Behaviour of precast concrete beam–column sub-assemblages subject to column removal
•Precast concrete beam–column sub-assemblages were able to develop compressive arch action and catenary action under column removal scenarios.•Increasing the reinforcement ratio increased the resistance of sub-assemblage.•Flexural deformations of the beam significantly contributed to the deformation...
Saved in:
Published in | Engineering structures Vol. 93; pp. 85 - 96 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.06.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0141-0296 1873-7323 |
DOI | 10.1016/j.engstruct.2015.03.027 |
Cover
Loading…
Abstract | •Precast concrete beam–column sub-assemblages were able to develop compressive arch action and catenary action under column removal scenarios.•Increasing the reinforcement ratio increased the resistance of sub-assemblage.•Flexural deformations of the beam significantly contributed to the deformation capacity of sub-assemblages.•Horizontal shear cracking was observed cross the interface between the precast beam unit and cast-in-situ concrete topping.
Under column removal scenarios, initiation of alternate load paths via adjacent bridging beams to redistribute vertical loads requires certain level of ductility and continuity in beam–column joints. Although this approach does not consider the magnitude of the blast event, it is threat-independent and offers a minimum level of robustness against column removal scenarios. This paper studies the behaviour of precast concrete sub-assemblages which comprised two precast beams and a precast column joining together by cast-in-place concrete topping above the two beams and the beam–column joint. The top longitudinal reinforcement in the structural topping of precast beams passed through the beam–column joint continuously. However, the bottom beam longitudinal reinforcement was either lap-spliced or anchored as a 90° bend within the cast-in-place joint. Due to discontinuity of bottom beam longitudinal reinforcement, the ability of such an assemblage to develop compressive arch action (CAA) and subsequent catenary action has to be investigated, in particular, the effect of the top and bottom beam longitudinal reinforcement ratios. Test results show that significant CAA and catenary action developed in the beams under column removal scenarios, with pull-out failure of the bottom beam reinforcement in the joint. The enhancement of CAA and catenary action to structural resistance greatly depends on joint detailing and beam reinforcement ratio. Furthermore, the effectiveness of horizontal shear transfer between concretes cast at different times is examined at large deformation stage. Finally, practical suggestions are given to enhance structural resistance of a similar type of precast concrete sub-assemblages. |
---|---|
AbstractList | •Precast concrete beam–column sub-assemblages were able to develop compressive arch action and catenary action under column removal scenarios.•Increasing the reinforcement ratio increased the resistance of sub-assemblage.•Flexural deformations of the beam significantly contributed to the deformation capacity of sub-assemblages.•Horizontal shear cracking was observed cross the interface between the precast beam unit and cast-in-situ concrete topping.
Under column removal scenarios, initiation of alternate load paths via adjacent bridging beams to redistribute vertical loads requires certain level of ductility and continuity in beam–column joints. Although this approach does not consider the magnitude of the blast event, it is threat-independent and offers a minimum level of robustness against column removal scenarios. This paper studies the behaviour of precast concrete sub-assemblages which comprised two precast beams and a precast column joining together by cast-in-place concrete topping above the two beams and the beam–column joint. The top longitudinal reinforcement in the structural topping of precast beams passed through the beam–column joint continuously. However, the bottom beam longitudinal reinforcement was either lap-spliced or anchored as a 90° bend within the cast-in-place joint. Due to discontinuity of bottom beam longitudinal reinforcement, the ability of such an assemblage to develop compressive arch action (CAA) and subsequent catenary action has to be investigated, in particular, the effect of the top and bottom beam longitudinal reinforcement ratios. Test results show that significant CAA and catenary action developed in the beams under column removal scenarios, with pull-out failure of the bottom beam reinforcement in the joint. The enhancement of CAA and catenary action to structural resistance greatly depends on joint detailing and beam reinforcement ratio. Furthermore, the effectiveness of horizontal shear transfer between concretes cast at different times is examined at large deformation stage. Finally, practical suggestions are given to enhance structural resistance of a similar type of precast concrete sub-assemblages. |
Author | Tan, Kang Hai Kang, Shao-Bo |
Author_xml | – sequence: 1 givenname: Shao-Bo surname: Kang fullname: Kang, Shao-Bo email: skang2@e.ntu.edu.sg – sequence: 2 givenname: Kang Hai surname: Tan fullname: Tan, Kang Hai |
BookMark | eNqNkMtKw0AUhgepYK0-g3mBxLklExcuavEGBTd2PczlpE5IMmVmWnDnO_iGPokpLS7c6Orww_l--L9zNBn8AAhdEVwQTKrrtoBhHVPYmlRQTMoCswJTcYKmpBYsF4yyCZpiwkmO6U11hs5jbDHGtK7xFK3u4E3tnN-GzDfZJoBRMWXGDyZAgkyD6r8-Po3vtv2Qxa3OVYzQ606tIe5zCyZlyWfHjwC936nuAp02qotwebwztHq4f1085cuXx-fFfJkbVvGUK8Wt5WVlLeOloJhTUXMCtqk0lEyDbkQFWhOgtcKE1Iqaqik1F6ZWFceWzdDtodcEH2OARhqXVHJ-SEG5ThIs945kK38cyb0jiZkcHY28-MVvgutVeP8HOT-QMM7bOQgyGgeDAetGh0la7_7s-AbBUYzK |
CitedBy_id | crossref_primary_10_1016_j_engfailanal_2025_109548 crossref_primary_10_1016_j_conbuildmat_2017_03_120 crossref_primary_10_1007_s12205_018_1518_0 crossref_primary_10_1016_j_engstruct_2024_117694 crossref_primary_10_1016_j_jobe_2023_106631 crossref_primary_10_1016_j_istruc_2021_12_086 crossref_primary_10_1016_j_ijimpeng_2022_104284 crossref_primary_10_1016_j_engstruct_2020_110612 crossref_primary_10_1016_j_engstruct_2018_02_009 crossref_primary_10_1016_j_engstruct_2020_110336 crossref_primary_10_1016_j_conbuildmat_2023_132836 crossref_primary_10_1016_j_engstruct_2023_116603 crossref_primary_10_1016_j_jobe_2022_104803 crossref_primary_10_1177_1369433220965273 crossref_primary_10_3390_ma14092162 crossref_primary_10_1016_j_engstruct_2020_111272 crossref_primary_10_1061_JSENDH_STENG_11893 crossref_primary_10_1016_j_engstruct_2022_114460 crossref_primary_10_1016_j_engstruct_2019_04_051 crossref_primary_10_1680_jmacr_15_00245 crossref_primary_10_1061__ASCE_ST_1943_541X_0003065 crossref_primary_10_14359_51738715 crossref_primary_10_1016_j_engfailanal_2024_108264 crossref_primary_10_1016_j_engstruct_2024_117820 crossref_primary_10_1016_j_engstruct_2021_113316 crossref_primary_10_1016_j_conbuildmat_2020_121130 crossref_primary_10_1016_j_engfailanal_2023_107638 crossref_primary_10_1016_j_engstruct_2024_119206 crossref_primary_10_1016_j_istruc_2020_03_018 crossref_primary_10_1016_j_istruc_2023_105689 crossref_primary_10_1016_j_istruc_2022_03_059 crossref_primary_10_1016_j_jobe_2023_108084 crossref_primary_10_1016_j_jobe_2022_104417 crossref_primary_10_3390_sym14020370 crossref_primary_10_1016_j_jobe_2023_106739 crossref_primary_10_14359_51688629 crossref_primary_10_1002_tal_1771 crossref_primary_10_1016_j_engstruct_2019_110115 crossref_primary_10_1007_s12205_020_1035_9 crossref_primary_10_1016_j_engstruct_2019_04_048 crossref_primary_10_1016_j_jobe_2020_101461 crossref_primary_10_1016_j_jobe_2023_106217 crossref_primary_10_1186_s40069_021_00469_6 crossref_primary_10_1016_j_cscm_2020_e00457 crossref_primary_10_1016_j_engstruct_2020_111529 crossref_primary_10_1016_j_engfailanal_2024_108995 crossref_primary_10_1007_s13296_023_00744_0 crossref_primary_10_1016_j_istruc_2023_03_146 crossref_primary_10_1016_j_engstruct_2024_117791 crossref_primary_10_1061__ASCE_ST_1943_541X_0003072 crossref_primary_10_1177_1369433220981655 crossref_primary_10_3390_buildings13020533 crossref_primary_10_1016_j_engstruct_2019_109552 crossref_primary_10_1016_j_jobe_2024_109242 crossref_primary_10_1016_j_engstruct_2020_110675 crossref_primary_10_3390_buildings12020122 crossref_primary_10_1016_j_engstruct_2022_114679 crossref_primary_10_1016_j_engstruct_2023_116746 crossref_primary_10_1061__ASCE_CF_1943_5509_0001328 crossref_primary_10_1016_j_engstruct_2018_06_082 crossref_primary_10_1016_j_engstruct_2022_115457 crossref_primary_10_1016_j_jobe_2021_102884 crossref_primary_10_1061__ASCE_ST_1943_541X_0001616 crossref_primary_10_1016_j_engstruct_2021_113434 crossref_primary_10_1016_j_jobe_2021_103850 crossref_primary_10_1016_j_engstruct_2019_109877 crossref_primary_10_1080_15732479_2021_1951777 crossref_primary_10_3390_buildings11100436 crossref_primary_10_1016_j_engstruct_2017_03_039 crossref_primary_10_1002_tal_1588 crossref_primary_10_1016_j_engstruct_2015_04_034 crossref_primary_10_1002_suco_202000784 crossref_primary_10_1016_j_engstruct_2019_109719 crossref_primary_10_1016_j_jobe_2020_101875 crossref_primary_10_1177_1369433219900679 crossref_primary_10_1016_j_engstruct_2017_12_038 crossref_primary_10_1016_j_engstruct_2018_10_027 crossref_primary_10_1016_j_engstruct_2021_113071 crossref_primary_10_1007_s12205_024_2443_z crossref_primary_10_1155_2018_8098242 crossref_primary_10_1016_j_engfailanal_2024_108044 crossref_primary_10_1007_s42107_018_0099_z crossref_primary_10_1016_j_istruc_2025_108489 crossref_primary_10_1016_j_engfailanal_2023_107138 crossref_primary_10_1016_j_engstruct_2023_115637 crossref_primary_10_3390_app11020599 crossref_primary_10_1016_j_engstruct_2022_114499 crossref_primary_10_1016_j_firesaf_2017_11_009 crossref_primary_10_1016_j_engstruct_2022_113841 crossref_primary_10_1016_j_jobe_2021_102991 crossref_primary_10_3390_sym12061008 crossref_primary_10_1016_j_engstruct_2015_06_051 crossref_primary_10_1016_j_engstruct_2023_116450 crossref_primary_10_1016_j_engstruct_2023_116174 crossref_primary_10_1016_j_jobe_2024_109405 crossref_primary_10_1061__ASCE_ST_1943_541X_0001828 |
Cites_doi | 10.1061/(ASCE)ST.1943-541X.0000422 10.1016/j.engstruct.2007.07.011 10.1061/(ASCE)ST.1943-541X.0000658 10.6028/NIST.TN.1720 10.1016/j.engstruct.2013.03.026 10.1061/(ASCE)0733-9445(2008)134:7(1079) 10.15554/pcij.07011986.54.93 10.1061/(ASCE)0733-9445(2001)127:4(359) 10.1016/j.engstruct.2011.08.040 10.1061/JSDEAG.0004876 10.1002/tal.375 10.1016/j.engstruct.2012.04.016 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.engstruct.2015.03.027 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7323 |
EndPage | 96 |
ExternalDocumentID | 10_1016_j_engstruct_2015_03_027 S0141029615001637 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIWK ACLVX ACRLP ACSBN ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSE SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW SSH VH1 WUQ ZY4 |
ID | FETCH-LOGICAL-c364t-aa4dd456dd345720427841edf6be53bebf76ebb1e28a0118a2c6f5b47c8a640d3 |
IEDL.DBID | .~1 |
ISSN | 0141-0296 |
IngestDate | Tue Jul 01 03:01:47 EDT 2025 Thu Apr 24 23:07:21 EDT 2025 Fri Feb 23 02:27:33 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Precast concrete sub-assemblages Beam–column joints Compressive arch action Deformation capacity Column removal scenario Catenary action |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-aa4dd456dd345720427841edf6be53bebf76ebb1e28a0118a2c6f5b47c8a640d3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0141029615001637 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1016_j_engstruct_2015_03_027 crossref_primary_10_1016_j_engstruct_2015_03_027 elsevier_sciencedirect_doi_10_1016_j_engstruct_2015_03_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-15 |
PublicationDateYYYYMMDD | 2015-06-15 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Engineering structures |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kai, Li (b0075) 2012; 42 Shiohara H, Watanabe F. The Japan PRESSS precast concrete connection design. In: 12th World conference on earthquake engineering, Auckland, New Zealand; 2000. NIST. Best practices for reducing the potential for progressive collapse in buildings. NISTIR 7396. Gaithersburg, MD: National Institute of Standards and Technology; 2007. Sasani, Kropelnicki (b0090) 2008; 17 GSA. Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects. Washington, DC: General Services Administration; 2003. Ellingwood, Leyendecker (b0005) 1978; 104 CAE. Guideline for the use of precast concrete in buildings. Report of a study group of the New Zealand concrete society and the New Zealand society of earthquake engineering, 2nd ed. Christchurch, New Zealand: Centre for Advanced Engineering, University of Canterbury; 1999. Foley, Martin, Schneeman (b0035) 2007 Lew HS, Bao Y, Sadek F, Main JA, Pujol S, Sozen MA. An experimental and computational study of reinforced concrete assemblies under a column removal scenario. NIST Technical Note 1720. Gaithersburg, MD: National Institute of Standards and Technology; 2011. BSI. Eurocode 2: design of concrete structures—Part 1–1: General rules and rules for buildings. BS EN 1992-1-1:2004. London: British Standards Institution; 2004. p. 225. Yu, Tan (b0050) 2013; 55 Yu J, Tan KH. Macromodel-based simulation of catenary action of RC beam–column sub-assemblages. In: Proceedings of the 3rd fib international congress 2010, Washington, DC; 2010. Bao, Kunnath, El-Tawil, Lew (b0065) 2008; 134 Yu, Tan (b0150) 2013; 139 Pham, Tan (b0080) 2013; 55 Park, Bull (b0135) 1986; 31 Sadek, Main, Lew, Bao (b0095) 2011; 137 Patnaik (b0140) 2000; 127 Yi, He, Xiao, Kunnath (b0070) 2008; 105 FIB. Precast concrete in mixed construction. Bulletin 19. Fédération internationale du béton, Laussane, Switzerland; 2002. Main, Bao, Lew, Sadek (b0130) 2014; 2014 FIB. Seismic design of precast concrete building structures. Bulletin 27. Fédération internationale du béton, Laussane, Switzerland; 2003. DOD. Design of buildings to resist progressive collapse. Unified Facilities Criteria (UFC) 4-023-03. Washington, DC: Department of Defence; 2013. Orton, Jirsa, Bayrak (b0010) 2009; 106 Izzudin, Vlassis, Elghazouli, Nethercot (b0085) 2008; 30 Pauley, Priestley (b0145) 1992 Yu J, Tan KH. Experimental study on catenary action of RC beam–column sub-assemblages. In: Proceedings of the 3rd fib international congress 2010, Washington, DC; 2010. Su, Tian, Song (b0040) 2009; 106 Van Acker (b0110) 2013 ASCE. Seismic rehabilitation of existing buildings. ASCE/SEI 41-06. Reston, VA: American Society of Civil Engineers; 2007. Pham (10.1016/j.engstruct.2015.03.027_b0080) 2013; 55 Main (10.1016/j.engstruct.2015.03.027_b0130) 2014; 2014 10.1016/j.engstruct.2015.03.027_b0055 Van Acker (10.1016/j.engstruct.2015.03.027_b0110) 2013 Patnaik (10.1016/j.engstruct.2015.03.027_b0140) 2000; 127 10.1016/j.engstruct.2015.03.027_b0030 Kai (10.1016/j.engstruct.2015.03.027_b0075) 2012; 42 Bao (10.1016/j.engstruct.2015.03.027_b0065) 2008; 134 Ellingwood (10.1016/j.engstruct.2015.03.027_b0005) 1978; 104 10.1016/j.engstruct.2015.03.027_b0105 10.1016/j.engstruct.2015.03.027_b0025 Su (10.1016/j.engstruct.2015.03.027_b0040) 2009; 106 10.1016/j.engstruct.2015.03.027_b0125 10.1016/j.engstruct.2015.03.027_b0020 10.1016/j.engstruct.2015.03.027_b0120 10.1016/j.engstruct.2015.03.027_b0045 10.1016/j.engstruct.2015.03.027_b0100 10.1016/j.engstruct.2015.03.027_b0060 Izzudin (10.1016/j.engstruct.2015.03.027_b0085) 2008; 30 Yi (10.1016/j.engstruct.2015.03.027_b0070) 2008; 105 Foley (10.1016/j.engstruct.2015.03.027_b0035) 2007 Sasani (10.1016/j.engstruct.2015.03.027_b0090) 2008; 17 Yu (10.1016/j.engstruct.2015.03.027_b0150) 2013; 139 Park (10.1016/j.engstruct.2015.03.027_b0135) 1986; 31 Sadek (10.1016/j.engstruct.2015.03.027_b0095) 2011; 137 Pauley (10.1016/j.engstruct.2015.03.027_b0145) 1992 Orton (10.1016/j.engstruct.2015.03.027_b0010) 2009; 106 10.1016/j.engstruct.2015.03.027_b0015 Yu (10.1016/j.engstruct.2015.03.027_b0050) 2013; 55 10.1016/j.engstruct.2015.03.027_b0115 |
References_xml | – volume: 42 start-page: 154 year: 2012 end-page: 167 ident: b0075 article-title: Dynamic performance of RC beam–column substructures under the scenario of the loss of a corner column – experimental results publication-title: Eng Struct – volume: 137 start-page: 881 year: 2011 end-page: 892 ident: b0095 article-title: Testing and analysis of steel and concrete beam–column assemblies under a column removal scenario publication-title: J Struct Eng – reference: CAE. Guideline for the use of precast concrete in buildings. Report of a study group of the New Zealand concrete society and the New Zealand society of earthquake engineering, 2nd ed. Christchurch, New Zealand: Centre for Advanced Engineering, University of Canterbury; 1999. – year: 2013 ident: b0110 article-title: Accidental actions and progressive collapse. International seminar on precast concrete structures – reference: Shiohara H, Watanabe F. The Japan PRESSS precast concrete connection design. In: 12th World conference on earthquake engineering, Auckland, New Zealand; 2000. – volume: 2014 start-page: 2210 year: 2014 end-page: 2220 ident: b0130 article-title: Robustness of precast concrete frames: experimental and computational studies publication-title: Struct Congr – year: 2007 ident: b0035 publication-title: Robustness in structural steel framing systems – volume: 17 start-page: 757 year: 2008 end-page: 772 ident: b0090 article-title: Progressive collapse analysis of an RC structure publication-title: Struct Des Tall Spec Build – reference: DOD. Design of buildings to resist progressive collapse. Unified Facilities Criteria (UFC) 4-023-03. Washington, DC: Department of Defence; 2013. – reference: Yu J, Tan KH. Macromodel-based simulation of catenary action of RC beam–column sub-assemblages. In: Proceedings of the 3rd fib international congress 2010, Washington, DC; 2010. – reference: ASCE. Seismic rehabilitation of existing buildings. ASCE/SEI 41-06. Reston, VA: American Society of Civil Engineers; 2007. – volume: 104 start-page: 413 year: 1978 end-page: 423 ident: b0005 article-title: Approach for design against progressive collapse publication-title: J Struct Div ASCE – volume: 106 start-page: 600 year: 2009 end-page: 607 ident: b0040 article-title: Progressive collapse resistance of axially-restrained frame beams publication-title: ACI Struct J – volume: 139 start-page: 233 year: 2013 end-page: 250 ident: b0150 article-title: Structural behavior of RC beam–column subassemblages under a middle column removal scenario publication-title: J Struct Eng – volume: 105 start-page: 433 year: 2008 end-page: 439 ident: b0070 article-title: Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures publication-title: ACI Struct J – volume: 127 start-page: 359 year: 2000 end-page: 366 ident: b0140 article-title: Behavior of composite concrete beams with smooth interface publication-title: J Struct Eng – year: 1992 ident: b0145 article-title: Seismic design of reinforced concrete and masonry buildings – reference: FIB. Seismic design of precast concrete building structures. Bulletin 27. Fédération internationale du béton, Laussane, Switzerland; 2003. – volume: 55 start-page: 2 year: 2013 end-page: 15 ident: b0080 article-title: Experimental study of beam-slab substructures subjected to a penultimate-internal column loss publication-title: Eng Struct – reference: Lew HS, Bao Y, Sadek F, Main JA, Pujol S, Sozen MA. An experimental and computational study of reinforced concrete assemblies under a column removal scenario. NIST Technical Note 1720. Gaithersburg, MD: National Institute of Standards and Technology; 2011. – volume: 55 start-page: 90 year: 2013 end-page: 106 ident: b0050 article-title: Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages publication-title: Eng Struct – volume: 134 start-page: 1079 year: 2008 end-page: 1091 ident: b0065 article-title: Macromodel-based simulation of progressive collapse: RC frame structures publication-title: J Struct Eng – volume: 31 start-page: 54 year: 1986 end-page: 93 ident: b0135 article-title: Seismic resistance of frames incorporating precast prestressed concrete beam shells publication-title: PCI J – volume: 106 start-page: 608 year: 2009 end-page: 616 ident: b0010 article-title: Carbon fiber-reinforced polymer for continuity in existing reinforced concrete buildings vulnerable to collapse publication-title: ACI Struct J – reference: FIB. Precast concrete in mixed construction. Bulletin 19. Fédération internationale du béton, Laussane, Switzerland; 2002. – reference: NIST. Best practices for reducing the potential for progressive collapse in buildings. NISTIR 7396. Gaithersburg, MD: National Institute of Standards and Technology; 2007. – reference: GSA. Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects. Washington, DC: General Services Administration; 2003. – volume: 30 start-page: 1308 year: 2008 end-page: 1318 ident: b0085 article-title: Progressive collapse of multi-storey buildings due to sudden column loss – Part I: Simplified assessment framework publication-title: Eng Struct – reference: Yu J, Tan KH. Experimental study on catenary action of RC beam–column sub-assemblages. In: Proceedings of the 3rd fib international congress 2010, Washington, DC; 2010. – reference: BSI. Eurocode 2: design of concrete structures—Part 1–1: General rules and rules for buildings. BS EN 1992-1-1:2004. London: British Standards Institution; 2004. p. 225. – volume: 137 start-page: 881 year: 2011 ident: 10.1016/j.engstruct.2015.03.027_b0095 article-title: Testing and analysis of steel and concrete beam–column assemblies under a column removal scenario publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0000422 – volume: 105 start-page: 433 year: 2008 ident: 10.1016/j.engstruct.2015.03.027_b0070 article-title: Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures publication-title: ACI Struct J – ident: 10.1016/j.engstruct.2015.03.027_b0030 – ident: 10.1016/j.engstruct.2015.03.027_b0020 – ident: 10.1016/j.engstruct.2015.03.027_b0055 – year: 1992 ident: 10.1016/j.engstruct.2015.03.027_b0145 – volume: 30 start-page: 1308 year: 2008 ident: 10.1016/j.engstruct.2015.03.027_b0085 article-title: Progressive collapse of multi-storey buildings due to sudden column loss – Part I: Simplified assessment framework publication-title: Eng Struct doi: 10.1016/j.engstruct.2007.07.011 – volume: 139 start-page: 233 year: 2013 ident: 10.1016/j.engstruct.2015.03.027_b0150 article-title: Structural behavior of RC beam–column subassemblages under a middle column removal scenario publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0000658 – ident: 10.1016/j.engstruct.2015.03.027_b0125 – volume: 106 start-page: 608 year: 2009 ident: 10.1016/j.engstruct.2015.03.027_b0010 article-title: Carbon fiber-reinforced polymer for continuity in existing reinforced concrete buildings vulnerable to collapse publication-title: ACI Struct J – ident: 10.1016/j.engstruct.2015.03.027_b0045 – ident: 10.1016/j.engstruct.2015.03.027_b0060 doi: 10.6028/NIST.TN.1720 – ident: 10.1016/j.engstruct.2015.03.027_b0100 – volume: 55 start-page: 2 year: 2013 ident: 10.1016/j.engstruct.2015.03.027_b0080 article-title: Experimental study of beam-slab substructures subjected to a penultimate-internal column loss publication-title: Eng Struct doi: 10.1016/j.engstruct.2013.03.026 – volume: 134 start-page: 1079 year: 2008 ident: 10.1016/j.engstruct.2015.03.027_b0065 article-title: Macromodel-based simulation of progressive collapse: RC frame structures publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(2008)134:7(1079) – volume: 31 start-page: 54 year: 1986 ident: 10.1016/j.engstruct.2015.03.027_b0135 article-title: Seismic resistance of frames incorporating precast prestressed concrete beam shells publication-title: PCI J doi: 10.15554/pcij.07011986.54.93 – ident: 10.1016/j.engstruct.2015.03.027_b0025 – volume: 127 start-page: 359 year: 2000 ident: 10.1016/j.engstruct.2015.03.027_b0140 article-title: Behavior of composite concrete beams with smooth interface publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(2001)127:4(359) – ident: 10.1016/j.engstruct.2015.03.027_b0115 – volume: 55 start-page: 90 year: 2013 ident: 10.1016/j.engstruct.2015.03.027_b0050 article-title: Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages publication-title: Eng Struct doi: 10.1016/j.engstruct.2011.08.040 – year: 2013 ident: 10.1016/j.engstruct.2015.03.027_b0110 – volume: 106 start-page: 600 year: 2009 ident: 10.1016/j.engstruct.2015.03.027_b0040 article-title: Progressive collapse resistance of axially-restrained frame beams publication-title: ACI Struct J – volume: 104 start-page: 413 year: 1978 ident: 10.1016/j.engstruct.2015.03.027_b0005 article-title: Approach for design against progressive collapse publication-title: J Struct Div ASCE doi: 10.1061/JSDEAG.0004876 – ident: 10.1016/j.engstruct.2015.03.027_b0015 – year: 2007 ident: 10.1016/j.engstruct.2015.03.027_b0035 – volume: 17 start-page: 757 year: 2008 ident: 10.1016/j.engstruct.2015.03.027_b0090 article-title: Progressive collapse analysis of an RC structure publication-title: Struct Des Tall Spec Build doi: 10.1002/tal.375 – ident: 10.1016/j.engstruct.2015.03.027_b0105 – volume: 42 start-page: 154 year: 2012 ident: 10.1016/j.engstruct.2015.03.027_b0075 article-title: Dynamic performance of RC beam–column substructures under the scenario of the loss of a corner column – experimental results publication-title: Eng Struct doi: 10.1016/j.engstruct.2012.04.016 – ident: 10.1016/j.engstruct.2015.03.027_b0120 – volume: 2014 start-page: 2210 year: 2014 ident: 10.1016/j.engstruct.2015.03.027_b0130 article-title: Robustness of precast concrete frames: experimental and computational studies publication-title: Struct Congr |
SSID | ssj0002880 |
Score | 2.4726791 |
Snippet | •Precast concrete beam–column sub-assemblages were able to develop compressive arch action and catenary action under column removal scenarios.•Increasing the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 85 |
SubjectTerms | Beam–column joints Catenary action Column removal scenario Compressive arch action Deformation capacity Precast concrete sub-assemblages |
Title | Behaviour of precast concrete beam–column sub-assemblages subject to column removal |
URI | https://dx.doi.org/10.1016/j.engstruct.2015.03.027 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEN0QvOjB-Bnxg-zB6wp0t9vijRAJauSiJNya3e6swUBLoFyN_8F_6C9xp7QoiQkHj9vMJO3s5O20ffOGkGswLgtCa5niEpiAULC2tpyFcai8lhZeDNg7_DSQ_aF4GPmjCumWvTBIqyywf4XpOVoXVxpFNBuz8bjxnFMUvTYqmru6hWNHuRABZvnN-w_Nwwvz6WlozNB6g-MFyetKphU5Xn6udorjZf46oX6dOr0Dsl-Ui7SzuqNDUoHkiOz9EhE8JsNC4nA5p6mlM_c0apFR95rr6sEMqAY1_fr4jBGFErpYaubKZZjqiQOSBa7xQwzNUlpYzGGauuw7IcPe3Uu3z4phCSzmUmRMKWGMq4aM4cLHyTP5H0UwVmrwuQZtAwlat8ALFXabKi-W1tcicJsiRdPwU1JN0gTOCJUBAPcCd3RzITQXSiktlPVMYDQPRLtGZBmgKC6UxHGgxSQqKWNv0TqyEUY2avLIRbZGmmvH2UpMY7vLbbkD0UZeRA7ytzmf_8f5guziCmlhLf-SVJ0BXLkCJNP1PMPqZKdz_9gffANoMt_P |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BOwAD4ineeGC12saOk7IhBCqPdoFK3Sw7viAQTSsadv4D_5Bfgi91qyIhMTAmuZOS8-m7S_L5O4AzdD4L0jznRijkElPJ2zYXPM1SE7WsjDKkvcPdnur05e0gHizB5WwvDNEqA_ZPMb1C63CmEaLZGD8_Nx4qimLUJkVz37eIZBnqpE4V16B-cXPX6c0BOUqrAWpkz8nhB80Li6epUivRvOJK8JQmzPxWpBYKz_UGrIeOkV1Mb2oTlrDYgrUFHcFt6AeVw_c3NsrZ2D-QmZTMv-n6lrBEZtEMvz4-MwKigk3eLfcdMw7tq8eSCR3TtxhWjliweMPhyCfgDvSvrx4vOzzMS-CZULLkxkjnfEPknJAxDZ-pfiqiy5XFWFi0eaLQ2hZGqaENpybKVB5bmfh1UbLpxC7UilGBe8BUgiiixFdvIaUV0hhjpckjlzgrEtneBzULkM6CmDjNtHjVM9bYi55HVlNkdVNoH9l9aM4dx1M9jb9dzmcroH-khvao_5fzwX-cT2Gl89i91_c3vbtDWKUrxBJrxUdQ88Z47PuR0p6EfPsGEoTigA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Behaviour+of+precast+concrete+beam%E2%80%93column+sub-assemblages+subject+to+column+removal&rft.jtitle=Engineering+structures&rft.au=Kang%2C+Shao-Bo&rft.au=Tan%2C+Kang+Hai&rft.date=2015-06-15&rft.issn=0141-0296&rft.volume=93&rft.spage=85&rft.epage=96&rft_id=info:doi/10.1016%2Fj.engstruct.2015.03.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engstruct_2015_03_027 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon |