Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations

In this paper, we introduce a new class of boundary value problems consisting of a fractional differential equation of Riemann-Liouville type, D q R L x ( t ) = f ( t , x ( t ) ) , t ∈ [ 0 , T ] , subject to the Hadamard fractional integral conditions x ( 0 ) = 0 , x ( T ) = ∑ i = 1 n α i H I p i x...

Full description

Saved in:
Bibliographic Details
Published inBoundary value problems Vol. 2014; no. 1; pp. 1 - 16
Main Authors Tariboon, Jessada, Ntouyas, Sotiris K, Sudsutad, Weerawat
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 09.12.2014
Subjects
Online AccessGet full text
ISSN1687-2770
1687-2770
DOI10.1186/s13661-014-0253-9

Cover

Loading…
Abstract In this paper, we introduce a new class of boundary value problems consisting of a fractional differential equation of Riemann-Liouville type, D q R L x ( t ) = f ( t , x ( t ) ) , t ∈ [ 0 , T ] , subject to the Hadamard fractional integral conditions x ( 0 ) = 0 , x ( T ) = ∑ i = 1 n α i H I p i x ( η i ) . Existence and uniqueness results are obtained by using a variety of fixed point theorems. Examples illustrating the results obtained are also presented. MSC: 34A08, 34B15.
AbstractList In this paper, we introduce a new class of boundary value problems consisting of a fractional differential equation of Riemann-Liouville type, D q R L x ( t ) = f ( t , x ( t ) ) , t ∈ [ 0 , T ] , subject to the Hadamard fractional integral conditions x ( 0 ) = 0 , x ( T ) = ∑ i = 1 n α i H I p i x ( η i ) . Existence and uniqueness results are obtained by using a variety of fixed point theorems. Examples illustrating the results obtained are also presented. MSC: 34A08, 34B15.
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).In this paper, we introduce a new class of boundary value problems consisting of a fractional differential equation of Riemann-Liouville type, ..., ..., subject to the Hadamard fractional integral conditions ..., ... Existence and uniqueness results are obtained by using a variety of fixed point theorems. Examples illustrating the results obtained are also presented.
ArticleNumber 253
Author Tariboon, Jessada
Sudsutad, Weerawat
Ntouyas, Sotiris K
Author_xml – sequence: 1
  givenname: Jessada
  surname: Tariboon
  fullname: Tariboon, Jessada
  email: jessadat@kmutnb.ac.th
  organization: Nonlinear Dynamic Analysis Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok
– sequence: 2
  givenname: Sotiris K
  surname: Ntouyas
  fullname: Ntouyas, Sotiris K
  organization: Department of Mathematics, University of Ioannina
– sequence: 3
  givenname: Weerawat
  surname: Sudsutad
  fullname: Sudsutad, Weerawat
  organization: Nonlinear Dynamic Analysis Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok
BookMark eNp9kE1LxDAQhoOsoKv-AG89eokm_UiaoyzqCouC6DlM06lEsokmreC_N2s9LB48ZWZ4n5nwLMnCB4-EnHN2yXkrrhKvhOCU8ZqysqmoOiDHXLSSllKyxV59RJYpvTFWqaouj0l8CN4FA65YQw9biH0xRDCjDT7PrB_xNebCBN_b3TAVQ4hFPu6sR4jFk8UteE83Nkyf1jncx3s7DBjRjzY3-DHBz4ZTcjiAS3j2-56Ql9ub59Wabh7v7lfXG2oqUY8UmODCCDQtKNY1jZHQqtx2AJVAqdrK9I3oSi6VMl3HhURomrIfupoNnWyrE3Ix732P4WPCNOqtTQadA49hSpoLwZhq67bMUTlHTQwpRRy0sePPb8cI1mnO9M6yni3rbFnvLGuVSf6HfI82a_z6lylnJuWsf8Wo38IUs7D0D_QNc-mUng
CitedBy_id crossref_primary_10_1186_s13661_020_01468_4
crossref_primary_10_3390_sym11060829
crossref_primary_10_1186_s13662_020_02938_w
crossref_primary_10_1186_s13662_020_03072_3
crossref_primary_10_3389_fphy_2020_00165
crossref_primary_10_1186_s13662_021_03496_5
crossref_primary_10_1186_s13661_019_1219_8
crossref_primary_10_1186_s13660_024_03102_8
crossref_primary_10_1155_2016_7057910
crossref_primary_10_1186_s13662_021_03301_3
crossref_primary_10_1186_s13662_021_03358_0
crossref_primary_10_3934_math_20231460
crossref_primary_10_1007_s00009_015_0629_9
crossref_primary_10_1155_2020_9831752
crossref_primary_10_1515_math_2016_0007
crossref_primary_10_1007_s00009_015_0543_1
crossref_primary_10_3390_fractalfract8080441
Cites_doi 10.1007/978-0-387-21593-8
10.1016/S0022-247X(02)00049-5
10.1016/j.camwa.2009.05.010
10.1016/S0022-247X(02)00001-X
10.1016/j.amc.2011.07.024
10.1016/j.cam.2013.02.010
10.1090/S0002-9939-1969-0239559-9
10.1007/s11071-012-0443-x
10.1016/S0022-247X(02)00066-5
10.1142/8180
10.1080/1065246031000074443
ContentType Journal Article
Copyright Tariboon et al.; licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
Copyright_xml – notice: Tariboon et al.; licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
DBID C6C
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1186/s13661-014-0253-9
DatabaseName Springer Nature Open Access Journals
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1687-2770
EndPage 16
ExternalDocumentID 10_1186_s13661_014_0253_9
GroupedDBID -A0
0R~
23N
2WC
3V.
4.4
40G
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
ABDBF
ABEEZ
ABJCF
ABUWG
ACACY
ACGFS
ACIPV
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHSBF
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DU5
DWQXO
E3Z
EBLON
EBS
EJD
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M0N
M7S
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
U2A
~8M
AASML
AAYXX
AMVHM
CITATION
OVT
PHGZM
PHGZT
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
PQGLB
ID FETCH-LOGICAL-c364t-a0616c6ec8a90b55c7a896ecbaa36e7983cd56b21799cbb167ea552dfb40fb783
IEDL.DBID C24
ISSN 1687-2770
IngestDate Fri Jul 11 04:20:19 EDT 2025
Tue Jul 01 02:44:15 EDT 2025
Thu Apr 24 22:57:22 EDT 2025
Fri Feb 21 02:35:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords existence
uniqueness
fixed point theorems
Riemann-Liouville fractional derivative
Hadamard fractional integral
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-a0616c6ec8a90b55c7a896ecbaa36e7983cd56b21799cbb167ea552dfb40fb783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s13661-014-0253-9
PQID 1660098482
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_1660098482
crossref_citationtrail_10_1186_s13661_014_0253_9
crossref_primary_10_1186_s13661_014_0253_9
springer_journals_10_1186_s13661_014_0253_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-09
PublicationDateYYYYMMDD 2014-12-09
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-09
  day: 09
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Boundary value problems
PublicationTitleAbbrev Bound Value Probl
PublicationYear 2014
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References LiuXJiaMGeWMultiple solutions of a p-Laplacian model involving a fractional derivativeAdv. Differ. Equ201310.1186/1687-1847-2013-126
BoydDWWongJSWOn nonlinear contractionsProc. Am. Math. Soc19692045846423955910.1090/S0002-9939-1969-0239559-9
JaradFAbdeljawadTBaleanuDCaputo-type modification of the Hadamard fractional derivativesAdv. Differ. Equ201210.1186/1687-1847-2012-142
ButzerPLKilbasAATrujilloJJFractional calculus in the Mellin setting and Hadamard-type fractional integralsJ. Math. Anal. Appl2002269127190787110.1016/S0022-247X(02)00001-X
GamboYYJaradFBaleanuDAbdeljawadTOn Caputo modification of the Hadamard fractional derivativesAdv. Differ. Equ201410.1186/1687-1847-2014-10
ButzerPLKilbasAATrujilloJJCompositions of Hadamard-type fractional integration operators and the semigroup propertyJ. Math. Anal. Appl2002269387400190712010.1016/S0022-247X(02)00049-5
KilbasAASrivastavaHMTrujilloJJTheory and Applications of Fractional Differential Equations2006AmsterdamElsevier
AhmadBNietoJJBoundary value problems for a class of sequential integrodifferential equations of fractional orderJ. Funct. Spaces Appl201310.1155/2013/149659
BaleanuDDiethelmKScalasETrujilloJJFractional Calculus Models and Numerical Methods2012BostonWorld Scientific
AhmadBNietoJJRiemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditionsBound. Value Probl201110.1186/1687-2770-2011-36
ZhangLAhmadBWangGAgarwalRPNonlinear fractional integro-differential equations on unbounded domains in a Banach spaceJ. Comput. Appl. Math20132495156303780510.1016/j.cam.2013.02.010
O’ReganDStanekSFractional boundary value problems with singularities in space variablesNonlinear Dyn201371641652303012710.1007/s11071-012-0443-x
ButzerPLKilbasAATrujilloJJMellin transform analysis and integration by parts for Hadamard-type fractional integralsJ. Math. Anal. Appl2002270115191174810.1016/S0022-247X(02)00066-5
AgarwalRPZhouYHeYExistence of fractional neutral functional differential equationsComput. Math. Appl20105910951100257947410.1016/j.camwa.2009.05.010
KilbasAAHadamard-type fractional calculusJ. Korean Math. Soc200138119112041858760
PodlubnyIFractional Differential Equations1999San DiegoAcademic Press
KrasnoselskiiMATwo remarks on the method of successive approximationsUsp. Mat. Nauk19551012312768119
BaleanuDMustafaOGAgarwalRPOn Lp-solutions for a class of sequential fractional differential equationsAppl. Math. Comput201121820742081283148310.1016/j.amc.2011.07.024
AhmadBNtouyasSKAlsaediANew existence results for nonlinear fractional differential equations with three-point integral boundary conditionsAdv. Differ. Equ201110.1155/2011/107384
HadamardJEssai sur l’étude des fonctions données par leur développement de TaylorJ. Math. Pures Appl18928101186
GranasADugundjiJFixed Point Theory2003New YorkSpringer10.1007/978-0-387-21593-8
AhmadBNtouyasSKAlsaediAA study of nonlinear fractional differential equations of arbitrary order with Riemann-Liouville type multistrip boundary conditionsMath. Probl. Eng2013
KilbasAATrujilloJJHadamard-type integrals as G-transformsIntegral Transforms Spec. Funct200314413427200599910.1080/1065246031000074443
SudsutadWTariboonJExistence results of fractional integro-differential equations with m-point multi-term fractional order integral boundary conditionsBound. Value Probl201210.1186/1687-2770-2012-94
SudsutadWTariboonJBoundary value problems for fractional differential equations with three-point fractional integral boundary conditionsAdv. Differ. Equ201210.1186/1687-1847-2012-93
B Ahmad (253_CR9) 2013
L Zhang (253_CR11) 2013; 249
W Sudsutad (253_CR14) 2012
AA Kilbas (253_CR19) 2001; 38
B Ahmad (253_CR7) 2011
DW Boyd (253_CR23) 1969; 20
J Hadamard (253_CR15) 1892; 8
B Ahmad (253_CR10) 2013
X Liu (253_CR12) 2013
YY Gambo (253_CR22) 2014
D Baleanu (253_CR3) 2012
I Podlubny (253_CR1) 1999
MA Krasnoselskii (253_CR24) 1955; 10
PL Butzer (253_CR16) 2002; 269
PL Butzer (253_CR18) 2002; 270
D Baleanu (253_CR5) 2011; 218
PL Butzer (253_CR17) 2002; 269
D O’Regan (253_CR8) 2013; 71
W Sudsutad (253_CR13) 2012
B Ahmad (253_CR6) 2011
RP Agarwal (253_CR4) 2010; 59
F Jarad (253_CR21) 2012
AA Kilbas (253_CR20) 2003; 14
A Granas (253_CR25) 2003
AA Kilbas (253_CR2) 2006
References_xml – reference: KilbasAASrivastavaHMTrujilloJJTheory and Applications of Fractional Differential Equations2006AmsterdamElsevier
– reference: BaleanuDDiethelmKScalasETrujilloJJFractional Calculus Models and Numerical Methods2012BostonWorld Scientific
– reference: KrasnoselskiiMATwo remarks on the method of successive approximationsUsp. Mat. Nauk19551012312768119
– reference: BoydDWWongJSWOn nonlinear contractionsProc. Am. Math. Soc19692045846423955910.1090/S0002-9939-1969-0239559-9
– reference: O’ReganDStanekSFractional boundary value problems with singularities in space variablesNonlinear Dyn201371641652303012710.1007/s11071-012-0443-x
– reference: HadamardJEssai sur l’étude des fonctions données par leur développement de TaylorJ. Math. Pures Appl18928101186
– reference: BaleanuDMustafaOGAgarwalRPOn Lp-solutions for a class of sequential fractional differential equationsAppl. Math. Comput201121820742081283148310.1016/j.amc.2011.07.024
– reference: ZhangLAhmadBWangGAgarwalRPNonlinear fractional integro-differential equations on unbounded domains in a Banach spaceJ. Comput. Appl. Math20132495156303780510.1016/j.cam.2013.02.010
– reference: ButzerPLKilbasAATrujilloJJCompositions of Hadamard-type fractional integration operators and the semigroup propertyJ. Math. Anal. Appl2002269387400190712010.1016/S0022-247X(02)00049-5
– reference: AgarwalRPZhouYHeYExistence of fractional neutral functional differential equationsComput. Math. Appl20105910951100257947410.1016/j.camwa.2009.05.010
– reference: SudsutadWTariboonJBoundary value problems for fractional differential equations with three-point fractional integral boundary conditionsAdv. Differ. Equ201210.1186/1687-1847-2012-93
– reference: AhmadBNtouyasSKAlsaediANew existence results for nonlinear fractional differential equations with three-point integral boundary conditionsAdv. Differ. Equ201110.1155/2011/107384
– reference: AhmadBNtouyasSKAlsaediAA study of nonlinear fractional differential equations of arbitrary order with Riemann-Liouville type multistrip boundary conditionsMath. Probl. Eng2013
– reference: KilbasAATrujilloJJHadamard-type integrals as G-transformsIntegral Transforms Spec. Funct200314413427200599910.1080/1065246031000074443
– reference: SudsutadWTariboonJExistence results of fractional integro-differential equations with m-point multi-term fractional order integral boundary conditionsBound. Value Probl201210.1186/1687-2770-2012-94
– reference: LiuXJiaMGeWMultiple solutions of a p-Laplacian model involving a fractional derivativeAdv. Differ. Equ201310.1186/1687-1847-2013-126
– reference: JaradFAbdeljawadTBaleanuDCaputo-type modification of the Hadamard fractional derivativesAdv. Differ. Equ201210.1186/1687-1847-2012-142
– reference: ButzerPLKilbasAATrujilloJJFractional calculus in the Mellin setting and Hadamard-type fractional integralsJ. Math. Anal. Appl2002269127190787110.1016/S0022-247X(02)00001-X
– reference: ButzerPLKilbasAATrujilloJJMellin transform analysis and integration by parts for Hadamard-type fractional integralsJ. Math. Anal. Appl2002270115191174810.1016/S0022-247X(02)00066-5
– reference: GamboYYJaradFBaleanuDAbdeljawadTOn Caputo modification of the Hadamard fractional derivativesAdv. Differ. Equ201410.1186/1687-1847-2014-10
– reference: KilbasAAHadamard-type fractional calculusJ. Korean Math. Soc200138119112041858760
– reference: PodlubnyIFractional Differential Equations1999San DiegoAcademic Press
– reference: AhmadBNietoJJRiemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditionsBound. Value Probl201110.1186/1687-2770-2011-36
– reference: GranasADugundjiJFixed Point Theory2003New YorkSpringer10.1007/978-0-387-21593-8
– reference: AhmadBNietoJJBoundary value problems for a class of sequential integrodifferential equations of fractional orderJ. Funct. Spaces Appl201310.1155/2013/149659
– volume-title: Fixed Point Theory
  year: 2003
  ident: 253_CR25
  doi: 10.1007/978-0-387-21593-8
– volume-title: Math. Probl. Eng
  year: 2013
  ident: 253_CR9
– volume: 269
  start-page: 387
  year: 2002
  ident: 253_CR16
  publication-title: J. Math. Anal. Appl
  doi: 10.1016/S0022-247X(02)00049-5
– volume: 59
  start-page: 1095
  year: 2010
  ident: 253_CR4
  publication-title: Comput. Math. Appl
  doi: 10.1016/j.camwa.2009.05.010
– volume-title: Adv. Differ. Equ
  year: 2012
  ident: 253_CR13
– volume-title: Adv. Differ. Equ
  year: 2014
  ident: 253_CR22
– volume-title: Theory and Applications of Fractional Differential Equations
  year: 2006
  ident: 253_CR2
– volume: 8
  start-page: 101
  year: 1892
  ident: 253_CR15
  publication-title: J. Math. Pures Appl
– volume: 269
  start-page: 1
  year: 2002
  ident: 253_CR17
  publication-title: J. Math. Anal. Appl
  doi: 10.1016/S0022-247X(02)00001-X
– volume: 218
  start-page: 2074
  year: 2011
  ident: 253_CR5
  publication-title: Appl. Math. Comput
  doi: 10.1016/j.amc.2011.07.024
– volume: 38
  start-page: 1191
  year: 2001
  ident: 253_CR19
  publication-title: J. Korean Math. Soc
– volume: 249
  start-page: 51
  year: 2013
  ident: 253_CR11
  publication-title: J. Comput. Appl. Math
  doi: 10.1016/j.cam.2013.02.010
– volume: 10
  start-page: 123
  year: 1955
  ident: 253_CR24
  publication-title: Usp. Mat. Nauk
– volume: 20
  start-page: 458
  year: 1969
  ident: 253_CR23
  publication-title: Proc. Am. Math. Soc
  doi: 10.1090/S0002-9939-1969-0239559-9
– volume-title: Bound. Value Probl
  year: 2011
  ident: 253_CR6
– volume: 71
  start-page: 641
  year: 2013
  ident: 253_CR8
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-012-0443-x
– volume-title: Adv. Differ. Equ
  year: 2013
  ident: 253_CR12
– volume: 270
  start-page: 1
  year: 2002
  ident: 253_CR18
  publication-title: J. Math. Anal. Appl
  doi: 10.1016/S0022-247X(02)00066-5
– volume-title: Fractional Differential Equations
  year: 1999
  ident: 253_CR1
– volume-title: Fractional Calculus Models and Numerical Methods
  year: 2012
  ident: 253_CR3
  doi: 10.1142/8180
– volume-title: Adv. Differ. Equ
  year: 2011
  ident: 253_CR7
– volume-title: Adv. Differ. Equ
  year: 2012
  ident: 253_CR21
– volume: 14
  start-page: 413
  year: 2003
  ident: 253_CR20
  publication-title: Integral Transforms Spec. Funct
  doi: 10.1080/1065246031000074443
– volume-title: J. Funct. Spaces Appl
  year: 2013
  ident: 253_CR10
– volume-title: Bound. Value Probl
  year: 2012
  ident: 253_CR14
SSID ssj0039342
Score 2.1024506
Snippet In this paper, we introduce a new class of boundary value problems consisting of a fractional differential equation of Riemann-Liouville type, D q R L x ( t )...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).In this paper, we introduce a new class of boundary value problems consisting of a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Approximations and Expansions
Boundary value problems
Difference and Functional Equations
Differential equations
Existence theorems
Integrals
Mathematical analysis
Mathematics
Mathematics and Statistics
Nonlinearity
Ordinary Differential Equations
Partial Differential Equations
Texts
Theorems
Uniqueness
Title Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations
URI https://link.springer.com/article/10.1186/s13661-014-0253-9
https://www.proquest.com/docview/1660098482
Volume 2014
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEA4eL_ognrgeSwSflGDbHE0edXEV0UXEBd9CkqYgrF3d7vr7nfTwQgVfBlqaUGYmmfmYzBeEDrPUxTazlEC2nBEmTEystZJAOAH4nDqnqq73m4G4HLKrB_7Q9HGX7Wn3tiRZ7dTVspbipIwpxBKAvgwm4pSoebTIAboHt-6FFod6-6WKsqQpX_447GsA-sgqvxVCq_jSX0UrTWKIT2tLrqE5X6yj5Zt3VtVyA00G46KKPRj2C_MEtsX5pG5MgHcN8cMIA8LN6oNYGDJSXNRkGGaC7x5hqqIg14_j2WvoAfw8vL0pBVb8CPuXmgG83ETD_vl975I0dyYQRwWbEgPxWTjhnTQqspy71EgFj9YYKnyqJHUZFzYJRHDO2lik3nCeZLllUW5TSbfQAvyX30aYZYopJqjPrWDccBNnPLIAd6ihNje8g6JWkdo1hOLhXouRroCFFLrWvQbd66B7rTro6H3Ic82m8dfHB611NPh8KGSYwo9npY6FCDyoTCYddNyaTTeLr_x9xp1_fb2LlpLgNuHsitpDC9PJzO9DBjK1XTTPoguQsg9y8ex8cHvXrbwwSNHrVsge5DA5fQPxS9y5
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD-pBfGJ9RvCkBLubx26OUpSqbQ_SQm8hyWZBqFvttv5-J_vQKip43JAJy8wkM8PMfIPQeRLZwCSGEvCWE8KEDogxJiZgTiB8jqyVRdd7ry86Q3Y_4qMKLNr3wizm74NYXOUBBQsCAS8Dck6JXEYrDAJlX73XFu360aWSsrBKWv5I9tXsfPqS39KfhVW53UQblTuIr0v5baEll22j9d4Hlmq-g6b9SVZYHAyvhH4GieJ0WrYjwFoF9zDGENcmZfkVBj8UZyUEhp7ixyc4KstI92kyf_Odf4vk9XwUuOdj7F5L3O98Fw1vbwbtDqkmJRBLBZsRDVZZWOFsrGXLcG4jHUv4NFpT4SIZU5twYUIP_2aNCUTkNOdhkhrWSk0U0z3UgP9y-wizRDLJBHWpEYxrroOEtwwEOVRTk2reRK2akcpWMOJ-msVYFeFELFTJewW8V573SjbRxQfJS4mh8dfms1o6CjTdpy905ibzXAVCePRTFodNdFmLTVVXLv_9xIN_7T5Fq51Br6u6d_2HQ7QWehXy1SvyCDVm07k7Bh9kZk4K7XsHnaPVww
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEA_eCsf5IH7i-pkDn5Tgtvlo8yjqop4uIif4FvJVENaubnf9-5007XrKKfjYkgztTCYzw8z8BqF9l9nEOEMJeMuOMKETYozJCZgTCJ8za2Xd9X49EOd37PKe3zdzTqu22r1NScaehoDSVE6OnlwRVTwXR1VCwa5AGMyAKKdE_kDzEKgkoabvJLQ7xKuYSsrSJpX5323vjdGbh_khKVrbmv4SWmycRHwcpbqM5ny5ghauZwir1SoaD0ZlbYcw3B36EeSMi3FsUoB3DQjEEMNvuViUhcE7xWUExtBjfPsApMqSXD2Mpi-hH_Df7e3UFND-IfbPEQ28WkN3_bO_J-ekmZ9ALBVsQjTYamGFt7mWPcO5zXQu4dFoTYXPZE6t48KkARTOGpOIzGvOU1cY1itMltN11IHv8hsIMyeZZIL6wgjGNdeJ4z0DoQ_V1BSad1GvZaSyDbh4mHExVHWQkQsVea-A9yrwXskuOphteYrIGl8t_t1KR8H5D0kNXfrRtFKJEAETleVpFx22YlONIlafU9z81uo99PPmtK-uLgZ_ttCvNJygUNIit1FnMp76HXBMJma3PnyvX0zd4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlocal+Hadamard+fractional+integral+conditions+for+nonlinear+Riemann-Liouville+fractional+differential+equations&rft.jtitle=Boundary+value+problems&rft.au=Tariboon%2C+Jessada&rft.au=Ntouyas%2C+Sotiris+K&rft.au=Sudsutad%2C+Weerawat&rft.date=2014-12-09&rft.issn=1687-2770&rft.eissn=1687-2770&rft.volume=2014&rft.issue=1&rft_id=info:doi/10.1186%2Fs13661-014-0253-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13661_014_0253_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-2770&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-2770&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-2770&client=summon