Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations
In this paper, we introduce a new class of boundary value problems consisting of a fractional differential equation of Riemann-Liouville type, D q R L x ( t ) = f ( t , x ( t ) ) , t ∈ [ 0 , T ] , subject to the Hadamard fractional integral conditions x ( 0 ) = 0 , x ( T ) = ∑ i = 1 n α i H I p i x...
Saved in:
Published in | Boundary value problems Vol. 2014; no. 1; pp. 1 - 16 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
09.12.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1687-2770 1687-2770 |
DOI | 10.1186/s13661-014-0253-9 |
Cover
Loading…
Abstract | In this paper, we introduce a new class of boundary value problems consisting of a fractional differential equation of Riemann-Liouville type,
D
q
R
L
x
(
t
)
=
f
(
t
,
x
(
t
)
)
,
t
∈
[
0
,
T
]
, subject to the Hadamard fractional integral conditions
x
(
0
)
=
0
,
x
(
T
)
=
∑
i
=
1
n
α
i
H
I
p
i
x
(
η
i
)
. Existence and uniqueness results are obtained by using a variety of fixed point theorems. Examples illustrating the results obtained are also presented.
MSC:
34A08, 34B15. |
---|---|
AbstractList | In this paper, we introduce a new class of boundary value problems consisting of a fractional differential equation of Riemann-Liouville type,
D
q
R
L
x
(
t
)
=
f
(
t
,
x
(
t
)
)
,
t
∈
[
0
,
T
]
, subject to the Hadamard fractional integral conditions
x
(
0
)
=
0
,
x
(
T
)
=
∑
i
=
1
n
α
i
H
I
p
i
x
(
η
i
)
. Existence and uniqueness results are obtained by using a variety of fixed point theorems. Examples illustrating the results obtained are also presented.
MSC:
34A08, 34B15. (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).In this paper, we introduce a new class of boundary value problems consisting of a fractional differential equation of Riemann-Liouville type, ..., ..., subject to the Hadamard fractional integral conditions ..., ... Existence and uniqueness results are obtained by using a variety of fixed point theorems. Examples illustrating the results obtained are also presented. |
ArticleNumber | 253 |
Author | Tariboon, Jessada Sudsutad, Weerawat Ntouyas, Sotiris K |
Author_xml | – sequence: 1 givenname: Jessada surname: Tariboon fullname: Tariboon, Jessada email: jessadat@kmutnb.ac.th organization: Nonlinear Dynamic Analysis Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok – sequence: 2 givenname: Sotiris K surname: Ntouyas fullname: Ntouyas, Sotiris K organization: Department of Mathematics, University of Ioannina – sequence: 3 givenname: Weerawat surname: Sudsutad fullname: Sudsutad, Weerawat organization: Nonlinear Dynamic Analysis Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok |
BookMark | eNp9kE1LxDAQhoOsoKv-AG89eokm_UiaoyzqCouC6DlM06lEsokmreC_N2s9LB48ZWZ4n5nwLMnCB4-EnHN2yXkrrhKvhOCU8ZqysqmoOiDHXLSSllKyxV59RJYpvTFWqaouj0l8CN4FA65YQw9biH0xRDCjDT7PrB_xNebCBN_b3TAVQ4hFPu6sR4jFk8UteE83Nkyf1jncx3s7DBjRjzY3-DHBz4ZTcjiAS3j2-56Ql9ub59Wabh7v7lfXG2oqUY8UmODCCDQtKNY1jZHQqtx2AJVAqdrK9I3oSi6VMl3HhURomrIfupoNnWyrE3Ix732P4WPCNOqtTQadA49hSpoLwZhq67bMUTlHTQwpRRy0sePPb8cI1mnO9M6yni3rbFnvLGuVSf6HfI82a_z6lylnJuWsf8Wo38IUs7D0D_QNc-mUng |
CitedBy_id | crossref_primary_10_1186_s13661_020_01468_4 crossref_primary_10_3390_sym11060829 crossref_primary_10_1186_s13662_020_02938_w crossref_primary_10_1186_s13662_020_03072_3 crossref_primary_10_3389_fphy_2020_00165 crossref_primary_10_1186_s13662_021_03496_5 crossref_primary_10_1186_s13661_019_1219_8 crossref_primary_10_1186_s13660_024_03102_8 crossref_primary_10_1155_2016_7057910 crossref_primary_10_1186_s13662_021_03301_3 crossref_primary_10_1186_s13662_021_03358_0 crossref_primary_10_3934_math_20231460 crossref_primary_10_1007_s00009_015_0629_9 crossref_primary_10_1155_2020_9831752 crossref_primary_10_1515_math_2016_0007 crossref_primary_10_1007_s00009_015_0543_1 crossref_primary_10_3390_fractalfract8080441 |
Cites_doi | 10.1007/978-0-387-21593-8 10.1016/S0022-247X(02)00049-5 10.1016/j.camwa.2009.05.010 10.1016/S0022-247X(02)00001-X 10.1016/j.amc.2011.07.024 10.1016/j.cam.2013.02.010 10.1090/S0002-9939-1969-0239559-9 10.1007/s11071-012-0443-x 10.1016/S0022-247X(02)00066-5 10.1142/8180 10.1080/1065246031000074443 |
ContentType | Journal Article |
Copyright | Tariboon et al.; licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. |
Copyright_xml | – notice: Tariboon et al.; licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. |
DBID | C6C AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1186/s13661-014-0253-9 |
DatabaseName | Springer Nature Open Access Journals CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1687-2770 |
EndPage | 16 |
ExternalDocumentID | 10_1186_s13661_014_0253_9 |
GroupedDBID | -A0 0R~ 23N 2WC 3V. 4.4 40G 5GY 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN ABDBF ABEEZ ABJCF ABUWG ACACY ACGFS ACIPV ACIWK ACUHS ACULB ADBBV ADINQ AENEX AFGXO AFKRA AFPKN AHBYD AHSBF ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU CS3 DU5 DWQXO E3Z EBLON EBS EJD ESX GNUQQ GROUPED_DOAJ HCIFZ J9A K6V K7- KQ8 L6V M0N M7S M~E OK1 P2P P62 PIMPY PQQKQ PROAC PTHSS Q2X REM RHU RNS RSV SMT SOJ U2A ~8M AASML AAYXX AMVHM CITATION OVT PHGZM PHGZT 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D PQGLB |
ID | FETCH-LOGICAL-c364t-a0616c6ec8a90b55c7a896ecbaa36e7983cd56b21799cbb167ea552dfb40fb783 |
IEDL.DBID | C24 |
ISSN | 1687-2770 |
IngestDate | Fri Jul 11 04:20:19 EDT 2025 Tue Jul 01 02:44:15 EDT 2025 Thu Apr 24 22:57:22 EDT 2025 Fri Feb 21 02:35:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | existence uniqueness fixed point theorems Riemann-Liouville fractional derivative Hadamard fractional integral |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-a0616c6ec8a90b55c7a896ecbaa36e7983cd56b21799cbb167ea552dfb40fb783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://link.springer.com/10.1186/s13661-014-0253-9 |
PQID | 1660098482 |
PQPubID | 23500 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1660098482 crossref_citationtrail_10_1186_s13661_014_0253_9 crossref_primary_10_1186_s13661_014_0253_9 springer_journals_10_1186_s13661_014_0253_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-09 |
PublicationDateYYYYMMDD | 2014-12-09 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationTitle | Boundary value problems |
PublicationTitleAbbrev | Bound Value Probl |
PublicationYear | 2014 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | LiuXJiaMGeWMultiple solutions of a p-Laplacian model involving a fractional derivativeAdv. Differ. Equ201310.1186/1687-1847-2013-126 BoydDWWongJSWOn nonlinear contractionsProc. Am. Math. Soc19692045846423955910.1090/S0002-9939-1969-0239559-9 JaradFAbdeljawadTBaleanuDCaputo-type modification of the Hadamard fractional derivativesAdv. Differ. Equ201210.1186/1687-1847-2012-142 ButzerPLKilbasAATrujilloJJFractional calculus in the Mellin setting and Hadamard-type fractional integralsJ. Math. Anal. Appl2002269127190787110.1016/S0022-247X(02)00001-X GamboYYJaradFBaleanuDAbdeljawadTOn Caputo modification of the Hadamard fractional derivativesAdv. Differ. Equ201410.1186/1687-1847-2014-10 ButzerPLKilbasAATrujilloJJCompositions of Hadamard-type fractional integration operators and the semigroup propertyJ. Math. Anal. Appl2002269387400190712010.1016/S0022-247X(02)00049-5 KilbasAASrivastavaHMTrujilloJJTheory and Applications of Fractional Differential Equations2006AmsterdamElsevier AhmadBNietoJJBoundary value problems for a class of sequential integrodifferential equations of fractional orderJ. Funct. Spaces Appl201310.1155/2013/149659 BaleanuDDiethelmKScalasETrujilloJJFractional Calculus Models and Numerical Methods2012BostonWorld Scientific AhmadBNietoJJRiemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditionsBound. Value Probl201110.1186/1687-2770-2011-36 ZhangLAhmadBWangGAgarwalRPNonlinear fractional integro-differential equations on unbounded domains in a Banach spaceJ. Comput. Appl. Math20132495156303780510.1016/j.cam.2013.02.010 O’ReganDStanekSFractional boundary value problems with singularities in space variablesNonlinear Dyn201371641652303012710.1007/s11071-012-0443-x ButzerPLKilbasAATrujilloJJMellin transform analysis and integration by parts for Hadamard-type fractional integralsJ. Math. Anal. Appl2002270115191174810.1016/S0022-247X(02)00066-5 AgarwalRPZhouYHeYExistence of fractional neutral functional differential equationsComput. Math. Appl20105910951100257947410.1016/j.camwa.2009.05.010 KilbasAAHadamard-type fractional calculusJ. Korean Math. Soc200138119112041858760 PodlubnyIFractional Differential Equations1999San DiegoAcademic Press KrasnoselskiiMATwo remarks on the method of successive approximationsUsp. Mat. Nauk19551012312768119 BaleanuDMustafaOGAgarwalRPOn Lp-solutions for a class of sequential fractional differential equationsAppl. Math. Comput201121820742081283148310.1016/j.amc.2011.07.024 AhmadBNtouyasSKAlsaediANew existence results for nonlinear fractional differential equations with three-point integral boundary conditionsAdv. Differ. Equ201110.1155/2011/107384 HadamardJEssai sur l’étude des fonctions données par leur développement de TaylorJ. Math. Pures Appl18928101186 GranasADugundjiJFixed Point Theory2003New YorkSpringer10.1007/978-0-387-21593-8 AhmadBNtouyasSKAlsaediAA study of nonlinear fractional differential equations of arbitrary order with Riemann-Liouville type multistrip boundary conditionsMath. Probl. Eng2013 KilbasAATrujilloJJHadamard-type integrals as G-transformsIntegral Transforms Spec. Funct200314413427200599910.1080/1065246031000074443 SudsutadWTariboonJExistence results of fractional integro-differential equations with m-point multi-term fractional order integral boundary conditionsBound. Value Probl201210.1186/1687-2770-2012-94 SudsutadWTariboonJBoundary value problems for fractional differential equations with three-point fractional integral boundary conditionsAdv. Differ. Equ201210.1186/1687-1847-2012-93 B Ahmad (253_CR9) 2013 L Zhang (253_CR11) 2013; 249 W Sudsutad (253_CR14) 2012 AA Kilbas (253_CR19) 2001; 38 B Ahmad (253_CR7) 2011 DW Boyd (253_CR23) 1969; 20 J Hadamard (253_CR15) 1892; 8 B Ahmad (253_CR10) 2013 X Liu (253_CR12) 2013 YY Gambo (253_CR22) 2014 D Baleanu (253_CR3) 2012 I Podlubny (253_CR1) 1999 MA Krasnoselskii (253_CR24) 1955; 10 PL Butzer (253_CR16) 2002; 269 PL Butzer (253_CR18) 2002; 270 D Baleanu (253_CR5) 2011; 218 PL Butzer (253_CR17) 2002; 269 D O’Regan (253_CR8) 2013; 71 W Sudsutad (253_CR13) 2012 B Ahmad (253_CR6) 2011 RP Agarwal (253_CR4) 2010; 59 F Jarad (253_CR21) 2012 AA Kilbas (253_CR20) 2003; 14 A Granas (253_CR25) 2003 AA Kilbas (253_CR2) 2006 |
References_xml | – reference: KilbasAASrivastavaHMTrujilloJJTheory and Applications of Fractional Differential Equations2006AmsterdamElsevier – reference: BaleanuDDiethelmKScalasETrujilloJJFractional Calculus Models and Numerical Methods2012BostonWorld Scientific – reference: KrasnoselskiiMATwo remarks on the method of successive approximationsUsp. Mat. Nauk19551012312768119 – reference: BoydDWWongJSWOn nonlinear contractionsProc. Am. Math. Soc19692045846423955910.1090/S0002-9939-1969-0239559-9 – reference: O’ReganDStanekSFractional boundary value problems with singularities in space variablesNonlinear Dyn201371641652303012710.1007/s11071-012-0443-x – reference: HadamardJEssai sur l’étude des fonctions données par leur développement de TaylorJ. Math. Pures Appl18928101186 – reference: BaleanuDMustafaOGAgarwalRPOn Lp-solutions for a class of sequential fractional differential equationsAppl. Math. Comput201121820742081283148310.1016/j.amc.2011.07.024 – reference: ZhangLAhmadBWangGAgarwalRPNonlinear fractional integro-differential equations on unbounded domains in a Banach spaceJ. Comput. Appl. Math20132495156303780510.1016/j.cam.2013.02.010 – reference: ButzerPLKilbasAATrujilloJJCompositions of Hadamard-type fractional integration operators and the semigroup propertyJ. Math. Anal. Appl2002269387400190712010.1016/S0022-247X(02)00049-5 – reference: AgarwalRPZhouYHeYExistence of fractional neutral functional differential equationsComput. Math. Appl20105910951100257947410.1016/j.camwa.2009.05.010 – reference: SudsutadWTariboonJBoundary value problems for fractional differential equations with three-point fractional integral boundary conditionsAdv. Differ. Equ201210.1186/1687-1847-2012-93 – reference: AhmadBNtouyasSKAlsaediANew existence results for nonlinear fractional differential equations with three-point integral boundary conditionsAdv. Differ. Equ201110.1155/2011/107384 – reference: AhmadBNtouyasSKAlsaediAA study of nonlinear fractional differential equations of arbitrary order with Riemann-Liouville type multistrip boundary conditionsMath. Probl. Eng2013 – reference: KilbasAATrujilloJJHadamard-type integrals as G-transformsIntegral Transforms Spec. Funct200314413427200599910.1080/1065246031000074443 – reference: SudsutadWTariboonJExistence results of fractional integro-differential equations with m-point multi-term fractional order integral boundary conditionsBound. Value Probl201210.1186/1687-2770-2012-94 – reference: LiuXJiaMGeWMultiple solutions of a p-Laplacian model involving a fractional derivativeAdv. Differ. Equ201310.1186/1687-1847-2013-126 – reference: JaradFAbdeljawadTBaleanuDCaputo-type modification of the Hadamard fractional derivativesAdv. Differ. Equ201210.1186/1687-1847-2012-142 – reference: ButzerPLKilbasAATrujilloJJFractional calculus in the Mellin setting and Hadamard-type fractional integralsJ. Math. Anal. Appl2002269127190787110.1016/S0022-247X(02)00001-X – reference: ButzerPLKilbasAATrujilloJJMellin transform analysis and integration by parts for Hadamard-type fractional integralsJ. Math. Anal. Appl2002270115191174810.1016/S0022-247X(02)00066-5 – reference: GamboYYJaradFBaleanuDAbdeljawadTOn Caputo modification of the Hadamard fractional derivativesAdv. Differ. Equ201410.1186/1687-1847-2014-10 – reference: KilbasAAHadamard-type fractional calculusJ. Korean Math. Soc200138119112041858760 – reference: PodlubnyIFractional Differential Equations1999San DiegoAcademic Press – reference: AhmadBNietoJJRiemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditionsBound. Value Probl201110.1186/1687-2770-2011-36 – reference: GranasADugundjiJFixed Point Theory2003New YorkSpringer10.1007/978-0-387-21593-8 – reference: AhmadBNietoJJBoundary value problems for a class of sequential integrodifferential equations of fractional orderJ. Funct. Spaces Appl201310.1155/2013/149659 – volume-title: Fixed Point Theory year: 2003 ident: 253_CR25 doi: 10.1007/978-0-387-21593-8 – volume-title: Math. Probl. Eng year: 2013 ident: 253_CR9 – volume: 269 start-page: 387 year: 2002 ident: 253_CR16 publication-title: J. Math. Anal. Appl doi: 10.1016/S0022-247X(02)00049-5 – volume: 59 start-page: 1095 year: 2010 ident: 253_CR4 publication-title: Comput. Math. Appl doi: 10.1016/j.camwa.2009.05.010 – volume-title: Adv. Differ. Equ year: 2012 ident: 253_CR13 – volume-title: Adv. Differ. Equ year: 2014 ident: 253_CR22 – volume-title: Theory and Applications of Fractional Differential Equations year: 2006 ident: 253_CR2 – volume: 8 start-page: 101 year: 1892 ident: 253_CR15 publication-title: J. Math. Pures Appl – volume: 269 start-page: 1 year: 2002 ident: 253_CR17 publication-title: J. Math. Anal. Appl doi: 10.1016/S0022-247X(02)00001-X – volume: 218 start-page: 2074 year: 2011 ident: 253_CR5 publication-title: Appl. Math. Comput doi: 10.1016/j.amc.2011.07.024 – volume: 38 start-page: 1191 year: 2001 ident: 253_CR19 publication-title: J. Korean Math. Soc – volume: 249 start-page: 51 year: 2013 ident: 253_CR11 publication-title: J. Comput. Appl. Math doi: 10.1016/j.cam.2013.02.010 – volume: 10 start-page: 123 year: 1955 ident: 253_CR24 publication-title: Usp. Mat. Nauk – volume: 20 start-page: 458 year: 1969 ident: 253_CR23 publication-title: Proc. Am. Math. Soc doi: 10.1090/S0002-9939-1969-0239559-9 – volume-title: Bound. Value Probl year: 2011 ident: 253_CR6 – volume: 71 start-page: 641 year: 2013 ident: 253_CR8 publication-title: Nonlinear Dyn doi: 10.1007/s11071-012-0443-x – volume-title: Adv. Differ. Equ year: 2013 ident: 253_CR12 – volume: 270 start-page: 1 year: 2002 ident: 253_CR18 publication-title: J. Math. Anal. Appl doi: 10.1016/S0022-247X(02)00066-5 – volume-title: Fractional Differential Equations year: 1999 ident: 253_CR1 – volume-title: Fractional Calculus Models and Numerical Methods year: 2012 ident: 253_CR3 doi: 10.1142/8180 – volume-title: Adv. Differ. Equ year: 2011 ident: 253_CR7 – volume-title: Adv. Differ. Equ year: 2012 ident: 253_CR21 – volume: 14 start-page: 413 year: 2003 ident: 253_CR20 publication-title: Integral Transforms Spec. Funct doi: 10.1080/1065246031000074443 – volume-title: J. Funct. Spaces Appl year: 2013 ident: 253_CR10 – volume-title: Bound. Value Probl year: 2012 ident: 253_CR14 |
SSID | ssj0039342 |
Score | 2.1024506 |
Snippet | In this paper, we introduce a new class of boundary value problems consisting of a fractional differential equation of Riemann-Liouville type,
D
q
R
L
x
(
t
)... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).In this paper, we introduce a new class of boundary value problems consisting of a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Analysis Approximations and Expansions Boundary value problems Difference and Functional Equations Differential equations Existence theorems Integrals Mathematical analysis Mathematics Mathematics and Statistics Nonlinearity Ordinary Differential Equations Partial Differential Equations Texts Theorems Uniqueness |
Title | Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations |
URI | https://link.springer.com/article/10.1186/s13661-014-0253-9 https://www.proquest.com/docview/1660098482 |
Volume | 2014 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEA4eL_ognrgeSwSflGDbHE0edXEV0UXEBd9CkqYgrF3d7vr7nfTwQgVfBlqaUGYmmfmYzBeEDrPUxTazlEC2nBEmTEystZJAOAH4nDqnqq73m4G4HLKrB_7Q9HGX7Wn3tiRZ7dTVspbipIwpxBKAvgwm4pSoebTIAboHt-6FFod6-6WKsqQpX_447GsA-sgqvxVCq_jSX0UrTWKIT2tLrqE5X6yj5Zt3VtVyA00G46KKPRj2C_MEtsX5pG5MgHcN8cMIA8LN6oNYGDJSXNRkGGaC7x5hqqIg14_j2WvoAfw8vL0pBVb8CPuXmgG83ETD_vl975I0dyYQRwWbEgPxWTjhnTQqspy71EgFj9YYKnyqJHUZFzYJRHDO2lik3nCeZLllUW5TSbfQAvyX30aYZYopJqjPrWDccBNnPLIAd6ihNje8g6JWkdo1hOLhXouRroCFFLrWvQbd66B7rTro6H3Ic82m8dfHB611NPh8KGSYwo9npY6FCDyoTCYddNyaTTeLr_x9xp1_fb2LlpLgNuHsitpDC9PJzO9DBjK1XTTPoguQsg9y8ex8cHvXrbwwSNHrVsge5DA5fQPxS9y5 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD-pBfGJ9RvCkBLubx26OUpSqbQ_SQm8hyWZBqFvttv5-J_vQKip43JAJy8wkM8PMfIPQeRLZwCSGEvCWE8KEDogxJiZgTiB8jqyVRdd7ry86Q3Y_4qMKLNr3wizm74NYXOUBBQsCAS8Dck6JXEYrDAJlX73XFu360aWSsrBKWv5I9tXsfPqS39KfhVW53UQblTuIr0v5baEll22j9d4Hlmq-g6b9SVZYHAyvhH4GieJ0WrYjwFoF9zDGENcmZfkVBj8UZyUEhp7ixyc4KstI92kyf_Odf4vk9XwUuOdj7F5L3O98Fw1vbwbtDqkmJRBLBZsRDVZZWOFsrGXLcG4jHUv4NFpT4SIZU5twYUIP_2aNCUTkNOdhkhrWSk0U0z3UgP9y-wizRDLJBHWpEYxrroOEtwwEOVRTk2reRK2akcpWMOJ-msVYFeFELFTJewW8V573SjbRxQfJS4mh8dfms1o6CjTdpy905ibzXAVCePRTFodNdFmLTVVXLv_9xIN_7T5Fq51Br6u6d_2HQ7QWehXy1SvyCDVm07k7Bh9kZk4K7XsHnaPVww |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEA_eCsf5IH7i-pkDn5Tgtvlo8yjqop4uIif4FvJVENaubnf9-5007XrKKfjYkgztTCYzw8z8BqF9l9nEOEMJeMuOMKETYozJCZgTCJ8za2Xd9X49EOd37PKe3zdzTqu22r1NScaehoDSVE6OnlwRVTwXR1VCwa5AGMyAKKdE_kDzEKgkoabvJLQ7xKuYSsrSJpX5323vjdGbh_khKVrbmv4SWmycRHwcpbqM5ny5ghauZwir1SoaD0ZlbYcw3B36EeSMi3FsUoB3DQjEEMNvuViUhcE7xWUExtBjfPsApMqSXD2Mpi-hH_Df7e3UFND-IfbPEQ28WkN3_bO_J-ekmZ9ALBVsQjTYamGFt7mWPcO5zXQu4dFoTYXPZE6t48KkARTOGpOIzGvOU1cY1itMltN11IHv8hsIMyeZZIL6wgjGNdeJ4z0DoQ_V1BSad1GvZaSyDbh4mHExVHWQkQsVea-A9yrwXskuOphteYrIGl8t_t1KR8H5D0kNXfrRtFKJEAETleVpFx22YlONIlafU9z81uo99PPmtK-uLgZ_ttCvNJygUNIit1FnMp76HXBMJma3PnyvX0zd4w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlocal+Hadamard+fractional+integral+conditions+for+nonlinear+Riemann-Liouville+fractional+differential+equations&rft.jtitle=Boundary+value+problems&rft.au=Tariboon%2C+Jessada&rft.au=Ntouyas%2C+Sotiris+K&rft.au=Sudsutad%2C+Weerawat&rft.date=2014-12-09&rft.issn=1687-2770&rft.eissn=1687-2770&rft.volume=2014&rft.issue=1&rft_id=info:doi/10.1186%2Fs13661-014-0253-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13661_014_0253_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-2770&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-2770&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-2770&client=summon |