Pedestrian Detection at Night in Infrared Images Using an Attention-Guided Encoder-Decoder Convolutional Neural Network
Pedestrian-related accidents are much more likely to occur during nighttime when visible (VI) cameras are much less effective. Unlike VI cameras, infrared (IR) cameras can work in total darkness. However, IR images have several drawbacks, such as low-resolution, noise, and thermal energy characteris...
Saved in:
Published in | Applied sciences Vol. 10; no. 3; p. 809 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pedestrian-related accidents are much more likely to occur during nighttime when visible (VI) cameras are much less effective. Unlike VI cameras, infrared (IR) cameras can work in total darkness. However, IR images have several drawbacks, such as low-resolution, noise, and thermal energy characteristics that can differ depending on the weather. To overcome these drawbacks, we propose an IR camera system to identify pedestrians at night that uses a novel attention-guided encoder-decoder convolutional neural network (AED-CNN). In AED-CNN, encoder-decoder modules are introduced to generate multi-scale features, in which new skip connection blocks are incorporated into the decoder to combine the feature maps from the encoder and decoder module. This new architecture increases context information which is helpful for extracting discriminative features from low-resolution and noisy IR images. Furthermore, we propose an attention module to re-weight the multi-scale features generated by the encoder-decoder module. The attention mechanism effectively highlights pedestrians while eliminating background interference, which helps to detect pedestrians under various weather conditions. Empirical experiments on two challenging datasets fully demonstrate that our method shows superior performance. Our approach significantly improves the precision of the state-of-the-art method by 5.1% and 23.78% on the Keimyung University (KMU) and Computer Vision Center (CVC)-09 pedestrian dataset, respectively. |
---|---|
AbstractList | Pedestrian-related accidents are much more likely to occur during nighttime when visible (VI) cameras are much less effective. Unlike VI cameras, infrared (IR) cameras can work in total darkness. However, IR images have several drawbacks, such as low-resolution, noise, and thermal energy characteristics that can differ depending on the weather. To overcome these drawbacks, we propose an IR camera system to identify pedestrians at night that uses a novel attention-guided encoder-decoder convolutional neural network (AED-CNN). In AED-CNN, encoder-decoder modules are introduced to generate multi-scale features, in which new skip connection blocks are incorporated into the decoder to combine the feature maps from the encoder and decoder module. This new architecture increases context information which is helpful for extracting discriminative features from low-resolution and noisy IR images. Furthermore, we propose an attention module to re-weight the multi-scale features generated by the encoder-decoder module. The attention mechanism effectively highlights pedestrians while eliminating background interference, which helps to detect pedestrians under various weather conditions. Empirical experiments on two challenging datasets fully demonstrate that our method shows superior performance. Our approach significantly improves the precision of the state-of-the-art method by 5.1% and 23.78% on the Keimyung University (KMU) and Computer Vision Center (CVC)-09 pedestrian dataset, respectively. |
Author | Shin, Hyunchul Chen, Yunfan |
Author_xml | – sequence: 1 givenname: Yunfan surname: Chen fullname: Chen, Yunfan – sequence: 2 givenname: Hyunchul surname: Shin fullname: Shin, Hyunchul |
BookMark | eNptkUFP3DAQha0KpNKFE3_AUo8orZ1JnPiIFkpXQrQHOFsTx956G-zFdkD99_XuFgmh-vJG1jdv7HmfyJEP3hByztkXAMm-4nbLGQPWM_mBnNSsExU0vDt6U38kZyltWDmSQ8_ZCXn5aUaTcnTo6ZXJRmcXPMVM79z6V6bO05W3EaMZ6eoR1ybRh-T8mhb8Mmfjd3h1M7uxANdeh9HE6srslS6Dfw7TvENwondmjnvJLyH-PiXHFqdkzv7pgjx8u75ffq9uf9yslpe3lQbR5Gqo-aBxEI0QKBGQg2Ytl6NsGXRcDjCIVmDdDlaXwo6W9wAgbC-lRVkjLMjq4DsG3KhtdI8Y_6iATu0vQlwrjNnpyaiua4qv0VgDNDWMKLTtbC_AAreiMcXr88FrG8PTXLamNmGO5W9J1W2JoBZdGb8g_EDpGFKKxirtMu6WkCO6SXGmdnGpN3GVnot3Pa8v_R_9F3UTl_M |
CitedBy_id | crossref_primary_10_3390_app12041799 crossref_primary_10_3390_electronics11213551 crossref_primary_10_1007_s00521_023_08239_z crossref_primary_10_3390_s24010249 crossref_primary_10_3390_rs16203904 crossref_primary_10_3390_s24165108 crossref_primary_10_1007_s00371_021_02284_2 crossref_primary_10_1007_s11554_022_01203_5 crossref_primary_10_1007_s11760_021_01916_3 crossref_primary_10_1007_s11554_021_01182_z crossref_primary_10_1016_j_ijleo_2021_167080 crossref_primary_10_3390_electronics10080934 crossref_primary_10_3788_IRLA20240256 crossref_primary_10_1371_journal_pone_0298677 crossref_primary_10_3390_app14010249 crossref_primary_10_1038_s41598_022_12001_1 crossref_primary_10_3390_electronics11071151 crossref_primary_10_1109_JSEN_2023_3341068 crossref_primary_10_1109_TNSE_2021_3139335 crossref_primary_10_3390_jimaging11030069 crossref_primary_10_1016_j_compeleceng_2022_107781 crossref_primary_10_1109_ACCESS_2020_3028656 crossref_primary_10_3390_rs12050859 crossref_primary_10_1016_j_imavis_2024_105106 crossref_primary_10_3390_s23094294 crossref_primary_10_1007_s11554_024_01607_5 crossref_primary_10_2478_amns_2024_1542 crossref_primary_10_1002_smll_202304237 crossref_primary_10_1016_j_isprsjprs_2022_02_006 crossref_primary_10_3390_rs13010069 crossref_primary_10_3390_rs14010177 crossref_primary_10_7717_peerj_cs_1064 crossref_primary_10_3390_app10196783 |
Cites_doi | 10.3390/s18072272 10.1109/TITS.2004.838222 10.3390/s20010034 10.1016/j.patcog.2018.08.005 10.1007/978-3-319-46448-0_2 10.1109/TPAMI.2015.2389824 10.1109/CVPR.2015.7298706 10.1109/TIP.2016.2579306 10.1109/CVPR.2018.00442 10.1109/ICCV.2017.530 10.1007/s11263-015-0816-y 10.1109/TPAMI.2014.2300479 10.1109/ICCV.2015.221 10.1109/CVPR.2017.690 10.1109/TIP.2017.2705426 10.1109/CVPR.2018.00813 10.1109/CVPR.2016.90 10.5244/C.30.73 10.1109/TCSVT.2016.2539684 10.1109/CVPR.2017.106 10.1364/OL.37.004350 10.1109/CVPR.2018.00745 10.1109/CVPR.2014.276 10.1049/iet-cvi.2018.5315 10.1016/j.cviu.2006.07.016 10.1109/CVPRW.2017.36 10.1109/ICCV.2015.169 10.1109/TITS.2009.2018961 10.1109/TSMCB.2011.2175726 10.1016/j.patcog.2014.12.013 10.1016/j.infrared.2010.09.006 10.1007/978-3-319-46493-0_22 10.1109/CVPR.2018.00811 10.3390/app9040752 10.1109/ACCESS.2019.2932749 10.1007/978-3-030-01219-9_39 |
ContentType | Journal Article |
Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app10030809 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_774d95eca233423da6cf7f863f31f64e 10_3390_app10030809 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c364t-b21bcab6466a9a3a13c0519d9503719b3b656a25bfc656fdf183336f899fa92a3 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:13:53 EDT 2025 Mon Jun 30 07:58:58 EDT 2025 Tue Jul 01 03:01:09 EDT 2025 Thu Apr 24 23:07:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-b21bcab6466a9a3a13c0519d9503719b3b656a25bfc656fdf183336f899fa92a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/774d95eca233423da6cf7f863f31f64e |
PQID | 2533926718 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_774d95eca233423da6cf7f863f31f64e proquest_journals_2533926718 crossref_citationtrail_10_3390_app10030809 crossref_primary_10_3390_app10030809 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Zhao (ref_28) 2015; 48 Xu (ref_23) 2005; 6 Jones (ref_27) 2010; 53 Russakovsky (ref_42) 2015; 115 Chen (ref_12) 2018; 12 ref_14 ref_36 ref_35 Jeong (ref_21) 2016; 27 ref_11 ref_33 ref_10 ref_32 Xu (ref_44) 2012; 42 ref_19 Appel (ref_1) 2014; 36 ref_18 ref_17 ref_39 ref_16 ref_15 ref_37 Biswas (ref_29) 2017; 26 Li (ref_7) 2017; 20 ref_47 Li (ref_13) 2019; 85 ref_46 ref_45 ref_22 ref_43 ref_20 He (ref_34) 2015; 37 ref_41 ref_40 ref_3 Ko (ref_24) 2012; 37 ref_2 Li (ref_38) 2016; 25 Bertozzi (ref_26) 2007; 106 ref_9 ref_8 Ge (ref_25) 2009; 10 Heo (ref_30) 2018; 17 ref_5 ref_4 Cao (ref_31) 2019; 7 ref_6 |
References_xml | – ident: ref_6 doi: 10.3390/s18072272 – volume: 6 start-page: 63 year: 2005 ident: ref_23 article-title: Pedestrian detection and tracking with night vision publication-title: IEEE Trans. Intell. Trans. Syst. doi: 10.1109/TITS.2004.838222 – ident: ref_32 doi: 10.3390/s20010034 – volume: 85 start-page: 161 year: 2019 ident: ref_13 article-title: Illumination-aware faster r-cnn for robust multispectral pedestrian detection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.08.005 – ident: ref_16 doi: 10.1007/978-3-319-46448-0_2 – volume: 37 start-page: 1904 year: 2015 ident: ref_34 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. doi: 10.1109/TPAMI.2015.2389824 – ident: ref_9 doi: 10.1109/CVPR.2015.7298706 – volume: 25 start-page: 3919 year: 2016 ident: ref_38 article-title: Deepsaliency: Multi-task deep neural network model for salient object detection publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2579306 – ident: ref_19 doi: 10.1109/CVPR.2018.00442 – ident: ref_5 doi: 10.1109/ICCV.2017.530 – volume: 115 start-page: 211 year: 2015 ident: ref_42 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – ident: ref_40 – volume: 36 start-page: 1532 year: 2014 ident: ref_1 article-title: Fast feature pyramids for object detection publication-title: IEEE Trans. Pattern Anal. doi: 10.1109/TPAMI.2014.2300479 – ident: ref_2 doi: 10.1109/ICCV.2015.221 – ident: ref_20 doi: 10.1109/CVPR.2017.690 – ident: ref_18 – volume: 26 start-page: 4229 year: 2017 ident: ref_29 article-title: Linear support tensor machine with LSK channels: Pedestrian detection in thermal infrared images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2705426 – ident: ref_35 – ident: ref_37 doi: 10.1109/CVPR.2018.00813 – ident: ref_33 doi: 10.1109/CVPR.2016.90 – ident: ref_10 doi: 10.5244/C.30.73 – volume: 27 start-page: 1368 year: 2016 ident: ref_21 article-title: Early detection of sudden pedestrian crossing for safe driving during summer nights publication-title: IEEE Trans. Circ. Syst. Video doi: 10.1109/TCSVT.2016.2539684 – ident: ref_36 doi: 10.1109/CVPR.2017.106 – volume: 37 start-page: 4350 year: 2012 ident: ref_24 article-title: Detecting humans using luminance saliency in thermal images publication-title: Opt. Lett. doi: 10.1364/OL.37.004350 – volume: 20 start-page: 985 year: 2017 ident: ref_7 article-title: Scale-aware fast r-cnn for pedestrian detection publication-title: IEEE Trans. Multimed. – ident: ref_39 doi: 10.1109/CVPR.2018.00745 – ident: ref_4 – volume: 17 start-page: 1 year: 2018 ident: ref_30 article-title: Pedestrian detection at night using deep neural networks and saliency maps publication-title: Electron. Imaging – ident: ref_41 doi: 10.1109/CVPR.2014.276 – volume: 12 start-page: 1179 year: 2018 ident: ref_12 article-title: Multi-layer fusion techniques using a CNN for multispectral pedestrian detection publication-title: IET Comput. Vis. doi: 10.1049/iet-cvi.2018.5315 – volume: 106 start-page: 194 year: 2007 ident: ref_26 article-title: Pedestrian detection by means of far-infrared stereo vision publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2006.07.016 – ident: ref_11 doi: 10.1109/CVPRW.2017.36 – ident: ref_14 doi: 10.1109/ICCV.2015.169 – volume: 10 start-page: 283 year: 2009 ident: ref_25 article-title: Real-time pedestrian detection and tracking at nighttime for driver-assistance systems publication-title: IEEE Trans. Intell. Trans. Syst. doi: 10.1109/TITS.2009.2018961 – volume: 42 start-page: 729 year: 2012 ident: ref_44 article-title: Detection of sudden pedestrian crossings for driving assistance systems publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/TSMCB.2011.2175726 – volume: 48 start-page: 1947 year: 2015 ident: ref_28 article-title: Robust pedestrian detection in thermal infrared imagery using a shape distribution histogram feature and modified sparse representation classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.12.013 – ident: ref_15 – ident: ref_17 – ident: ref_45 – ident: ref_43 – ident: ref_22 – volume: 53 start-page: 439 year: 2010 ident: ref_27 article-title: Detection of pedestrians in far-infrared automotive night vision using region-growing and clothing distortion compensation publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2010.09.006 – ident: ref_3 doi: 10.1007/978-3-319-46493-0_22 – ident: ref_47 doi: 10.1109/CVPR.2018.00811 – ident: ref_8 doi: 10.3390/app9040752 – volume: 7 start-page: 135023 year: 2019 ident: ref_31 article-title: A new region proposal network for far-infrared pedestrian detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2932749 – ident: ref_46 doi: 10.1007/978-3-030-01219-9_39 |
SSID | ssj0000913810 |
Score | 2.322806 |
Snippet | Pedestrian-related accidents are much more likely to occur during nighttime when visible (VI) cameras are much less effective. Unlike VI cameras, infrared (IR)... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 809 |
SubjectTerms | attention Cameras convolutional neural network Datasets encoder-decoder infrared pedestrian detection Methods Neural networks Proposals Semantics Sensors Support vector machines |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED-N8gIPiI8hOmDyAw8wKaKxHTd5QnyUwSQqNA2Jt8jxB6q0uawN8O9z57pdpU17SpScoiR3Pt_Zv_sdwFHVL5yqpMyKfo4JCtUAa1mUGRqP59x6WRZU4Hw3VDcP8ttj8ZgW3KYJVjn3idFR27GhNfJTjnFJxRW60rPn3xl1jaLd1dRCYwVW0QWXZQdWLwbD---LVRZivSzz3qwwDx_Qo33hPJK0EARxaSqKjP1_OeQ4y1xvwkYKD9n5TJ9b8MGFbVhfIg3chq00HKfsOHFGn-zA272zLrbgCOzKtRFfFZhu2ZCSbzYK7Db4CYHN2e0vdCFTFrECDMXP23YGecy-vowsCgwC1blPsisXj-xyHF6TgeKrEZtHPET4-Ed4uB78uLzJUk-FzAgl26zheWN0o6RSutJC58JQEGergrj7qkY0GOBpXjTe4Im3Hoe8EMpjWuZ1xbXYhU4YB7cHrGeE9hhxGNVIGTOTPpeaO2WJJU7bLnyZ_97aJMJx6nvxs8bEg3RRL-miC0cL4ecZz8a_xS5ITwsRIseOF8aTpzqNtRojWvweZzQXxG9otTK-70slvMi9kq4LB3Mt12nETus_9vXp_7f3YY1Tzh2R2wfQaScv7hADk7b5nKzvHabx4nE priority: 102 providerName: ProQuest |
Title | Pedestrian Detection at Night in Infrared Images Using an Attention-Guided Encoder-Decoder Convolutional Neural Network |
URI | https://www.proquest.com/docview/2533926718 https://doaj.org/article/774d95eca233423da6cf7f863f31f64e |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50vehBfOL6WHLwoELRJml2e_Sx667gIqLgraRpAoJmZberf9-ZtEpBwYunlDLQkJnMg37zDcBh2k2sSqWMkm6MBQr1AGuZ9CI0Hsd54WQvoQbn27EaPsqbp-SpMeqLMGEVPXB1cKeYnhRpYo3mgsjqCq2M67qeEk7ETklL3hdjXqOYCj44jYm6qmrIE1jX0__gOJCzEPSwEYICU_8PRxyiy2ANVuu0kJ1X21mHBes3YKVBFrgB6_U1nLGjmiv6eBM-7mxhw-gNz65sGXBVnumSjanoZs-ejbybEsicjV7RdcxYwAgwFD8vywrqGF3PnwsU6Hvqb59GVzas7HLi32vDxK0Ri0dYAmx8Cx4H_YfLYVTPUoiMULKMch7nRudKKqVTLXQsDCVveLTE2ZfmIsfETvMkdwYfXOHwqguhHJZjTqdci21o-Ym3O8DOjNAOMw2jcilDRdLlUnOrCmKH00UbTr6ONzM10TjNu3jJsOAgXWQNXbTh8Fv4reLX-F3sgvT0LUKk2OEFmkpWm0r2l6m0Yf9Ly1l9U2cZx3w35QpD9O5_fGMPljlV5AHXvQ-tcjq3B5i2lHkHFnuD6w4sXfTHd_edYK-fEMHsNQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-N8QA8IDZA6xjghyEBUkRjO27ygNBY17Vsq3jYpL0Fx3_QJHC3NmPiS_EZuXOSUgnE254cxafI8Z3Pd_bd7wB2i0HmVCFlkg1SdFAoB1jLLE9QeDzn1ss8owTnk6kan8lP59n5GvzqcmEorLLTiVFR25mhM_J3HO2SgitUpR8urxKqGkW3q10JjUYsjtzPG3TZFu8nQ-TvK85HB6f746StKpAYoWSdVDytjK6UVEoXWuhUGDJjbJERel1RiQpNHM2zyht88Naj0AuhPDomXhdcC_zuHbgrcTjk7OWjw-WZDmFs5mm_SQPE_j7dQqcREoYCHlc2vlgf4C_1H_e00SN42BqjbK-Rng1Yc2ETHqxAFG7CRrv4F-x1i1D95jHcfHbWxYIfgQ1dHaO5AtM1m5Krzy4CmwQ_p9B2NvmOCmvBYmQCQ_K9um4CLJPD6wuLBAeBsurnydDFlu3Pwo92OeDQCDskNjFY_Qmc3cpcP4X1MAtuC1jfCO3RvjGqkjL6QQMuNXfKEiadtj14201vaVp4c6qy8a1EN4d4Ua7woge7S-LLBtXj32QfiU9LEoLiji9m869lu7JLtJ_xf5zRXBCaotXK-IHPlfAi9Uq6Hux0XC5b_bAo_0jz9v-7X8K98enJcXk8mR49g_ucvP0YM74D6_X82j1Hk6iuXkQ5ZPDltgX_N4naHWg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6NTkLwgNgA0THAD0MCpGiN7TjNA5q2tWVlUFWISXsLjmOjSVu6tRkTf41ftzvHKZVAvO3JUXKKEt_5fJd89x3ATpYmVmVSRkkaY4JCNcBaJv0IjcdxXjrZT6jA-ctEHZ3IT6fJ6Rr8bmthCFbZ-kTvqMuZoW_kuxzjkowrdKW7LsAipoPR3uVVRB2k6E9r206jMZFj--sG07fFh_EAdf2G89Hw2-FRFDoMREYoWUcFjwujCyWV0pkWOhaGQpoyS4jJLitEgeGO5knhDB640uECEEI5TFKczrgWeN97sJ5SVtSB9YPhZPp1-YWHGDf7ca8pCsSH79E_6dgTxBD8cWUb9N0C_toM_A43egyPQmjK9htb2oA1W23CwxXCwk3YCK5gwd4Gvup3T-Bmakvr239UbGBrj-2qmK7ZhBJ_dlaxceXmBHRn4wt0XwvmcQoMxffruoFbRh-vz0oUGFZUYz-PBtaP7HBW_QyLAx-NmET84KHrT-HkTmb7GXSqWWWfA-sZoR1GO0YVUvqsKOVSc6tKYqjTZRfet9Obm0B2Tj03znNMekgX-YouurCzFL5sOD7-LXZAelqKEDG3PzGb_8jDOs8xmsb3sUZzQdyKpVbGpa6vhBOxU9J2YbvVch68xSL_Y9tb_7_8Gu6j0eefx5PjF_CAU-rvAeTb0Knn1_Ylxkd18SoYIoPvd237t3i0Ivo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pedestrian+Detection+at+Night+in+Infrared+Images+Using+an+Attention-Guided+Encoder-Decoder+Convolutional+Neural+Network&rft.jtitle=Applied+sciences&rft.au=Yunfan+Chen&rft.au=Hyunchul+Shin&rft.date=2020-02-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=10&rft.issue=3&rft.spage=809&rft_id=info:doi/10.3390%2Fapp10030809&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_774d95eca233423da6cf7f863f31f64e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |