Design of a continuous fiber trajectory for 4D printing of thermally stimulated composite structures

Deformation control of 4D printing has always been challenging. Herein, a design method for the fiber trajectory for 4D printing composite structures with embedded continuous fibers is reported, wherein the designed composite structures can be deformed into many types of deployable surfaces. Deforma...

Full description

Saved in:
Bibliographic Details
Published inScience China. Technological sciences Vol. 63; no. 4; pp. 571 - 577
Main Authors Tian, XiaoYong, Wang, QingRui, Li, DiChen
Format Journal Article
LanguageEnglish
Published Beijing Science China Press 01.04.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deformation control of 4D printing has always been challenging. Herein, a design method for the fiber trajectory for 4D printing composite structures with embedded continuous fibers is reported, wherein the designed composite structures can be deformed into many types of deployable surfaces. Deformation of the bilayer composite structure was driven by differences in the coefficients of thermal expansion (CTEs) between the resin substrate and embedded fibers. The bending curvature and direction of the composite structure is controlled by adjusting fiber orientations. According to differential geometry theory, the relationship between the angle of intersecting fiber bundles and curvature of the final shape was obtained. Therefore, arbitrary deployable surfaces, including conical, cylindrical, and tangent surfaces, can be deformed. This design and additive manufacturing strategy allow precise control of the deforming process, greatly extending the potential applications of 4D printing.
AbstractList Deformation control of 4D printing has always been challenging. Herein, a design method for the fiber trajectory for 4D printing composite structures with embedded continuous fibers is reported, wherein the designed composite structures can be deformed into many types of deployable surfaces. Deformation of the bilayer composite structure was driven by differences in the coefficients of thermal expansion (CTEs) between the resin substrate and embedded fibers. The bending curvature and direction of the composite structure is controlled by adjusting fiber orientations. According to differential geometry theory, the relationship between the angle of intersecting fiber bundles and curvature of the final shape was obtained. Therefore, arbitrary deployable surfaces, including conical, cylindrical, and tangent surfaces, can be deformed. This design and additive manufacturing strategy allow precise control of the deforming process, greatly extending the potential applications of 4D printing.
Author Wang, QingRui
Tian, XiaoYong
Li, DiChen
Author_xml – sequence: 1
  givenname: XiaoYong
  surname: Tian
  fullname: Tian, XiaoYong
  email: leoxyt@mail.xjtu.edu.cn
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University
– sequence: 2
  givenname: QingRui
  surname: Wang
  fullname: Wang, QingRui
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University
– sequence: 3
  givenname: DiChen
  surname: Li
  fullname: Li, DiChen
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University
BookMark eNp9kMtKAzEUhoNUsNY-gLuA69HcZ7KU1hsU3Og6pJmkpkwnNcks-vZmGEEQNARy4Xx_Tr5LMOtDbwG4xugWI1TfJYwZxRXCssKs4RU_A3PciHKSCM3KXtSsqinBF2CZ0h6VQRuJMJuDdm2T3_UwOKihCX32_RCGBJ3f2ghz1Htrcogn6EKEbA2P0Y81uxHIHzYedNedYMr-MHQ627ZkHI4h-WzLZRxMHqJNV-Dc6S7Z5fe6AO-PD2-r52rz-vSyut9UhgqWK7kVjBFWmpOaImKIwKjMVraUMm1QrQ0XhnPrarJtHRYcNYZw2TjJGi0FXYCbKfcYw-dgU1b7MMS-PKkILT4YL9mlqp6qTAwpReuU8VlnXz4fte8URmq0qiarqlhVo1XFC4l_kUXHQcfTvwyZmDSq29n409Pf0BdW5Ytw
CitedBy_id crossref_primary_10_1002_aisy_202200384
crossref_primary_10_3390_polym14193952
crossref_primary_10_1016_j_addma_2022_102975
crossref_primary_10_1016_j_sna_2022_113670
crossref_primary_10_1080_29963176_2024_2419860
crossref_primary_10_1016_j_compositesb_2024_111645
crossref_primary_10_1115_1_4065142
crossref_primary_10_1016_j_compositesa_2024_108085
crossref_primary_10_1016_j_jmapro_2022_07_035
crossref_primary_10_1016_j_giant_2024_100277
crossref_primary_10_1016_j_coco_2021_100907
crossref_primary_10_1016_j_compositesb_2022_110450
crossref_primary_10_34133_research_0234
crossref_primary_10_3389_fmats_2021_661593
crossref_primary_10_1177_07316844241248241
crossref_primary_10_1007_s10853_024_09925_6
crossref_primary_10_1016_j_cjmeam_2023_100090
crossref_primary_10_1016_j_jsamd_2021_03_006
crossref_primary_10_1007_s00170_025_15376_3
Cites_doi 10.1038/s41586-018-0185-0
10.1038/srep13616
10.1016/j.matdes.2017.02.068
10.1016/j.eml.2015.07.005
10.1039/C7SM00759K
10.1038/nmat4544
10.1038/s41598-017-09864-0
10.1080/17452759.2016.1265992
10.1038/srep07422
10.1088/1748-3182/9/3/036004
10.1016/j.compositesa.2016.04.005
10.1039/C5MH00212E
10.1038/s41563-018-0219-x
10.1002/adfm.201704388
10.1016/j.compscitech.2011.08.008
10.1021/jacs.5b10131
10.1088/1748-3190/aa5efd
10.1016/j.piutam.2014.12.021
10.1126/sciadv.aat0641
10.1016/j.matdes.2018.06.027
10.1021/am400681z
ContentType Journal Article
Copyright Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
DOI 10.1007/s11431-019-1485-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1869-1900
EndPage 577
ExternalDocumentID 10_1007_s11431_019_1485_5
GroupedDBID -5B
-5G
-BR
-EM
-SC
-S~
-Y2
-~C
.VR
06D
0R~
0VY
1N0
29~
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
40D
40E
5VR
5VS
8TC
8UJ
92E
92I
92Q
93N
95-
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFLOW
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BDATZ
BSONS
CAG
CAJEC
CCEZO
CEKLB
CHBEP
CJPJV
COF
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
MA-
N2Q
NB0
NPVJJ
NQJWS
O9J
P9P
PF0
PT4
Q--
QOS
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TCJ
TGP
TR2
TSG
TUC
U1G
U2A
U5M
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ACMFV
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c364t-9b644240039a302c2610610d9d334ac07ac56c55ef72bdf16508c2598f948a963
IEDL.DBID U2A
ISSN 1674-7321
IngestDate Fri Jul 25 11:05:25 EDT 2025
Tue Jul 01 03:26:16 EDT 2025
Thu Apr 24 22:56:45 EDT 2025
Fri Feb 21 02:33:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords continuous fibers
composite structures
4D printing
fiber trajectory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-9b644240039a302c2610610d9d334ac07ac56c55ef72bdf16508c2598f948a963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2386945003
PQPubID 2043625
PageCount 7
ParticipantIDs proquest_journals_2386945003
crossref_citationtrail_10_1007_s11431_019_1485_5
crossref_primary_10_1007_s11431_019_1485_5
springer_journals_10_1007_s11431_019_1485_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Science China. Technological sciences
PublicationTitleAbbrev Sci. China Technol. Sci
PublicationYear 2020
Publisher Science China Press
Springer Nature B.V
Publisher_xml – name: Science China Press
– name: Springer Nature B.V
References Malakhov, Polilov (CR16) 2016; 87
Yang, Wang, Li (CR20) 2017; 12
Deng, Li, Chen (CR14) 2016; 138
Raviv, Zhao, McKnelly (CR9) 2015; 4
Siéfert, Reyssat, Bico (CR19) 2019; 18
Mao, Yu, Isakov (CR2) 2015; 5
Liu, Zhao, Wu (CR10) 2018; 4
Kuksenok, Balazs (CR6) 2016; 3
Hu, Liu, Chang (CR5) 2017; 27
Yuan, Roach, Dunn (CR7) 2017; 13
Kim, Yuk, Zhao (CR12) 2018; 558
Sydney Gladman, Matsumoto, Nuzzo (CR18) 2016; 15
Momeni, Hassani, Liu (CR1) 2017; 122
Yu, Dunn, Qi (CR3) 2015; 4
Kim, Koh, Lee (CR13) 2014; 9
Wang, Tian, Huang (CR21) 2018; 155
Mendoza Jasso, Goodsell, Ritchey (CR15) 2011; 71
Dai, Picot, Verjans (CR8) 2013; 5
Yu, Ritchie, Mao (CR4) 2015; 12
Schmied, Ermanni (CR11) 2017; 12
Huber, Abert, Bruckner (CR17) 2017; 7
A J Mendoza Jasso (1485_CR15) 2011; 71
C Yuan (1485_CR7) 2017; 13
D Raviv (1485_CR9) 2015; 4
Y Kim (1485_CR12) 2018; 558
Y Hu (1485_CR5) 2017; 27
K Yu (1485_CR4) 2015; 12
Q Wang (1485_CR21) 2018; 155
K Yu (1485_CR3) 2015; 4
Y Mao (1485_CR2) 2015; 5
E Siéfert (1485_CR19) 2019; 18
M Dai (1485_CR8) 2013; 5
C Huber (1485_CR17) 2017; 7
G Liu (1485_CR10) 2018; 4
J U L F H Schmied (1485_CR11) 2017; 12
A Sydney Gladman (1485_CR18) 2016; 15
J Deng (1485_CR14) 2016; 138
S W Kim (1485_CR13) 2014; 9
F Momeni (1485_CR1) 2017; 122
C Yang (1485_CR20) 2017; 12
O Kuksenok (1485_CR6) 2016; 3
A V Malakhov (1485_CR16) 2016; 87
References_xml – volume: 558
  start-page: 274
  year: 2018
  end-page: 279
  ident: CR12
  article-title: Printing ferromagnetic domains for untethered fast-transforming soft materials
  publication-title: Nature
  doi: 10.1038/s41586-018-0185-0
– volume: 5
  start-page: 13616
  year: 2015
  ident: CR2
  article-title: Sequential self-folding structures by 3D printed digital shape memory polymers
  publication-title: Sci Rep
  doi: 10.1038/srep13616
– volume: 122
  start-page: 42
  year: 2017
  end-page: 79
  ident: CR1
  article-title: A review of 4D printing
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2017.02.068
– volume: 4
  start-page: 9
  year: 2015
  end-page: 17
  ident: CR3
  article-title: Digital manufacture of shape changing components
  publication-title: Extreme Mech Lett
  doi: 10.1016/j.eml.2015.07.005
– volume: 13
  start-page: 5558
  year: 2017
  end-page: 5568
  ident: CR7
  article-title: 3D printed reversible shape changing soft actuators assisted by liquid crystal elastomers
  publication-title: Soft Matter
  doi: 10.1039/C7SM00759K
– volume: 15
  start-page: 413
  year: 2016
  end-page: 418
  ident: CR18
  article-title: Biomimetic 4D printing
  publication-title: Nat Mater
  doi: 10.1038/nmat4544
– volume: 7
  start-page: 9419
  year: 2017
  ident: CR17
  article-title: 3D printing of polymer-bonded rare-earth magnets with a variable magnetic compound fraction for a predefined stray field
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-09864-0
– volume: 12
  start-page: 69
  year: 2017
  end-page: 76
  ident: CR20
  article-title: Modelling and characterisation for the responsive performance of CF/PLA and CF/PEEK smart materials fabricated by 4D printing
  publication-title: Virtual Phys Prototyping
  doi: 10.1080/17452759.2016.1265992
– volume: 4
  start-page: 1
  year: 2015
  end-page: 8
  ident: CR9
  article-title: Active printed materials for complex self-evolving deformations
  publication-title: Sci Rep
  doi: 10.1038/srep07422
– volume: 9
  start-page: 036004
  year: 2014
  ident: CR13
  article-title: Flytrap-inspired robot using structurally integrated actuation based on bistability and a developable surface
  publication-title: Bioinspir Biomim
  doi: 10.1088/1748-3182/9/3/036004
– volume: 87
  start-page: 23
  year: 2016
  end-page: 28
  ident: CR16
  article-title: Design of composite structures reinforced curvilinear fibres using FEM
  publication-title: Compos Part A-Appl Sci Manufacturing
  doi: 10.1016/j.compositesa.2016.04.005
– volume: 3
  start-page: 53
  year: 2016
  end-page: 62
  ident: CR6
  article-title: Stimuli-responsive behavior of composites integrating thermo-responsive gels with photo-responsive fibers
  publication-title: Mater Horiz
  doi: 10.1039/C5MH00212E
– volume: 18
  start-page: 24
  year: 2019
  end-page: 28
  ident: CR19
  article-title: Bio-inspired pneumatic shape-morphing elastomers
  publication-title: Nat Mater
  doi: 10.1038/s41563-018-0219-x
– volume: 27
  start-page: 1704388
  year: 2017
  ident: CR5
  article-title: Electrically and sunlight-driven actuator with versatile biomimetic motions based on rolled carbon nanotube bilayer composite
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201704388
– volume: 71
  start-page: 1819
  year: 2011
  end-page: 1825
  ident: CR15
  article-title: A parametric study of fiber volume fraction distribution on the failure initiation location in open hole off-axis tensile specimen
  publication-title: Compos Sci Tech
  doi: 10.1016/j.compscitech.2011.08.008
– volume: 138
  start-page: 225
  year: 2016
  end-page: 230
  ident: CR14
  article-title: Tunable photothermal actuators based on a pre-programmed aligned nanostructure
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.5b10131
– volume: 12
  start-page: 026012
  year: 2017
  ident: CR11
  article-title: Programmable snapping composites with bio-inspired architecture
  publication-title: Bioinspir Biomim
  doi: 10.1088/1748-3190/aa5efd
– volume: 12
  start-page: 193
  year: 2015
  end-page: 203
  ident: CR4
  article-title: Controlled sequential shape changing components by 3D printing of shape memory polymer multimaterials
  publication-title: Procedia IUTAM
  doi: 10.1016/j.piutam.2014.12.021
– volume: 4
  start-page: eaat0641
  year: 2018
  ident: CR10
  article-title: Origami and 4D printing of elastomer-derived ceramic structures
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aat0641
– volume: 155
  start-page: 404
  year: 2018
  end-page: 413
  ident: CR21
  article-title: Programmable morphing composites with embedded continuous fibers by 4D printing
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2018.06.027
– volume: 5
  start-page: 4945
  year: 2013
  end-page: 4950
  ident: CR8
  article-title: Humidity-responsive bilayer actuators based on a liquid-crystalline polymer network
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am400681z
– volume: 4
  start-page: 9
  year: 2015
  ident: 1485_CR3
  publication-title: Extreme Mech Lett
  doi: 10.1016/j.eml.2015.07.005
– volume: 3
  start-page: 53
  year: 2016
  ident: 1485_CR6
  publication-title: Mater Horiz
  doi: 10.1039/C5MH00212E
– volume: 27
  start-page: 1704388
  year: 2017
  ident: 1485_CR5
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201704388
– volume: 4
  start-page: eaat0641
  year: 2018
  ident: 1485_CR10
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aat0641
– volume: 15
  start-page: 413
  year: 2016
  ident: 1485_CR18
  publication-title: Nat Mater
  doi: 10.1038/nmat4544
– volume: 13
  start-page: 5558
  year: 2017
  ident: 1485_CR7
  publication-title: Soft Matter
  doi: 10.1039/C7SM00759K
– volume: 138
  start-page: 225
  year: 2016
  ident: 1485_CR14
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.5b10131
– volume: 9
  start-page: 036004
  year: 2014
  ident: 1485_CR13
  publication-title: Bioinspir Biomim
  doi: 10.1088/1748-3182/9/3/036004
– volume: 7
  start-page: 9419
  year: 2017
  ident: 1485_CR17
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-09864-0
– volume: 71
  start-page: 1819
  year: 2011
  ident: 1485_CR15
  publication-title: Compos Sci Tech
  doi: 10.1016/j.compscitech.2011.08.008
– volume: 18
  start-page: 24
  year: 2019
  ident: 1485_CR19
  publication-title: Nat Mater
  doi: 10.1038/s41563-018-0219-x
– volume: 5
  start-page: 13616
  year: 2015
  ident: 1485_CR2
  publication-title: Sci Rep
  doi: 10.1038/srep13616
– volume: 12
  start-page: 69
  year: 2017
  ident: 1485_CR20
  publication-title: Virtual Phys Prototyping
  doi: 10.1080/17452759.2016.1265992
– volume: 12
  start-page: 193
  year: 2015
  ident: 1485_CR4
  publication-title: Procedia IUTAM
  doi: 10.1016/j.piutam.2014.12.021
– volume: 87
  start-page: 23
  year: 2016
  ident: 1485_CR16
  publication-title: Compos Part A-Appl Sci Manufacturing
  doi: 10.1016/j.compositesa.2016.04.005
– volume: 5
  start-page: 4945
  year: 2013
  ident: 1485_CR8
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am400681z
– volume: 558
  start-page: 274
  year: 2018
  ident: 1485_CR12
  publication-title: Nature
  doi: 10.1038/s41586-018-0185-0
– volume: 12
  start-page: 026012
  year: 2017
  ident: 1485_CR11
  publication-title: Bioinspir Biomim
  doi: 10.1088/1748-3190/aa5efd
– volume: 122
  start-page: 42
  year: 2017
  ident: 1485_CR1
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2017.02.068
– volume: 4
  start-page: 1
  year: 2015
  ident: 1485_CR9
  publication-title: Sci Rep
  doi: 10.1038/srep07422
– volume: 155
  start-page: 404
  year: 2018
  ident: 1485_CR21
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2018.06.027
SSID ssj0000389014
Score 2.3008957
Snippet Deformation control of 4D printing has always been challenging. Herein, a design method for the fiber trajectory for 4D printing composite structures with...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 571
SubjectTerms Composite structures
Continuous fiber composites
Curvature
Deformation
Differential geometry
Engineering
Printing
Substrates
Thermal expansion
Title Design of a continuous fiber trajectory for 4D printing of thermally stimulated composite structures
URI https://link.springer.com/article/10.1007/s11431-019-1485-5
https://www.proquest.com/docview/2386945003
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aXvQgPrFaSw6elMA2m-zjWGxrUfRkoZ6WbB6g9CG2PfTfO5PudlVU8Lx5sDNJ5pvkyxdCLoVUhsO4YDz2WzcuZcranDlYF0wSxxDl8Tbyw2M0GIq7kRwV97jnJdu9PJL0K3V12Q1CO6a-KQMIL5ncJnWJqTsM4iHvbDZWUDEu8JreSLBnccjb5WnmT618jUcVyPx2LurDTX-f7BU4kXbWjj0gW3Z6SHY_qQceEdP17As6c1RRpJy_TJeQx1OHJBC6eFevfkd-RQGXUtGl2BOSnLECwr6JGo9XFKb4BJ_wsoYivRw5XJauVWWXkIofk2G_93QzYMWjCUyHkViwNAeEg8TQMFVhwDVkSBCyA5OaMBRKB7HSMtJSWhfz3Lg2IjQNOVDiUpEomI4npDadTe0pocLJtgJncoEi81GSm9AFmkNMgyZUlDdIUJou04WiOD5sMc4qLWS0dgbWztDamWyQq02Vt7Wcxl-Fm6U_smJmzTOAGFEqJPxfg1yXPqo-_9rY2b9Kn5Mdjom1p-g0SQ2sbi8AfSzyFql3bp_vey0_6j4AWi3QzQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UD-rB-Iwoag-eNE2WbruPIxENKnCChFvT3W0TDSxG4MC_d6bssmrUxPP2kZ1pO9-0X78Sci2kzjiMC8ZDt3VjY6aNSZiFdSGLwhCiPN5G7vWDzlA8jeSouMc9K9nu5ZGkW6mry24Q2jH1jRlAeMnkJtkCLBAhj2vIW-uNFVSM85ymNxLsWejzZnma-VMrX-NRBTK_nYu6cPOwT_YKnEhbK8cekA2TH5LdT-qBRyRrO_YFnVqqKVLOX_IF5PHUIgmEzt_1q9uRX1LApVS0KfaEJGesgLBvosfjJYUpPsEnvExGkV6OHC5DV6qyC0jFj8nw4X5w12HFowks9QMxZ3ECCAeJoX6sfY-nkCFByPayOPN9oVMv1KkMUimNDXmS2SYitBRyoMjGItIwHU9ILZ_m5pRQYWVTgzO5QJH5IEoy33oph5gGTeggqROvNJ1KC0VxfNhirCotZLS2AmsrtLaSdXKzrvK2ktP4q3Cj9IcqZtZMgceDWEj4vzq5LX1Uff61sbN_lb4i251Br6u6j_3nc7LDMcl2dJ0GqYEHzAUgkXly6UbeB8hg0iw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSAgOiFUUCvjACWQ1cewsx4pSla3iQKXeIieOJVCbVjQ99O-ZydIAAiTOsR3ZY3ve2M9vCLkUUmkO84JxLz-6MQFTSRIxA_uC9j0PvDy-Rn4auP2huB_JUZnndF6x3asryeJNA6o0pVl7pk27fvgGbh7D4IABnJdMrpMN2I1tnNZD3lkdsqB6nJXreyPZnnkOt6ubzZ9a-eqbasD57Y40dz29XbJTYkbaKYy8R9aSdJ9sf1ISPCC6mzMx6NRQRbEvr-kCYnpqkBBCs3f1lp_OLylgVCq6FP-EhGesgBBwosbjJYXlPsF0XommSDVHPldCC4XZBYTlh2TYu3256bMygQKLHVdkLIgA7SBJ1AmUY_EYoiVw35YOtOMIFVueiqUbS5kYj0fa2IjWYoiHfBMIX8HSPCKNdJomx4QKI20FhuUCBeddP9KOsWIO_g2aUG7UJFY1dGFcqotjkotxWOsi42iHMNohjnYom-RqVWVWSGv8VbhV2SMsV9k8BLjhBkJC_5rkurJR_fnXxk7-VfqCbD53e-Hj3eDhlGxxjLdz5k6LNMAAyRmAkiw6zyfeBy9o1mg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+a+continuous+fiber+trajectory+for+4D+printing+of+thermally+stimulated+composite+structures&rft.jtitle=Science+China.+Technological+sciences&rft.au=Tian%2C+XiaoYong&rft.au=Wang%2C+QingRui&rft.au=Li%2C+DiChen&rft.date=2020-04-01&rft.issn=1674-7321&rft.eissn=1869-1900&rft.volume=63&rft.issue=4&rft.spage=571&rft.epage=577&rft_id=info:doi/10.1007%2Fs11431-019-1485-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11431_019_1485_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-7321&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-7321&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-7321&client=summon