Behaviour of precast concrete beam–column sub-assemblages subject to column removal

•Precast concrete beam–column sub-assemblages were able to develop compressive arch action and catenary action under column removal scenarios.•Increasing the reinforcement ratio increased the resistance of sub-assemblage.•Flexural deformations of the beam significantly contributed to the deformation...

Full description

Saved in:
Bibliographic Details
Published inEngineering structures Vol. 93; pp. 85 - 96
Main Authors Kang, Shao-Bo, Tan, Kang Hai
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.06.2015
Subjects
Online AccessGet full text
ISSN0141-0296
1873-7323
DOI10.1016/j.engstruct.2015.03.027

Cover

Loading…
Abstract •Precast concrete beam–column sub-assemblages were able to develop compressive arch action and catenary action under column removal scenarios.•Increasing the reinforcement ratio increased the resistance of sub-assemblage.•Flexural deformations of the beam significantly contributed to the deformation capacity of sub-assemblages.•Horizontal shear cracking was observed cross the interface between the precast beam unit and cast-in-situ concrete topping. Under column removal scenarios, initiation of alternate load paths via adjacent bridging beams to redistribute vertical loads requires certain level of ductility and continuity in beam–column joints. Although this approach does not consider the magnitude of the blast event, it is threat-independent and offers a minimum level of robustness against column removal scenarios. This paper studies the behaviour of precast concrete sub-assemblages which comprised two precast beams and a precast column joining together by cast-in-place concrete topping above the two beams and the beam–column joint. The top longitudinal reinforcement in the structural topping of precast beams passed through the beam–column joint continuously. However, the bottom beam longitudinal reinforcement was either lap-spliced or anchored as a 90° bend within the cast-in-place joint. Due to discontinuity of bottom beam longitudinal reinforcement, the ability of such an assemblage to develop compressive arch action (CAA) and subsequent catenary action has to be investigated, in particular, the effect of the top and bottom beam longitudinal reinforcement ratios. Test results show that significant CAA and catenary action developed in the beams under column removal scenarios, with pull-out failure of the bottom beam reinforcement in the joint. The enhancement of CAA and catenary action to structural resistance greatly depends on joint detailing and beam reinforcement ratio. Furthermore, the effectiveness of horizontal shear transfer between concretes cast at different times is examined at large deformation stage. Finally, practical suggestions are given to enhance structural resistance of a similar type of precast concrete sub-assemblages.
AbstractList •Precast concrete beam–column sub-assemblages were able to develop compressive arch action and catenary action under column removal scenarios.•Increasing the reinforcement ratio increased the resistance of sub-assemblage.•Flexural deformations of the beam significantly contributed to the deformation capacity of sub-assemblages.•Horizontal shear cracking was observed cross the interface between the precast beam unit and cast-in-situ concrete topping. Under column removal scenarios, initiation of alternate load paths via adjacent bridging beams to redistribute vertical loads requires certain level of ductility and continuity in beam–column joints. Although this approach does not consider the magnitude of the blast event, it is threat-independent and offers a minimum level of robustness against column removal scenarios. This paper studies the behaviour of precast concrete sub-assemblages which comprised two precast beams and a precast column joining together by cast-in-place concrete topping above the two beams and the beam–column joint. The top longitudinal reinforcement in the structural topping of precast beams passed through the beam–column joint continuously. However, the bottom beam longitudinal reinforcement was either lap-spliced or anchored as a 90° bend within the cast-in-place joint. Due to discontinuity of bottom beam longitudinal reinforcement, the ability of such an assemblage to develop compressive arch action (CAA) and subsequent catenary action has to be investigated, in particular, the effect of the top and bottom beam longitudinal reinforcement ratios. Test results show that significant CAA and catenary action developed in the beams under column removal scenarios, with pull-out failure of the bottom beam reinforcement in the joint. The enhancement of CAA and catenary action to structural resistance greatly depends on joint detailing and beam reinforcement ratio. Furthermore, the effectiveness of horizontal shear transfer between concretes cast at different times is examined at large deformation stage. Finally, practical suggestions are given to enhance structural resistance of a similar type of precast concrete sub-assemblages.
Author Tan, Kang Hai
Kang, Shao-Bo
Author_xml – sequence: 1
  givenname: Shao-Bo
  surname: Kang
  fullname: Kang, Shao-Bo
  email: skang2@e.ntu.edu.sg
– sequence: 2
  givenname: Kang Hai
  surname: Tan
  fullname: Tan, Kang Hai
BookMark eNqNkMtKw0AUhgepYK0-g3mBxLklExcuavEGBTd2PczlpE5IMmVmWnDnO_iGPokpLS7c6Orww_l--L9zNBn8AAhdEVwQTKrrtoBhHVPYmlRQTMoCswJTcYKmpBYsF4yyCZpiwkmO6U11hs5jbDHGtK7xFK3u4E3tnN-GzDfZJoBRMWXGDyZAgkyD6r8-Po3vtv2Qxa3OVYzQ606tIe5zCyZlyWfHjwC936nuAp02qotwebwztHq4f1085cuXx-fFfJkbVvGUK8Wt5WVlLeOloJhTUXMCtqk0lEyDbkQFWhOgtcKE1Iqaqik1F6ZWFceWzdDtodcEH2OARhqXVHJ-SEG5ThIs945kK38cyb0jiZkcHY28-MVvgutVeP8HOT-QMM7bOQgyGgeDAetGh0la7_7s-AbBUYzK
CitedBy_id crossref_primary_10_1016_j_engfailanal_2025_109548
crossref_primary_10_1016_j_conbuildmat_2017_03_120
crossref_primary_10_1007_s12205_018_1518_0
crossref_primary_10_1016_j_engstruct_2024_117694
crossref_primary_10_1016_j_jobe_2023_106631
crossref_primary_10_1016_j_istruc_2021_12_086
crossref_primary_10_1016_j_ijimpeng_2022_104284
crossref_primary_10_1016_j_engstruct_2020_110612
crossref_primary_10_1016_j_engstruct_2018_02_009
crossref_primary_10_1016_j_engstruct_2020_110336
crossref_primary_10_1016_j_conbuildmat_2023_132836
crossref_primary_10_1016_j_engstruct_2023_116603
crossref_primary_10_1016_j_jobe_2022_104803
crossref_primary_10_1177_1369433220965273
crossref_primary_10_3390_ma14092162
crossref_primary_10_1016_j_engstruct_2020_111272
crossref_primary_10_1061_JSENDH_STENG_11893
crossref_primary_10_1016_j_engstruct_2022_114460
crossref_primary_10_1016_j_engstruct_2019_04_051
crossref_primary_10_1680_jmacr_15_00245
crossref_primary_10_1061__ASCE_ST_1943_541X_0003065
crossref_primary_10_14359_51738715
crossref_primary_10_1016_j_engfailanal_2024_108264
crossref_primary_10_1016_j_engstruct_2024_117820
crossref_primary_10_1016_j_engstruct_2021_113316
crossref_primary_10_1016_j_conbuildmat_2020_121130
crossref_primary_10_1016_j_engfailanal_2023_107638
crossref_primary_10_1016_j_engstruct_2024_119206
crossref_primary_10_1016_j_istruc_2020_03_018
crossref_primary_10_1016_j_istruc_2023_105689
crossref_primary_10_1016_j_istruc_2022_03_059
crossref_primary_10_1016_j_jobe_2023_108084
crossref_primary_10_1016_j_jobe_2022_104417
crossref_primary_10_3390_sym14020370
crossref_primary_10_1016_j_jobe_2023_106739
crossref_primary_10_14359_51688629
crossref_primary_10_1002_tal_1771
crossref_primary_10_1016_j_engstruct_2019_110115
crossref_primary_10_1007_s12205_020_1035_9
crossref_primary_10_1016_j_engstruct_2019_04_048
crossref_primary_10_1016_j_jobe_2020_101461
crossref_primary_10_1016_j_jobe_2023_106217
crossref_primary_10_1186_s40069_021_00469_6
crossref_primary_10_1016_j_cscm_2020_e00457
crossref_primary_10_1016_j_engstruct_2020_111529
crossref_primary_10_1016_j_engfailanal_2024_108995
crossref_primary_10_1007_s13296_023_00744_0
crossref_primary_10_1016_j_istruc_2023_03_146
crossref_primary_10_1016_j_engstruct_2024_117791
crossref_primary_10_1061__ASCE_ST_1943_541X_0003072
crossref_primary_10_1177_1369433220981655
crossref_primary_10_3390_buildings13020533
crossref_primary_10_1016_j_engstruct_2019_109552
crossref_primary_10_1016_j_jobe_2024_109242
crossref_primary_10_1016_j_engstruct_2020_110675
crossref_primary_10_3390_buildings12020122
crossref_primary_10_1016_j_engstruct_2022_114679
crossref_primary_10_1016_j_engstruct_2023_116746
crossref_primary_10_1061__ASCE_CF_1943_5509_0001328
crossref_primary_10_1016_j_engstruct_2018_06_082
crossref_primary_10_1016_j_engstruct_2022_115457
crossref_primary_10_1016_j_jobe_2021_102884
crossref_primary_10_1061__ASCE_ST_1943_541X_0001616
crossref_primary_10_1016_j_engstruct_2021_113434
crossref_primary_10_1016_j_jobe_2021_103850
crossref_primary_10_1016_j_engstruct_2019_109877
crossref_primary_10_1080_15732479_2021_1951777
crossref_primary_10_3390_buildings11100436
crossref_primary_10_1016_j_engstruct_2017_03_039
crossref_primary_10_1002_tal_1588
crossref_primary_10_1016_j_engstruct_2015_04_034
crossref_primary_10_1002_suco_202000784
crossref_primary_10_1016_j_engstruct_2019_109719
crossref_primary_10_1016_j_jobe_2020_101875
crossref_primary_10_1177_1369433219900679
crossref_primary_10_1016_j_engstruct_2017_12_038
crossref_primary_10_1016_j_engstruct_2018_10_027
crossref_primary_10_1016_j_engstruct_2021_113071
crossref_primary_10_1007_s12205_024_2443_z
crossref_primary_10_1155_2018_8098242
crossref_primary_10_1016_j_engfailanal_2024_108044
crossref_primary_10_1007_s42107_018_0099_z
crossref_primary_10_1016_j_istruc_2025_108489
crossref_primary_10_1016_j_engfailanal_2023_107138
crossref_primary_10_1016_j_engstruct_2023_115637
crossref_primary_10_3390_app11020599
crossref_primary_10_1016_j_engstruct_2022_114499
crossref_primary_10_1016_j_firesaf_2017_11_009
crossref_primary_10_1016_j_engstruct_2022_113841
crossref_primary_10_1016_j_jobe_2021_102991
crossref_primary_10_3390_sym12061008
crossref_primary_10_1016_j_engstruct_2015_06_051
crossref_primary_10_1016_j_engstruct_2023_116450
crossref_primary_10_1016_j_engstruct_2023_116174
crossref_primary_10_1016_j_jobe_2024_109405
crossref_primary_10_1061__ASCE_ST_1943_541X_0001828
Cites_doi 10.1061/(ASCE)ST.1943-541X.0000422
10.1016/j.engstruct.2007.07.011
10.1061/(ASCE)ST.1943-541X.0000658
10.6028/NIST.TN.1720
10.1016/j.engstruct.2013.03.026
10.1061/(ASCE)0733-9445(2008)134:7(1079)
10.15554/pcij.07011986.54.93
10.1061/(ASCE)0733-9445(2001)127:4(359)
10.1016/j.engstruct.2011.08.040
10.1061/JSDEAG.0004876
10.1002/tal.375
10.1016/j.engstruct.2012.04.016
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engstruct.2015.03.027
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7323
EndPage 96
ExternalDocumentID 10_1016_j_engstruct_2015_03_027
S0141029615001637
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
SSH
VH1
WUQ
ZY4
ID FETCH-LOGICAL-c364t-aa4dd456dd345720427841edf6be53bebf76ebb1e28a0118a2c6f5b47c8a640d3
IEDL.DBID .~1
ISSN 0141-0296
IngestDate Tue Jul 01 03:01:47 EDT 2025
Thu Apr 24 23:07:21 EDT 2025
Fri Feb 23 02:27:33 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Precast concrete sub-assemblages
Beam–column joints
Compressive arch action
Deformation capacity
Column removal scenario
Catenary action
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-aa4dd456dd345720427841edf6be53bebf76ebb1e28a0118a2c6f5b47c8a640d3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0141029615001637
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_engstruct_2015_03_027
crossref_primary_10_1016_j_engstruct_2015_03_027
elsevier_sciencedirect_doi_10_1016_j_engstruct_2015_03_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-15
PublicationDateYYYYMMDD 2015-06-15
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-15
  day: 15
PublicationDecade 2010
PublicationTitle Engineering structures
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kai, Li (b0075) 2012; 42
Shiohara H, Watanabe F. The Japan PRESSS precast concrete connection design. In: 12th World conference on earthquake engineering, Auckland, New Zealand; 2000.
NIST. Best practices for reducing the potential for progressive collapse in buildings. NISTIR 7396. Gaithersburg, MD: National Institute of Standards and Technology; 2007.
Sasani, Kropelnicki (b0090) 2008; 17
GSA. Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects. Washington, DC: General Services Administration; 2003.
Ellingwood, Leyendecker (b0005) 1978; 104
CAE. Guideline for the use of precast concrete in buildings. Report of a study group of the New Zealand concrete society and the New Zealand society of earthquake engineering, 2nd ed. Christchurch, New Zealand: Centre for Advanced Engineering, University of Canterbury; 1999.
Foley, Martin, Schneeman (b0035) 2007
Lew HS, Bao Y, Sadek F, Main JA, Pujol S, Sozen MA. An experimental and computational study of reinforced concrete assemblies under a column removal scenario. NIST Technical Note 1720. Gaithersburg, MD: National Institute of Standards and Technology; 2011.
BSI. Eurocode 2: design of concrete structures—Part 1–1: General rules and rules for buildings. BS EN 1992-1-1:2004. London: British Standards Institution; 2004. p. 225.
Yu, Tan (b0050) 2013; 55
Yu J, Tan KH. Macromodel-based simulation of catenary action of RC beam–column sub-assemblages. In: Proceedings of the 3rd fib international congress 2010, Washington, DC; 2010.
Bao, Kunnath, El-Tawil, Lew (b0065) 2008; 134
Yu, Tan (b0150) 2013; 139
Pham, Tan (b0080) 2013; 55
Park, Bull (b0135) 1986; 31
Sadek, Main, Lew, Bao (b0095) 2011; 137
Patnaik (b0140) 2000; 127
Yi, He, Xiao, Kunnath (b0070) 2008; 105
FIB. Precast concrete in mixed construction. Bulletin 19. Fédération internationale du béton, Laussane, Switzerland; 2002.
Main, Bao, Lew, Sadek (b0130) 2014; 2014
FIB. Seismic design of precast concrete building structures. Bulletin 27. Fédération internationale du béton, Laussane, Switzerland; 2003.
DOD. Design of buildings to resist progressive collapse. Unified Facilities Criteria (UFC) 4-023-03. Washington, DC: Department of Defence; 2013.
Orton, Jirsa, Bayrak (b0010) 2009; 106
Izzudin, Vlassis, Elghazouli, Nethercot (b0085) 2008; 30
Pauley, Priestley (b0145) 1992
Yu J, Tan KH. Experimental study on catenary action of RC beam–column sub-assemblages. In: Proceedings of the 3rd fib international congress 2010, Washington, DC; 2010.
Su, Tian, Song (b0040) 2009; 106
Van Acker (b0110) 2013
ASCE. Seismic rehabilitation of existing buildings. ASCE/SEI 41-06. Reston, VA: American Society of Civil Engineers; 2007.
Pham (10.1016/j.engstruct.2015.03.027_b0080) 2013; 55
Main (10.1016/j.engstruct.2015.03.027_b0130) 2014; 2014
10.1016/j.engstruct.2015.03.027_b0055
Van Acker (10.1016/j.engstruct.2015.03.027_b0110) 2013
Patnaik (10.1016/j.engstruct.2015.03.027_b0140) 2000; 127
10.1016/j.engstruct.2015.03.027_b0030
Kai (10.1016/j.engstruct.2015.03.027_b0075) 2012; 42
Bao (10.1016/j.engstruct.2015.03.027_b0065) 2008; 134
Ellingwood (10.1016/j.engstruct.2015.03.027_b0005) 1978; 104
10.1016/j.engstruct.2015.03.027_b0105
10.1016/j.engstruct.2015.03.027_b0025
Su (10.1016/j.engstruct.2015.03.027_b0040) 2009; 106
10.1016/j.engstruct.2015.03.027_b0125
10.1016/j.engstruct.2015.03.027_b0020
10.1016/j.engstruct.2015.03.027_b0120
10.1016/j.engstruct.2015.03.027_b0045
10.1016/j.engstruct.2015.03.027_b0100
10.1016/j.engstruct.2015.03.027_b0060
Izzudin (10.1016/j.engstruct.2015.03.027_b0085) 2008; 30
Yi (10.1016/j.engstruct.2015.03.027_b0070) 2008; 105
Foley (10.1016/j.engstruct.2015.03.027_b0035) 2007
Sasani (10.1016/j.engstruct.2015.03.027_b0090) 2008; 17
Yu (10.1016/j.engstruct.2015.03.027_b0150) 2013; 139
Park (10.1016/j.engstruct.2015.03.027_b0135) 1986; 31
Sadek (10.1016/j.engstruct.2015.03.027_b0095) 2011; 137
Pauley (10.1016/j.engstruct.2015.03.027_b0145) 1992
Orton (10.1016/j.engstruct.2015.03.027_b0010) 2009; 106
10.1016/j.engstruct.2015.03.027_b0015
Yu (10.1016/j.engstruct.2015.03.027_b0050) 2013; 55
10.1016/j.engstruct.2015.03.027_b0115
References_xml – volume: 42
  start-page: 154
  year: 2012
  end-page: 167
  ident: b0075
  article-title: Dynamic performance of RC beam–column substructures under the scenario of the loss of a corner column – experimental results
  publication-title: Eng Struct
– volume: 137
  start-page: 881
  year: 2011
  end-page: 892
  ident: b0095
  article-title: Testing and analysis of steel and concrete beam–column assemblies under a column removal scenario
  publication-title: J Struct Eng
– reference: CAE. Guideline for the use of precast concrete in buildings. Report of a study group of the New Zealand concrete society and the New Zealand society of earthquake engineering, 2nd ed. Christchurch, New Zealand: Centre for Advanced Engineering, University of Canterbury; 1999.
– year: 2013
  ident: b0110
  article-title: Accidental actions and progressive collapse. International seminar on precast concrete structures
– reference: Shiohara H, Watanabe F. The Japan PRESSS precast concrete connection design. In: 12th World conference on earthquake engineering, Auckland, New Zealand; 2000.
– volume: 2014
  start-page: 2210
  year: 2014
  end-page: 2220
  ident: b0130
  article-title: Robustness of precast concrete frames: experimental and computational studies
  publication-title: Struct Congr
– year: 2007
  ident: b0035
  publication-title: Robustness in structural steel framing systems
– volume: 17
  start-page: 757
  year: 2008
  end-page: 772
  ident: b0090
  article-title: Progressive collapse analysis of an RC structure
  publication-title: Struct Des Tall Spec Build
– reference: DOD. Design of buildings to resist progressive collapse. Unified Facilities Criteria (UFC) 4-023-03. Washington, DC: Department of Defence; 2013.
– reference: Yu J, Tan KH. Macromodel-based simulation of catenary action of RC beam–column sub-assemblages. In: Proceedings of the 3rd fib international congress 2010, Washington, DC; 2010.
– reference: ASCE. Seismic rehabilitation of existing buildings. ASCE/SEI 41-06. Reston, VA: American Society of Civil Engineers; 2007.
– volume: 104
  start-page: 413
  year: 1978
  end-page: 423
  ident: b0005
  article-title: Approach for design against progressive collapse
  publication-title: J Struct Div ASCE
– volume: 106
  start-page: 600
  year: 2009
  end-page: 607
  ident: b0040
  article-title: Progressive collapse resistance of axially-restrained frame beams
  publication-title: ACI Struct J
– volume: 139
  start-page: 233
  year: 2013
  end-page: 250
  ident: b0150
  article-title: Structural behavior of RC beam–column subassemblages under a middle column removal scenario
  publication-title: J Struct Eng
– volume: 105
  start-page: 433
  year: 2008
  end-page: 439
  ident: b0070
  article-title: Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures
  publication-title: ACI Struct J
– volume: 127
  start-page: 359
  year: 2000
  end-page: 366
  ident: b0140
  article-title: Behavior of composite concrete beams with smooth interface
  publication-title: J Struct Eng
– year: 1992
  ident: b0145
  article-title: Seismic design of reinforced concrete and masonry buildings
– reference: FIB. Seismic design of precast concrete building structures. Bulletin 27. Fédération internationale du béton, Laussane, Switzerland; 2003.
– volume: 55
  start-page: 2
  year: 2013
  end-page: 15
  ident: b0080
  article-title: Experimental study of beam-slab substructures subjected to a penultimate-internal column loss
  publication-title: Eng Struct
– reference: Lew HS, Bao Y, Sadek F, Main JA, Pujol S, Sozen MA. An experimental and computational study of reinforced concrete assemblies under a column removal scenario. NIST Technical Note 1720. Gaithersburg, MD: National Institute of Standards and Technology; 2011.
– volume: 55
  start-page: 90
  year: 2013
  end-page: 106
  ident: b0050
  article-title: Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages
  publication-title: Eng Struct
– volume: 134
  start-page: 1079
  year: 2008
  end-page: 1091
  ident: b0065
  article-title: Macromodel-based simulation of progressive collapse: RC frame structures
  publication-title: J Struct Eng
– volume: 31
  start-page: 54
  year: 1986
  end-page: 93
  ident: b0135
  article-title: Seismic resistance of frames incorporating precast prestressed concrete beam shells
  publication-title: PCI J
– volume: 106
  start-page: 608
  year: 2009
  end-page: 616
  ident: b0010
  article-title: Carbon fiber-reinforced polymer for continuity in existing reinforced concrete buildings vulnerable to collapse
  publication-title: ACI Struct J
– reference: FIB. Precast concrete in mixed construction. Bulletin 19. Fédération internationale du béton, Laussane, Switzerland; 2002.
– reference: NIST. Best practices for reducing the potential for progressive collapse in buildings. NISTIR 7396. Gaithersburg, MD: National Institute of Standards and Technology; 2007.
– reference: GSA. Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects. Washington, DC: General Services Administration; 2003.
– volume: 30
  start-page: 1308
  year: 2008
  end-page: 1318
  ident: b0085
  article-title: Progressive collapse of multi-storey buildings due to sudden column loss – Part I: Simplified assessment framework
  publication-title: Eng Struct
– reference: Yu J, Tan KH. Experimental study on catenary action of RC beam–column sub-assemblages. In: Proceedings of the 3rd fib international congress 2010, Washington, DC; 2010.
– reference: BSI. Eurocode 2: design of concrete structures—Part 1–1: General rules and rules for buildings. BS EN 1992-1-1:2004. London: British Standards Institution; 2004. p. 225.
– volume: 137
  start-page: 881
  year: 2011
  ident: 10.1016/j.engstruct.2015.03.027_b0095
  article-title: Testing and analysis of steel and concrete beam–column assemblies under a column removal scenario
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0000422
– volume: 105
  start-page: 433
  year: 2008
  ident: 10.1016/j.engstruct.2015.03.027_b0070
  article-title: Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures
  publication-title: ACI Struct J
– ident: 10.1016/j.engstruct.2015.03.027_b0030
– ident: 10.1016/j.engstruct.2015.03.027_b0020
– ident: 10.1016/j.engstruct.2015.03.027_b0055
– year: 1992
  ident: 10.1016/j.engstruct.2015.03.027_b0145
– volume: 30
  start-page: 1308
  year: 2008
  ident: 10.1016/j.engstruct.2015.03.027_b0085
  article-title: Progressive collapse of multi-storey buildings due to sudden column loss – Part I: Simplified assessment framework
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2007.07.011
– volume: 139
  start-page: 233
  year: 2013
  ident: 10.1016/j.engstruct.2015.03.027_b0150
  article-title: Structural behavior of RC beam–column subassemblages under a middle column removal scenario
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0000658
– ident: 10.1016/j.engstruct.2015.03.027_b0125
– volume: 106
  start-page: 608
  year: 2009
  ident: 10.1016/j.engstruct.2015.03.027_b0010
  article-title: Carbon fiber-reinforced polymer for continuity in existing reinforced concrete buildings vulnerable to collapse
  publication-title: ACI Struct J
– ident: 10.1016/j.engstruct.2015.03.027_b0045
– ident: 10.1016/j.engstruct.2015.03.027_b0060
  doi: 10.6028/NIST.TN.1720
– ident: 10.1016/j.engstruct.2015.03.027_b0100
– volume: 55
  start-page: 2
  year: 2013
  ident: 10.1016/j.engstruct.2015.03.027_b0080
  article-title: Experimental study of beam-slab substructures subjected to a penultimate-internal column loss
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2013.03.026
– volume: 134
  start-page: 1079
  year: 2008
  ident: 10.1016/j.engstruct.2015.03.027_b0065
  article-title: Macromodel-based simulation of progressive collapse: RC frame structures
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(2008)134:7(1079)
– volume: 31
  start-page: 54
  year: 1986
  ident: 10.1016/j.engstruct.2015.03.027_b0135
  article-title: Seismic resistance of frames incorporating precast prestressed concrete beam shells
  publication-title: PCI J
  doi: 10.15554/pcij.07011986.54.93
– ident: 10.1016/j.engstruct.2015.03.027_b0025
– volume: 127
  start-page: 359
  year: 2000
  ident: 10.1016/j.engstruct.2015.03.027_b0140
  article-title: Behavior of composite concrete beams with smooth interface
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(2001)127:4(359)
– ident: 10.1016/j.engstruct.2015.03.027_b0115
– volume: 55
  start-page: 90
  year: 2013
  ident: 10.1016/j.engstruct.2015.03.027_b0050
  article-title: Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2011.08.040
– year: 2013
  ident: 10.1016/j.engstruct.2015.03.027_b0110
– volume: 106
  start-page: 600
  year: 2009
  ident: 10.1016/j.engstruct.2015.03.027_b0040
  article-title: Progressive collapse resistance of axially-restrained frame beams
  publication-title: ACI Struct J
– volume: 104
  start-page: 413
  year: 1978
  ident: 10.1016/j.engstruct.2015.03.027_b0005
  article-title: Approach for design against progressive collapse
  publication-title: J Struct Div ASCE
  doi: 10.1061/JSDEAG.0004876
– ident: 10.1016/j.engstruct.2015.03.027_b0015
– year: 2007
  ident: 10.1016/j.engstruct.2015.03.027_b0035
– volume: 17
  start-page: 757
  year: 2008
  ident: 10.1016/j.engstruct.2015.03.027_b0090
  article-title: Progressive collapse analysis of an RC structure
  publication-title: Struct Des Tall Spec Build
  doi: 10.1002/tal.375
– ident: 10.1016/j.engstruct.2015.03.027_b0105
– volume: 42
  start-page: 154
  year: 2012
  ident: 10.1016/j.engstruct.2015.03.027_b0075
  article-title: Dynamic performance of RC beam–column substructures under the scenario of the loss of a corner column – experimental results
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2012.04.016
– ident: 10.1016/j.engstruct.2015.03.027_b0120
– volume: 2014
  start-page: 2210
  year: 2014
  ident: 10.1016/j.engstruct.2015.03.027_b0130
  article-title: Robustness of precast concrete frames: experimental and computational studies
  publication-title: Struct Congr
SSID ssj0002880
Score 2.4726791
Snippet •Precast concrete beam–column sub-assemblages were able to develop compressive arch action and catenary action under column removal scenarios.•Increasing the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 85
SubjectTerms Beam–column joints
Catenary action
Column removal scenario
Compressive arch action
Deformation capacity
Precast concrete sub-assemblages
Title Behaviour of precast concrete beam–column sub-assemblages subject to column removal
URI https://dx.doi.org/10.1016/j.engstruct.2015.03.027
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEN0QvOjB-Bnxg-zB6wp0t9vijRAJauSiJNya3e6swUBLoFyN_8F_6C9xp7QoiQkHj9vMJO3s5O20ffOGkGswLgtCa5niEpiAULC2tpyFcai8lhZeDNg7_DSQ_aF4GPmjCumWvTBIqyywf4XpOVoXVxpFNBuz8bjxnFMUvTYqmru6hWNHuRABZvnN-w_Nwwvz6WlozNB6g-MFyetKphU5Xn6udorjZf46oX6dOr0Dsl-Ui7SzuqNDUoHkiOz9EhE8JsNC4nA5p6mlM_c0apFR95rr6sEMqAY1_fr4jBGFErpYaubKZZjqiQOSBa7xQwzNUlpYzGGauuw7IcPe3Uu3z4phCSzmUmRMKWGMq4aM4cLHyTP5H0UwVmrwuQZtAwlat8ALFXabKi-W1tcicJsiRdPwU1JN0gTOCJUBAPcCd3RzITQXSiktlPVMYDQPRLtGZBmgKC6UxHGgxSQqKWNv0TqyEUY2avLIRbZGmmvH2UpMY7vLbbkD0UZeRA7ytzmf_8f5guziCmlhLf-SVJ0BXLkCJNP1PMPqZKdz_9gffANoMt_P
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BOwAD4ineeGC12saOk7IhBCqPdoFK3Sw7viAQTSsadv4D_5Bfgi91qyIhMTAmuZOS8-m7S_L5O4AzdD4L0jznRijkElPJ2zYXPM1SE7WsjDKkvcPdnur05e0gHizB5WwvDNEqA_ZPMb1C63CmEaLZGD8_Nx4qimLUJkVz37eIZBnqpE4V16B-cXPX6c0BOUqrAWpkz8nhB80Li6epUivRvOJK8JQmzPxWpBYKz_UGrIeOkV1Mb2oTlrDYgrUFHcFt6AeVw_c3NsrZ2D-QmZTMv-n6lrBEZtEMvz4-MwKigk3eLfcdMw7tq8eSCR3TtxhWjliweMPhyCfgDvSvrx4vOzzMS-CZULLkxkjnfEPknJAxDZ-pfiqiy5XFWFi0eaLQ2hZGqaENpybKVB5bmfh1UbLpxC7UilGBe8BUgiiixFdvIaUV0hhjpckjlzgrEtneBzULkM6CmDjNtHjVM9bYi55HVlNkdVNoH9l9aM4dx1M9jb9dzmcroH-khvao_5fzwX-cT2Gl89i91_c3vbtDWKUrxBJrxUdQ88Z47PuR0p6EfPsGEoTigA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Behaviour+of+precast+concrete+beam%E2%80%93column+sub-assemblages+subject+to+column+removal&rft.jtitle=Engineering+structures&rft.au=Kang%2C+Shao-Bo&rft.au=Tan%2C+Kang+Hai&rft.date=2015-06-15&rft.issn=0141-0296&rft.volume=93&rft.spage=85&rft.epage=96&rft_id=info:doi/10.1016%2Fj.engstruct.2015.03.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engstruct_2015_03_027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon