Superlithiation of non-conductive polyimide toward high-performance lithium-ion batteries

Superlithiation has been observed in some carbonyl-based organic electrodes, which leads to very high battery capacity. However, as typical carbonyl polymers, polyimides (PIs) exhibited a relatively low capacity (≤250 mA h g −1 ) in previous studies because their poor electrical conductivity restric...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 6; no. 42; pp. 21216 - 21224
Main Authors Yang, Haoqi, Liu, Shuwu, Cao, Lihua, Jiang, Shaohua, Hou, Haoqing
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Superlithiation has been observed in some carbonyl-based organic electrodes, which leads to very high battery capacity. However, as typical carbonyl polymers, polyimides (PIs) exhibited a relatively low capacity (≤250 mA h g −1 ) in previous studies because their poor electrical conductivity restricts superlithiation. Therefore, to realize superlithiation, in this study, multilayer graphene (MG) as a conductive additive was incorporated in PI matrix through a blending precipitation and thermal imidization method. As an electrode in lithium-ion batteries, PI–MG exhibited outstanding capacity (612 mA h g −1 at 100 mA g −1 ) and stable long-term cyclability (89.3% capacity retention over 500 cycles at 500 mA g −1 ). Moreover, the battery could be operated stably at various temperatures, and it exhibited very high specific capacity, especially at the high operating temperature of 55 °C (873 mA h g −1 , 0.1C). We believe that this strategy of introducing conductive additives to promote superlithiation is highly applicable to other non-conductive carbonyl polymers for lithium-ion battery applications.
AbstractList Superlithiation has been observed in some carbonyl-based organic electrodes, which leads to very high battery capacity. However, as typical carbonyl polymers, polyimides (PIs) exhibited a relatively low capacity (≤250 mA h g−1) in previous studies because their poor electrical conductivity restricts superlithiation. Therefore, to realize superlithiation, in this study, multilayer graphene (MG) as a conductive additive was incorporated in PI matrix through a blending precipitation and thermal imidization method. As an electrode in lithium-ion batteries, PI–MG exhibited outstanding capacity (612 mA h g−1 at 100 mA g−1) and stable long-term cyclability (89.3% capacity retention over 500 cycles at 500 mA g−1). Moreover, the battery could be operated stably at various temperatures, and it exhibited very high specific capacity, especially at the high operating temperature of 55 °C (873 mA h g−1, 0.1C). We believe that this strategy of introducing conductive additives to promote superlithiation is highly applicable to other non-conductive carbonyl polymers for lithium-ion battery applications.
Superlithiation has been observed in some carbonyl-based organic electrodes, which leads to very high battery capacity. However, as typical carbonyl polymers, polyimides (PIs) exhibited a relatively low capacity (≤250 mA h g −1 ) in previous studies because their poor electrical conductivity restricts superlithiation. Therefore, to realize superlithiation, in this study, multilayer graphene (MG) as a conductive additive was incorporated in PI matrix through a blending precipitation and thermal imidization method. As an electrode in lithium-ion batteries, PI–MG exhibited outstanding capacity (612 mA h g −1 at 100 mA g −1 ) and stable long-term cyclability (89.3% capacity retention over 500 cycles at 500 mA g −1 ). Moreover, the battery could be operated stably at various temperatures, and it exhibited very high specific capacity, especially at the high operating temperature of 55 °C (873 mA h g −1 , 0.1C). We believe that this strategy of introducing conductive additives to promote superlithiation is highly applicable to other non-conductive carbonyl polymers for lithium-ion battery applications.
Author Yang, Haoqi
Jiang, Shaohua
Liu, Shuwu
Cao, Lihua
Hou, Haoqing
Author_xml – sequence: 1
  givenname: Haoqi
  surname: Yang
  fullname: Yang, Haoqi
  organization: Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330027, China
– sequence: 2
  givenname: Shuwu
  surname: Liu
  fullname: Liu, Shuwu
  organization: Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330027, China
– sequence: 3
  givenname: Lihua
  surname: Cao
  fullname: Cao, Lihua
  organization: College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
– sequence: 4
  givenname: Shaohua
  orcidid: 0000-0001-6147-3248
  surname: Jiang
  fullname: Jiang, Shaohua
  organization: College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
– sequence: 5
  givenname: Haoqing
  orcidid: 0000-0002-8583-8384
  surname: Hou
  fullname: Hou, Haoqing
  organization: Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330027, China
BookMark eNpFkDFPwzAUhC1UJErpwi-IxIZkeI4Txx6rCgoSEgNlYIoc54W6auJgO6D-e1KK4JZ3w333pDsnk851SMglgxsGXN0u5XoBOQO1OiHTFHKgRabE5M9LeUbmIWxhlAQQSk3J28vQo9_ZuLE6WtclrknGWmpcVw8m2k9Merfb29bWmET3pX2dbOz7ho5U43yrO4PJDz609MBXOkb0FsMFOW30LuD8987I6_3devlAn55Xj8vFEzVcZJGqJuM8k6YCLETNDBYMBasMVIYJg6wSWZ1zEIXSSmrOlMyyJq1NXnDgOpd8Rq6Ovb13HwOGWG7d4LvxZZmyVKhCCJ6OqetjyngXgsem7L1ttd-XDMrDeuX_evwbDNdkLg
CitedBy_id crossref_primary_10_1016_j_jcis_2022_01_027
crossref_primary_10_1016_j_cej_2022_138051
crossref_primary_10_1016_j_compositesb_2022_110105
crossref_primary_10_1016_j_cej_2023_142434
crossref_primary_10_1016_j_jpowsour_2020_228931
crossref_primary_10_1002_smll_202102981
crossref_primary_10_1016_j_matlet_2020_129132
crossref_primary_10_1016_j_micromeso_2022_111803
crossref_primary_10_1021_acsaem_1c02776
crossref_primary_10_3390_polym12051051
crossref_primary_10_1002_adma_202007497
crossref_primary_10_1016_j_ceramint_2020_12_147
crossref_primary_10_1515_epoly_2020_0068
crossref_primary_10_1016_j_molstruc_2020_128328
crossref_primary_10_1002_adfm_202111045
crossref_primary_10_1007_s10895_023_03419_5
crossref_primary_10_1016_j_compscitech_2020_108450
crossref_primary_10_1021_acsami_9b16458
crossref_primary_10_1002_ente_202000397
crossref_primary_10_1016_j_jssc_2019_120949
crossref_primary_10_1016_j_ceramint_2019_07_110
crossref_primary_10_1016_j_cclet_2019_07_033
crossref_primary_10_1016_j_electacta_2020_135838
crossref_primary_10_1002_anie_202011484
crossref_primary_10_1016_j_coco_2020_100506
crossref_primary_10_1016_j_dyepig_2020_109039
crossref_primary_10_1016_j_saa_2020_118754
crossref_primary_10_1016_j_jpowsour_2020_227792
crossref_primary_10_1016_j_aca_2021_338211
crossref_primary_10_1039_D0TA10282B
crossref_primary_10_1002_zaac_201900129
crossref_primary_10_1016_j_jpowsour_2024_234759
crossref_primary_10_1021_acsami_1c24012
crossref_primary_10_1016_j_jechem_2019_03_036
crossref_primary_10_1039_D0AN00440E
crossref_primary_10_1016_j_electacta_2019_135490
crossref_primary_10_1016_j_molstruc_2019_127214
crossref_primary_10_1002_ange_202011484
crossref_primary_10_1007_s10853_019_04218_9
crossref_primary_10_1016_j_dyepig_2019_107583
crossref_primary_10_3390_catal10121472
crossref_primary_10_1016_j_saa_2020_119214
crossref_primary_10_1039_D3TA00596H
crossref_primary_10_1016_j_compstruct_2020_113286
crossref_primary_10_1002_sstr_202200383
crossref_primary_10_1016_j_cej_2019_05_062
crossref_primary_10_1021_acsami_2c16978
crossref_primary_10_1016_j_ijbiomac_2024_131638
crossref_primary_10_1016_j_talanta_2020_121010
crossref_primary_10_1016_j_coco_2020_100561
crossref_primary_10_1016_j_cej_2020_124924
crossref_primary_10_1016_j_dyepig_2019_107696
crossref_primary_10_1039_D1EE01739J
crossref_primary_10_1016_j_ultsonch_2019_104734
crossref_primary_10_1016_j_electacta_2022_141306
crossref_primary_10_1039_D2TA07651A
crossref_primary_10_1016_j_compositesa_2020_105904
crossref_primary_10_1016_j_dyepig_2020_108444
crossref_primary_10_1021_acsaem_1c00714
crossref_primary_10_1021_acsami_1c00065
crossref_primary_10_1002_batt_202200178
crossref_primary_10_1016_j_matchemphys_2022_126391
crossref_primary_10_1149_2_0411916jes
crossref_primary_10_1016_j_apsusc_2019_144243
crossref_primary_10_1016_j_cej_2024_151513
crossref_primary_10_1002_zaac_202000119
crossref_primary_10_1016_j_diamond_2019_107646
crossref_primary_10_1149_1945_7111_ab9ccd
crossref_primary_10_1016_j_ensm_2019_11_005
crossref_primary_10_1002_aenm_202103304
crossref_primary_10_1007_s40820_023_01104_7
crossref_primary_10_1016_j_electacta_2020_135821
crossref_primary_10_1021_acsami_3c10722
crossref_primary_10_1002_ente_202100374
crossref_primary_10_1039_D1EE00419K
crossref_primary_10_2174_1385272824666200102111215
crossref_primary_10_1016_j_jallcom_2022_165559
crossref_primary_10_1039_C9TA05552E
crossref_primary_10_1088_1361_6528_abb336
crossref_primary_10_1016_j_jclepro_2020_124534
crossref_primary_10_1038_s41428_023_00857_7
crossref_primary_10_1016_j_jpowsour_2020_228796
crossref_primary_10_1016_j_jmst_2020_10_002
crossref_primary_10_1016_j_jpcs_2019_109309
crossref_primary_10_1002_cplu_201800652
crossref_primary_10_1021_acsapm_4c01136
crossref_primary_10_1177_0967391120930970
crossref_primary_10_1021_acssuschemeng_9b04359
crossref_primary_10_1016_j_compositesa_2020_105800
crossref_primary_10_1002_eem2_12797
crossref_primary_10_1016_j_poly_2019_114314
crossref_primary_10_1016_j_compscitech_2020_108080
crossref_primary_10_1016_j_coco_2021_100696
crossref_primary_10_1088_2053_1591_ab3993
crossref_primary_10_1002_eem2_12275
crossref_primary_10_1002_adfm_202211590
crossref_primary_10_1038_s41467_024_49663_6
crossref_primary_10_1080_24701556_2020_1731541
crossref_primary_10_1039_D2CC05660G
crossref_primary_10_1016_j_jallcom_2020_153664
crossref_primary_10_1016_j_carbon_2019_09_018
crossref_primary_10_1016_j_jhazmat_2019_121654
crossref_primary_10_1016_j_jcis_2021_11_188
crossref_primary_10_1039_C9CC09526H
Cites_doi 10.1016/j.jpowsour.2010.06.069
10.1002/anie.201202476
10.1039/c0jm04225k
10.1002/anie.201109187
10.1016/j.progpolymsci.2016.06.006
10.1002/adma.200803439
10.1021/nn203480h
10.1021/nl2039666
10.1016/j.nanoen.2015.03.027
10.1021/ja306663g
10.1002/smll.201703361
10.1021/acs.nanolett.6b05191
10.1021/acsami.7b06996
10.1021/acsnano.8b01549
10.1039/b814515f
10.1016/j.jpowsour.2012.10.027
10.1039/c3ta10473g
10.1002/adma.201305452
10.1039/C1EE02148F
10.1002/adma.200602584
10.1038/nchem.2696
10.1021/nl800957b
10.1016/j.jpowsour.2010.07.020
10.1016/j.progpolymsci.2007.01.007
10.1016/j.jpowsour.2013.01.103
10.1002/anie.201002439
10.1002/aenm.201402189
10.1021/acsnano.6b06512
10.1039/C4TA00364K
10.1016/j.matlet.2017.12.146
10.1002/adfm.201605332
10.1039/c0jm01702g
10.1002/adma.201607007
10.1016/j.jpowsour.2015.09.037
10.1039/c0ee00699h
10.1038/nnano.2012.35
10.1039/C7RA13444D
10.1002/smll.201303202
10.1016/j.jpowsour.2016.09.117
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
DOI 10.1039/C8TA05109G
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 21224
ExternalDocumentID 10_1039_C8TA05109G
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
ID FETCH-LOGICAL-c364t-9f43348cb0e76d1ce71e61bc0bc16ce1b64d530679a98a319844f2dc57303a583
ISSN 2050-7488
IngestDate Fri Sep 13 04:02:40 EDT 2024
Fri Aug 23 00:18:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c364t-9f43348cb0e76d1ce71e61bc0bc16ce1b64d530679a98a319844f2dc57303a583
ORCID 0000-0001-6147-3248
0000-0002-8583-8384
PQID 2126976632
PQPubID 2047523
PageCount 9
ParticipantIDs proquest_journals_2126976632
crossref_primary_10_1039_C8TA05109G
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Guo (C8TA05109G-(cit28)/*[position()=1]) 2012; 5
Miao (C8TA05109G-(cit32)/*[position()=1]) 2013; 226
Chen (C8TA05109G-(cit7)/*[position()=1]) 2018; 14
Song (C8TA05109G-(cit17)/*[position()=1]) 2010; 49
Ye (C8TA05109G-(cit33)/*[position()=1]) 2015; 299
Ding (C8TA05109G-(cit25)/*[position()=1]) 2007; 32
Wu (C8TA05109G-(cit29)/*[position()=1]) 2013; 1
Li (C8TA05109G-(cit8)/*[position()=1]) 2016; 335
Zhao (C8TA05109G-(cit22)/*[position()=1]) 2017; 29
Liu (C8TA05109G-(cit21)/*[position()=1]) 2017; 9
Yoo (C8TA05109G-(cit35)/*[position()=1]) 2008; 8
Jian (C8TA05109G-(cit38)/*[position()=1]) 2018; 8
Niu (C8TA05109G-(cit10)/*[position()=1]) 2017; 27
Jiang (C8TA05109G-(cit39)/*[position()=1]) 2018; 216
Zhang (C8TA05109G-(cit6)/*[position()=1]) 2018; 12
Liu (C8TA05109G-(cit12)/*[position()=1]) 2010; 20
Lee (C8TA05109G-(cit13)/*[position()=1]) 2017; 17
Song (C8TA05109G-(cit16)/*[position()=1]) 2009
Han (C8TA05109G-(cit37)/*[position()=1]) 2007; 19
Zhang (C8TA05109G-(cit2)/*[position()=1]) 2011; 196
Han (C8TA05109G-(cit23)/*[position()=1]) 2012; 51
Nokami (C8TA05109G-(cit19)/*[position()=1]) 2012; 134
Ding (C8TA05109G-(cit26)/*[position()=1]) 2016; 61
Sakaushi (C8TA05109G-(cit34)/*[position()=1]) 2012; 51
Kim (C8TA05109G-(cit11)/*[position()=1]) 2016; 10
Wu (C8TA05109G-(cit31)/*[position()=1]) 2014; 26
Zhu (C8TA05109G-(cit4)/*[position()=1]) 2014; 10
Lou (C8TA05109G-(cit15)/*[position()=1]) 2009; 21
Zhao (C8TA05109G-(cit20)/*[position()=1]) 2013; 233
Yao (C8TA05109G-(cit18)/*[position()=1]) 2010; 195
Wu (C8TA05109G-(cit14)/*[position()=1]) 2012; 7
Ji (C8TA05109G-(cit3)/*[position()=1]) 2011; 4
Meng (C8TA05109G-(cit30)/*[position()=1]) 2014; 2
Li (C8TA05109G-(cit5)/*[position()=1]) 2015; 13
Yan (C8TA05109G-(cit36)/*[position()=1]) 2017; 9
Marom (C8TA05109G-(cit1)/*[position()=1]) 2011; 21
Song (C8TA05109G-(cit27)/*[position()=1]) 2012; 12
Wu (C8TA05109G-(cit24)/*[position()=1]) 2015; 5
Xie (C8TA05109G-(cit9)/*[position()=1]) 2011; 5
References_xml – volume: 195
  start-page: 8336
  year: 2010
  ident: C8TA05109G-(cit18)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.06.069
  contributor:
    fullname: Yao
– volume: 51
  start-page: 7850
  year: 2012
  ident: C8TA05109G-(cit34)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201202476
  contributor:
    fullname: Sakaushi
– volume: 21
  start-page: 9938
  year: 2011
  ident: C8TA05109G-(cit1)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm04225k
  contributor:
    fullname: Marom
– volume: 51
  start-page: 5147
  year: 2012
  ident: C8TA05109G-(cit23)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201109187
  contributor:
    fullname: Han
– volume: 61
  start-page: 67
  year: 2016
  ident: C8TA05109G-(cit26)/*[position()=1]
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2016.06.006
  contributor:
    fullname: Ding
– volume: 21
  start-page: 2536
  year: 2009
  ident: C8TA05109G-(cit15)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200803439
  contributor:
    fullname: Lou
– volume: 5
  start-page: 9225
  year: 2011
  ident: C8TA05109G-(cit9)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn203480h
  contributor:
    fullname: Xie
– volume: 12
  start-page: 2205
  year: 2012
  ident: C8TA05109G-(cit27)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl2039666
  contributor:
    fullname: Song
– volume: 13
  start-page: 693
  year: 2015
  ident: C8TA05109G-(cit5)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.03.027
  contributor:
    fullname: Li
– volume: 134
  start-page: 19694
  year: 2012
  ident: C8TA05109G-(cit19)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja306663g
  contributor:
    fullname: Nokami
– volume: 14
  start-page: e1703361
  year: 2018
  ident: C8TA05109G-(cit7)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201703361
  contributor:
    fullname: Chen
– volume: 17
  start-page: 1870
  year: 2017
  ident: C8TA05109G-(cit13)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b05191
  contributor:
    fullname: Lee
– volume: 9
  start-page: 27707
  year: 2017
  ident: C8TA05109G-(cit36)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b06996
  contributor:
    fullname: Yan
– volume: 12
  start-page: 4824
  year: 2018
  ident: C8TA05109G-(cit6)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01549
  contributor:
    fullname: Zhang
– start-page: 448
  year: 2009
  ident: C8TA05109G-(cit16)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b814515f
  contributor:
    fullname: Song
– volume: 226
  start-page: 82
  year: 2013
  ident: C8TA05109G-(cit32)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.10.027
  contributor:
    fullname: Miao
– volume: 1
  start-page: 6366
  year: 2013
  ident: C8TA05109G-(cit29)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta10473g
  contributor:
    fullname: Wu
– volume: 26
  start-page: 3338
  year: 2014
  ident: C8TA05109G-(cit31)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305452
  contributor:
    fullname: Wu
– volume: 5
  start-page: 5221
  year: 2012
  ident: C8TA05109G-(cit28)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C1EE02148F
  contributor:
    fullname: Guo
– volume: 19
  start-page: 1616
  year: 2007
  ident: C8TA05109G-(cit37)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602584
  contributor:
    fullname: Han
– volume: 9
  start-page: 563
  year: 2017
  ident: C8TA05109G-(cit21)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2696
  contributor:
    fullname: Liu
– volume: 8
  start-page: 2277
  year: 2008
  ident: C8TA05109G-(cit35)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl800957b
  contributor:
    fullname: Yoo
– volume: 196
  start-page: 13
  year: 2011
  ident: C8TA05109G-(cit2)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.07.020
  contributor:
    fullname: Zhang
– volume: 32
  start-page: 623
  year: 2007
  ident: C8TA05109G-(cit25)/*[position()=1]
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2007.01.007
  contributor:
    fullname: Ding
– volume: 233
  start-page: 23
  year: 2013
  ident: C8TA05109G-(cit20)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.01.103
  contributor:
    fullname: Zhao
– volume: 49
  start-page: 8444
  year: 2010
  ident: C8TA05109G-(cit17)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201002439
  contributor:
    fullname: Song
– volume: 5
  start-page: 1402189
  year: 2015
  ident: C8TA05109G-(cit24)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201402189
  contributor:
    fullname: Wu
– volume: 10
  start-page: 11317
  year: 2016
  ident: C8TA05109G-(cit11)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b06512
  contributor:
    fullname: Kim
– volume: 2
  start-page: 10842
  year: 2014
  ident: C8TA05109G-(cit30)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00364K
  contributor:
    fullname: Meng
– volume: 216
  start-page: 81
  year: 2018
  ident: C8TA05109G-(cit39)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.12.146
  contributor:
    fullname: Jiang
– volume: 27
  start-page: 1605332
  year: 2017
  ident: C8TA05109G-(cit10)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605332
  contributor:
    fullname: Niu
– volume: 20
  start-page: 10055
  year: 2010
  ident: C8TA05109G-(cit12)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm01702g
  contributor:
    fullname: Liu
– volume: 29
  start-page: 1607007
  year: 2017
  ident: C8TA05109G-(cit22)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201607007
  contributor:
    fullname: Zhao
– volume: 299
  start-page: 417
  year: 2015
  ident: C8TA05109G-(cit33)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.09.037
  contributor:
    fullname: Ye
– volume: 4
  start-page: 2682
  year: 2011
  ident: C8TA05109G-(cit3)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00699h
  contributor:
    fullname: Ji
– volume: 7
  start-page: 310
  year: 2012
  ident: C8TA05109G-(cit14)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.35
  contributor:
    fullname: Wu
– volume: 8
  start-page: 4794
  year: 2018
  ident: C8TA05109G-(cit38)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C7RA13444D
  contributor:
    fullname: Jian
– volume: 10
  start-page: 3480
  year: 2014
  ident: C8TA05109G-(cit4)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201303202
  contributor:
    fullname: Zhu
– volume: 335
  start-page: 38
  year: 2016
  ident: C8TA05109G-(cit8)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.09.117
  contributor:
    fullname: Li
SSID ssj0000800699
Score 2.5648024
Snippet Superlithiation has been observed in some carbonyl-based organic electrodes, which leads to very high battery capacity. However, as typical carbonyl polymers,...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 21216
SubjectTerms Additives
Carbonyls
Electrical conductivity
Electrical resistivity
Electrodes
Graphene
Lithium
Lithium-ion batteries
Multilayers
Operating temperature
Polyimide resins
Polymers
Rechargeable batteries
Specific capacity
Title Superlithiation of non-conductive polyimide toward high-performance lithium-ion batteries
URI https://www.proquest.com/docview/2126976632/abstract/
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZK9wIPiJ9iMFAkeKs84jhxksdq6ihTGQ-kUvcUJY5DI220QCIEfxJ_JXd27KZjQsBLVDmy5fou57vPd58JeRWyOJG8CGnBipKGSR3RlFecijJRRVwx6VcIDbw7F_NleLaKVqPRz0HWUteWx_LHjXUl_yNVaAO5YpXsP0jWDQoN8BvkC0-QMDz_SsYfui2yVbXrxjl-EM1TCHGRxRVzgraby-_NVVPhBRmYHztBemK6HVQL6O7dFcX-pSbbtGmFv7us4N2avzWR9p6448nUlPzYN5pC3BQUakzeFmhhDq6D7y96lHpebD43Lieo6TQWu-6-dbujkY1BDtad2z_OGotxr4uNbe-Bi97KmlwnBEZsVqrOOunnvDN-gR_5yHNqeqlhm7kB11pvMVBSw9PlTHHAxGBfD_AM8cZNw-fIuSqTtkALlX7cbY02HeD8fX66XCzybLbKbpGDIIaockwOprPs7cIheuh7C31hqZu85cPl6evd8Pse0L4DoL2a7B6528vWmxrduk9G6tMDcmdAUvmQXFzTMm9Te_ta5jkt84yWede1zBtomee07BFZns6ykzntL-SgkouwpWkdYuG2LH0VC_iOVcyUYKX0S8mEVKwUYRVhDJoWaVKAcU_CsA4qGcE2woso4Y_JGCaonhAv5QrDiVohQgHDlrXAA_oQTEosGWeH5KVdpHxreFdynS_B0_wkyaZ6Kd8ckiO7fnn_XX7NQdACnGzBg6d_fv2M3Ea9NIDaERm3Xzr1HFzMtnzRy_YXnd-E_w
link.rule.ids 315,786,790,4043,27956,27957,27958
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superlithiation+of+non-conductive+polyimide+toward+high-performance+lithium-ion+batteries&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Yang%2C+Haoqi&rft.au=Liu%2C+Shuwu&rft.au=Cao%2C+Lihua&rft.au=Jiang%2C+Shaohua&rft.date=2018&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=6&rft.issue=42&rft.spage=21216&rft.epage=21224&rft_id=info:doi/10.1039%2Fc8ta05109g&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon