU6Hvqb59GVzas7HLi32vDxK0Ri0dYAmx8Cx4H_YfLYVTPUoiMULKMch7nRudKKqVTLXQsDCVveLTE2ZfmIsfETvMkdwYfXOHwqguhHJZjTqdci21o-Ym3O8DOjNAOMw2jcilDRdLlUnOrCmKH00UbTr6ONzM10TjNu3jJsOAgXWQNXbTh8Fv4reLX-F3sgvT0LUKk2OEFmkpWm0r2l6m0Yf9Ly1l9U2cZx3w35QpD9O5_fGMPljlV5AHXvQ-tcjq3B5i2lHkHFnuD6w4sXfTHd_edYK-fEMHsNQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-N8QA8IDZA6xjghyEBUkRjO27ygNBY17Vsq3jYpL0Fx3_QJHC3NmPiS_EZuXOSUgnE254cxafI8Z3Pd_bd7wB2i0HmVCFlkg1SdFAoB1jLLE9QeDzn1ss8owTnk6kan8lP59n5GvzqcmEorLLTiVFR25mhM_J3HO2SgitUpR8urxKqGkW3q10JjUYsjtzPG3TZFu8nQ-TvK85HB6f746StKpAYoWSdVDytjK6UVEoXWuhUGDJjbJERel1RiQpNHM2zyht88Naj0AuhPDomXhdcC_zuHbgrcTjk7OWjw-WZDmFs5mm_SQPE_j7dQqcREoYCHlc2vlgf4C_1H_e00SN42BqjbK-Rng1Yc2ETHqxAFG7CRrv4F-x1i1D95jHcfHbWxYIfgQ1dHaO5AtM1m5Krzy4CmwQ_p9B2NvmOCmvBYmQCQ_K9um4CLJPD6wuLBAeBsurnydDFlu3Pwo92OeDQCDskNjFY_Qmc3cpcP4X1MAtuC1jfCO3RvjGqkjL6QQMuNXfKEiadtj14201vaVp4c6qy8a1EN4d4Ua7woge7S-LLBtXj32QfiU9LEoLiji9m869lu7JLtJ_xf5zRXBCaotXK-IHPlfAi9Uq6Hux0XC5b_bAo_0jz9v-7X8K98enJcXk8mR49g_ucvP0YM74D6_X82j1Hk6iuXkQ5ZPDltgX_N4naHWg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6NTkLwgNgA0THAD0MCpGiN7TjNA5q2tWVlUFWISXsLjmOjSVu6tRkTf41ftzvHKZVAvO3JUXKKEt_5fJd89x3ATpYmVmVSRkkaY4JCNcBaJv0IjcdxXjrZT6jA-ctEHZ3IT6fJ6Rr8bmthCFbZ-kTvqMuZoW_kuxzjkowrdKW7LsAipoPR3uVVRB2k6E9r206jMZFj--sG07fFh_EAdf2G89Hw2-FRFDoMREYoWUcFjwujCyWV0pkWOhaGQpoyS4jJLitEgeGO5knhDB640uECEEI5TFKczrgWeN97sJ5SVtSB9YPhZPp1-YWHGDf7ca8pCsSH79E_6dgTxBD8cWUb9N0C_toM_A43egyPQmjK9htb2oA1W23CwxXCwk3YCK5gwd4Gvup3T-Bmakvr239UbGBrj-2qmK7ZhBJ_dlaxceXmBHRn4wt0XwvmcQoMxffruoFbRh-vz0oUGFZUYz-PBtaP7HBW_QyLAx-NmET84KHrT-HkTmb7GXSqWWWfA-sZoR1GO0YVUvqsKOVSc6tKYqjTZRfet9Obm0B2Tj03znNMekgX-YouurCzFL5sOD7-LXZAelqKEDG3PzGb_8jDOs8xmsb3sUZzQdyKpVbGpa6vhBOxU9J2YbvVch68xSL_Y9tb_7_8Gu6j0eefx5PjF_CAU-rvAeTb0Knn1_Ylxkd18SoYIoPvd237t3i0Ivo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pedestrian+Detection+at+Night+in+Infrared+Images+Using+an+Attention-Guided+Encoder-Decoder+Convolutional+Neural+Network&rft.jtitle=Applied+sciences&rft.au=Yunfan+Chen&rft.au=Hyunchul+Shin&rft.date=2020-02-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=10&rft.issue=3&rft.spage=809&rft_id=info:doi/10.3390%2Fapp10030809&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_774d95eca233423da6cf7f863f31f64e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon