Design of a continuous fiber trajectory for 4D printing of thermally stimulated composite structures
Deformation control of 4D printing has always been challenging. Herein, a design method for the fiber trajectory for 4D printing composite structures with embedded continuous fibers is reported, wherein the designed composite structures can be deformed into many types of deployable surfaces. Deforma...
Saved in:
Published in | Science China. Technological sciences Vol. 63; no. 4; pp. 571 - 577 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Science China Press
01.04.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deformation control of 4D printing has always been challenging. Herein, a design method for the fiber trajectory for 4D printing composite structures with embedded continuous fibers is reported, wherein the designed composite structures can be deformed into many types of deployable surfaces. Deformation of the bilayer composite structure was driven by differences in the coefficients of thermal expansion (CTEs) between the resin substrate and embedded fibers. The bending curvature and direction of the composite structure is controlled by adjusting fiber orientations. According to differential geometry theory, the relationship between the angle of intersecting fiber bundles and curvature of the final shape was obtained. Therefore, arbitrary deployable surfaces, including conical, cylindrical, and tangent surfaces, can be deformed. This design and additive manufacturing strategy allow precise control of the deforming process, greatly extending the potential applications of 4D printing. |
---|---|
AbstractList | Deformation control of 4D printing has always been challenging. Herein, a design method for the fiber trajectory for 4D printing composite structures with embedded continuous fibers is reported, wherein the designed composite structures can be deformed into many types of deployable surfaces. Deformation of the bilayer composite structure was driven by differences in the coefficients of thermal expansion (CTEs) between the resin substrate and embedded fibers. The bending curvature and direction of the composite structure is controlled by adjusting fiber orientations. According to differential geometry theory, the relationship between the angle of intersecting fiber bundles and curvature of the final shape was obtained. Therefore, arbitrary deployable surfaces, including conical, cylindrical, and tangent surfaces, can be deformed. This design and additive manufacturing strategy allow precise control of the deforming process, greatly extending the potential applications of 4D printing. |
Author | Wang, QingRui Tian, XiaoYong Li, DiChen |
Author_xml | – sequence: 1 givenname: XiaoYong surname: Tian fullname: Tian, XiaoYong email: leoxyt@mail.xjtu.edu.cn organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University – sequence: 2 givenname: QingRui surname: Wang fullname: Wang, QingRui organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University – sequence: 3 givenname: DiChen surname: Li fullname: Li, DiChen organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University |
BookMark | eNp9kMtKAzEUhoNUsNY-gLuA69HcZ7KU1hsU3Og6pJmkpkwnNcks-vZmGEEQNARy4Xx_Tr5LMOtDbwG4xugWI1TfJYwZxRXCssKs4RU_A3PciHKSCM3KXtSsqinBF2CZ0h6VQRuJMJuDdm2T3_UwOKihCX32_RCGBJ3f2ghz1Htrcogn6EKEbA2P0Y81uxHIHzYedNedYMr-MHQ627ZkHI4h-WzLZRxMHqJNV-Dc6S7Z5fe6AO-PD2-r52rz-vSyut9UhgqWK7kVjBFWmpOaImKIwKjMVraUMm1QrQ0XhnPrarJtHRYcNYZw2TjJGi0FXYCbKfcYw-dgU1b7MMS-PKkILT4YL9mlqp6qTAwpReuU8VlnXz4fte8URmq0qiarqlhVo1XFC4l_kUXHQcfTvwyZmDSq29n409Pf0BdW5Ytw |
CitedBy_id | crossref_primary_10_1002_aisy_202200384 crossref_primary_10_3390_polym14193952 crossref_primary_10_1016_j_addma_2022_102975 crossref_primary_10_1016_j_sna_2022_113670 crossref_primary_10_1080_29963176_2024_2419860 crossref_primary_10_1016_j_compositesb_2024_111645 crossref_primary_10_1115_1_4065142 crossref_primary_10_1016_j_compositesa_2024_108085 crossref_primary_10_1016_j_jmapro_2022_07_035 crossref_primary_10_1016_j_giant_2024_100277 crossref_primary_10_1016_j_coco_2021_100907 crossref_primary_10_1016_j_compositesb_2022_110450 crossref_primary_10_34133_research_0234 crossref_primary_10_3389_fmats_2021_661593 crossref_primary_10_1177_07316844241248241 crossref_primary_10_1007_s10853_024_09925_6 crossref_primary_10_1016_j_cjmeam_2023_100090 crossref_primary_10_1016_j_jsamd_2021_03_006 crossref_primary_10_1007_s00170_025_15376_3 |
Cites_doi | 10.1038/s41586-018-0185-0 10.1038/srep13616 10.1016/j.matdes.2017.02.068 10.1016/j.eml.2015.07.005 10.1039/C7SM00759K 10.1038/nmat4544 10.1038/s41598-017-09864-0 10.1080/17452759.2016.1265992 10.1038/srep07422 10.1088/1748-3182/9/3/036004 10.1016/j.compositesa.2016.04.005 10.1039/C5MH00212E 10.1038/s41563-018-0219-x 10.1002/adfm.201704388 10.1016/j.compscitech.2011.08.008 10.1021/jacs.5b10131 10.1088/1748-3190/aa5efd 10.1016/j.piutam.2014.12.021 10.1126/sciadv.aat0641 10.1016/j.matdes.2018.06.027 10.1021/am400681z |
ContentType | Journal Article |
Copyright | Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
Copyright_xml | – notice: Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11431-019-1485-5 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1869-1900 |
EndPage | 577 |
ExternalDocumentID | 10_1007_s11431_019_1485_5 |
GroupedDBID | -5B -5G -BR -EM -SC -S~ -Y2 -~C .VR 06D 0R~ 0VY 1N0 29~ 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 40D 40E 5VR 5VS 8TC 8UJ 92E 92I 92Q 93N 95- 95. 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFLOW AFQWF AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BDATZ BSONS CAG CAJEC CCEZO CEKLB CHBEP CJPJV COF CSCUP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~Z J-C JBSCW JZLTJ KOV LLZTM MA- N2Q NB0 NPVJJ NQJWS O9J P9P PF0 PT4 Q-- QOS R89 RIG ROL RSV S16 S3B SAP SCL SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TCJ TGP TR2 TSG TUC U1G U2A U5M UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z85 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ACMFV ADHKG AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c364t-9b644240039a302c2610610d9d334ac07ac56c55ef72bdf16508c2598f948a963 |
IEDL.DBID | U2A |
ISSN | 1674-7321 |
IngestDate | Fri Jul 25 11:05:25 EDT 2025 Tue Jul 01 03:26:16 EDT 2025 Thu Apr 24 22:56:45 EDT 2025 Fri Feb 21 02:33:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | continuous fibers composite structures 4D printing fiber trajectory |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-9b644240039a302c2610610d9d334ac07ac56c55ef72bdf16508c2598f948a963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2386945003 |
PQPubID | 2043625 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2386945003 crossref_citationtrail_10_1007_s11431_019_1485_5 crossref_primary_10_1007_s11431_019_1485_5 springer_journals_10_1007_s11431_019_1485_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Science China. Technological sciences |
PublicationTitleAbbrev | Sci. China Technol. Sci |
PublicationYear | 2020 |
Publisher | Science China Press Springer Nature B.V |
Publisher_xml | – name: Science China Press – name: Springer Nature B.V |
References | Malakhov, Polilov (CR16) 2016; 87 Yang, Wang, Li (CR20) 2017; 12 Deng, Li, Chen (CR14) 2016; 138 Raviv, Zhao, McKnelly (CR9) 2015; 4 Siéfert, Reyssat, Bico (CR19) 2019; 18 Mao, Yu, Isakov (CR2) 2015; 5 Liu, Zhao, Wu (CR10) 2018; 4 Kuksenok, Balazs (CR6) 2016; 3 Hu, Liu, Chang (CR5) 2017; 27 Yuan, Roach, Dunn (CR7) 2017; 13 Kim, Yuk, Zhao (CR12) 2018; 558 Sydney Gladman, Matsumoto, Nuzzo (CR18) 2016; 15 Momeni, Hassani, Liu (CR1) 2017; 122 Yu, Dunn, Qi (CR3) 2015; 4 Kim, Koh, Lee (CR13) 2014; 9 Wang, Tian, Huang (CR21) 2018; 155 Mendoza Jasso, Goodsell, Ritchey (CR15) 2011; 71 Dai, Picot, Verjans (CR8) 2013; 5 Yu, Ritchie, Mao (CR4) 2015; 12 Schmied, Ermanni (CR11) 2017; 12 Huber, Abert, Bruckner (CR17) 2017; 7 A J Mendoza Jasso (1485_CR15) 2011; 71 C Yuan (1485_CR7) 2017; 13 D Raviv (1485_CR9) 2015; 4 Y Kim (1485_CR12) 2018; 558 Y Hu (1485_CR5) 2017; 27 K Yu (1485_CR4) 2015; 12 Q Wang (1485_CR21) 2018; 155 K Yu (1485_CR3) 2015; 4 Y Mao (1485_CR2) 2015; 5 E Siéfert (1485_CR19) 2019; 18 M Dai (1485_CR8) 2013; 5 C Huber (1485_CR17) 2017; 7 G Liu (1485_CR10) 2018; 4 J U L F H Schmied (1485_CR11) 2017; 12 A Sydney Gladman (1485_CR18) 2016; 15 J Deng (1485_CR14) 2016; 138 S W Kim (1485_CR13) 2014; 9 F Momeni (1485_CR1) 2017; 122 C Yang (1485_CR20) 2017; 12 O Kuksenok (1485_CR6) 2016; 3 A V Malakhov (1485_CR16) 2016; 87 |
References_xml | – volume: 558 start-page: 274 year: 2018 end-page: 279 ident: CR12 article-title: Printing ferromagnetic domains for untethered fast-transforming soft materials publication-title: Nature doi: 10.1038/s41586-018-0185-0 – volume: 5 start-page: 13616 year: 2015 ident: CR2 article-title: Sequential self-folding structures by 3D printed digital shape memory polymers publication-title: Sci Rep doi: 10.1038/srep13616 – volume: 122 start-page: 42 year: 2017 end-page: 79 ident: CR1 article-title: A review of 4D printing publication-title: Mater Des doi: 10.1016/j.matdes.2017.02.068 – volume: 4 start-page: 9 year: 2015 end-page: 17 ident: CR3 article-title: Digital manufacture of shape changing components publication-title: Extreme Mech Lett doi: 10.1016/j.eml.2015.07.005 – volume: 13 start-page: 5558 year: 2017 end-page: 5568 ident: CR7 article-title: 3D printed reversible shape changing soft actuators assisted by liquid crystal elastomers publication-title: Soft Matter doi: 10.1039/C7SM00759K – volume: 15 start-page: 413 year: 2016 end-page: 418 ident: CR18 article-title: Biomimetic 4D printing publication-title: Nat Mater doi: 10.1038/nmat4544 – volume: 7 start-page: 9419 year: 2017 ident: CR17 article-title: 3D printing of polymer-bonded rare-earth magnets with a variable magnetic compound fraction for a predefined stray field publication-title: Sci Rep doi: 10.1038/s41598-017-09864-0 – volume: 12 start-page: 69 year: 2017 end-page: 76 ident: CR20 article-title: Modelling and characterisation for the responsive performance of CF/PLA and CF/PEEK smart materials fabricated by 4D printing publication-title: Virtual Phys Prototyping doi: 10.1080/17452759.2016.1265992 – volume: 4 start-page: 1 year: 2015 end-page: 8 ident: CR9 article-title: Active printed materials for complex self-evolving deformations publication-title: Sci Rep doi: 10.1038/srep07422 – volume: 9 start-page: 036004 year: 2014 ident: CR13 article-title: Flytrap-inspired robot using structurally integrated actuation based on bistability and a developable surface publication-title: Bioinspir Biomim doi: 10.1088/1748-3182/9/3/036004 – volume: 87 start-page: 23 year: 2016 end-page: 28 ident: CR16 article-title: Design of composite structures reinforced curvilinear fibres using FEM publication-title: Compos Part A-Appl Sci Manufacturing doi: 10.1016/j.compositesa.2016.04.005 – volume: 3 start-page: 53 year: 2016 end-page: 62 ident: CR6 article-title: Stimuli-responsive behavior of composites integrating thermo-responsive gels with photo-responsive fibers publication-title: Mater Horiz doi: 10.1039/C5MH00212E – volume: 18 start-page: 24 year: 2019 end-page: 28 ident: CR19 article-title: Bio-inspired pneumatic shape-morphing elastomers publication-title: Nat Mater doi: 10.1038/s41563-018-0219-x – volume: 27 start-page: 1704388 year: 2017 ident: CR5 article-title: Electrically and sunlight-driven actuator with versatile biomimetic motions based on rolled carbon nanotube bilayer composite publication-title: Adv Funct Mater doi: 10.1002/adfm.201704388 – volume: 71 start-page: 1819 year: 2011 end-page: 1825 ident: CR15 article-title: A parametric study of fiber volume fraction distribution on the failure initiation location in open hole off-axis tensile specimen publication-title: Compos Sci Tech doi: 10.1016/j.compscitech.2011.08.008 – volume: 138 start-page: 225 year: 2016 end-page: 230 ident: CR14 article-title: Tunable photothermal actuators based on a pre-programmed aligned nanostructure publication-title: J Am Chem Soc doi: 10.1021/jacs.5b10131 – volume: 12 start-page: 026012 year: 2017 ident: CR11 article-title: Programmable snapping composites with bio-inspired architecture publication-title: Bioinspir Biomim doi: 10.1088/1748-3190/aa5efd – volume: 12 start-page: 193 year: 2015 end-page: 203 ident: CR4 article-title: Controlled sequential shape changing components by 3D printing of shape memory polymer multimaterials publication-title: Procedia IUTAM doi: 10.1016/j.piutam.2014.12.021 – volume: 4 start-page: eaat0641 year: 2018 ident: CR10 article-title: Origami and 4D printing of elastomer-derived ceramic structures publication-title: Sci Adv doi: 10.1126/sciadv.aat0641 – volume: 155 start-page: 404 year: 2018 end-page: 413 ident: CR21 article-title: Programmable morphing composites with embedded continuous fibers by 4D printing publication-title: Mater Des doi: 10.1016/j.matdes.2018.06.027 – volume: 5 start-page: 4945 year: 2013 end-page: 4950 ident: CR8 article-title: Humidity-responsive bilayer actuators based on a liquid-crystalline polymer network publication-title: ACS Appl Mater Interfaces doi: 10.1021/am400681z – volume: 4 start-page: 9 year: 2015 ident: 1485_CR3 publication-title: Extreme Mech Lett doi: 10.1016/j.eml.2015.07.005 – volume: 3 start-page: 53 year: 2016 ident: 1485_CR6 publication-title: Mater Horiz doi: 10.1039/C5MH00212E – volume: 27 start-page: 1704388 year: 2017 ident: 1485_CR5 publication-title: Adv Funct Mater doi: 10.1002/adfm.201704388 – volume: 4 start-page: eaat0641 year: 2018 ident: 1485_CR10 publication-title: Sci Adv doi: 10.1126/sciadv.aat0641 – volume: 15 start-page: 413 year: 2016 ident: 1485_CR18 publication-title: Nat Mater doi: 10.1038/nmat4544 – volume: 13 start-page: 5558 year: 2017 ident: 1485_CR7 publication-title: Soft Matter doi: 10.1039/C7SM00759K – volume: 138 start-page: 225 year: 2016 ident: 1485_CR14 publication-title: J Am Chem Soc doi: 10.1021/jacs.5b10131 – volume: 9 start-page: 036004 year: 2014 ident: 1485_CR13 publication-title: Bioinspir Biomim doi: 10.1088/1748-3182/9/3/036004 – volume: 7 start-page: 9419 year: 2017 ident: 1485_CR17 publication-title: Sci Rep doi: 10.1038/s41598-017-09864-0 – volume: 71 start-page: 1819 year: 2011 ident: 1485_CR15 publication-title: Compos Sci Tech doi: 10.1016/j.compscitech.2011.08.008 – volume: 18 start-page: 24 year: 2019 ident: 1485_CR19 publication-title: Nat Mater doi: 10.1038/s41563-018-0219-x – volume: 5 start-page: 13616 year: 2015 ident: 1485_CR2 publication-title: Sci Rep doi: 10.1038/srep13616 – volume: 12 start-page: 69 year: 2017 ident: 1485_CR20 publication-title: Virtual Phys Prototyping doi: 10.1080/17452759.2016.1265992 – volume: 12 start-page: 193 year: 2015 ident: 1485_CR4 publication-title: Procedia IUTAM doi: 10.1016/j.piutam.2014.12.021 – volume: 87 start-page: 23 year: 2016 ident: 1485_CR16 publication-title: Compos Part A-Appl Sci Manufacturing doi: 10.1016/j.compositesa.2016.04.005 – volume: 5 start-page: 4945 year: 2013 ident: 1485_CR8 publication-title: ACS Appl Mater Interfaces doi: 10.1021/am400681z – volume: 558 start-page: 274 year: 2018 ident: 1485_CR12 publication-title: Nature doi: 10.1038/s41586-018-0185-0 – volume: 12 start-page: 026012 year: 2017 ident: 1485_CR11 publication-title: Bioinspir Biomim doi: 10.1088/1748-3190/aa5efd – volume: 122 start-page: 42 year: 2017 ident: 1485_CR1 publication-title: Mater Des doi: 10.1016/j.matdes.2017.02.068 – volume: 4 start-page: 1 year: 2015 ident: 1485_CR9 publication-title: Sci Rep doi: 10.1038/srep07422 – volume: 155 start-page: 404 year: 2018 ident: 1485_CR21 publication-title: Mater Des doi: 10.1016/j.matdes.2018.06.027 |
SSID | ssj0000389014 |
Score | 2.3008957 |
Snippet | Deformation control of 4D printing has always been challenging. Herein, a design method for the fiber trajectory for 4D printing composite structures with... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 571 |
SubjectTerms | Composite structures Continuous fiber composites Curvature Deformation Differential geometry Engineering Printing Substrates Thermal expansion |
Title | Design of a continuous fiber trajectory for 4D printing of thermally stimulated composite structures |
URI | https://link.springer.com/article/10.1007/s11431-019-1485-5 https://www.proquest.com/docview/2386945003 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aXvQgPrFaSw6elMA2m-zjWGxrUfRkoZ6WbB6g9CG2PfTfO5PudlVU8Lx5sDNJ5pvkyxdCLoVUhsO4YDz2WzcuZcranDlYF0wSxxDl8Tbyw2M0GIq7kRwV97jnJdu9PJL0K3V12Q1CO6a-KQMIL5ncJnWJqTsM4iHvbDZWUDEu8JreSLBnccjb5WnmT618jUcVyPx2LurDTX-f7BU4kXbWjj0gW3Z6SHY_qQceEdP17As6c1RRpJy_TJeQx1OHJBC6eFevfkd-RQGXUtGl2BOSnLECwr6JGo9XFKb4BJ_wsoYivRw5XJauVWWXkIofk2G_93QzYMWjCUyHkViwNAeEg8TQMFVhwDVkSBCyA5OaMBRKB7HSMtJSWhfz3Lg2IjQNOVDiUpEomI4npDadTe0pocLJtgJncoEi81GSm9AFmkNMgyZUlDdIUJou04WiOD5sMc4qLWS0dgbWztDamWyQq02Vt7Wcxl-Fm6U_smJmzTOAGFEqJPxfg1yXPqo-_9rY2b9Kn5Mdjom1p-g0SQ2sbi8AfSzyFql3bp_vey0_6j4AWi3QzQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UD-rB-Iwoag-eNE2WbruPIxENKnCChFvT3W0TDSxG4MC_d6bssmrUxPP2kZ1pO9-0X78Sci2kzjiMC8ZDt3VjY6aNSZiFdSGLwhCiPN5G7vWDzlA8jeSouMc9K9nu5ZGkW6mry24Q2jH1jRlAeMnkJtkCLBAhj2vIW-uNFVSM85ymNxLsWejzZnma-VMrX-NRBTK_nYu6cPOwT_YKnEhbK8cekA2TH5LdT-qBRyRrO_YFnVqqKVLOX_IF5PHUIgmEzt_1q9uRX1LApVS0KfaEJGesgLBvosfjJYUpPsEnvExGkV6OHC5DV6qyC0jFj8nw4X5w12HFowks9QMxZ3ECCAeJoX6sfY-nkCFByPayOPN9oVMv1KkMUimNDXmS2SYitBRyoMjGItIwHU9ILZ_m5pRQYWVTgzO5QJH5IEoy33oph5gGTeggqROvNJ1KC0VxfNhirCotZLS2AmsrtLaSdXKzrvK2ktP4q3Cj9IcqZtZMgceDWEj4vzq5LX1Uff61sbN_lb4i251Br6u6j_3nc7LDMcl2dJ0GqYEHzAUgkXly6UbeB8hg0iw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSAgOiFUUCvjACWQ1cewsx4pSla3iQKXeIieOJVCbVjQ99O-ZydIAAiTOsR3ZY3ve2M9vCLkUUmkO84JxLz-6MQFTSRIxA_uC9j0PvDy-Rn4auP2huB_JUZnndF6x3asryeJNA6o0pVl7pk27fvgGbh7D4IABnJdMrpMN2I1tnNZD3lkdsqB6nJXreyPZnnkOt6ubzZ9a-eqbasD57Y40dz29XbJTYkbaKYy8R9aSdJ9sf1ISPCC6mzMx6NRQRbEvr-kCYnpqkBBCs3f1lp_OLylgVCq6FP-EhGesgBBwosbjJYXlPsF0XommSDVHPldCC4XZBYTlh2TYu3256bMygQKLHVdkLIgA7SBJ1AmUY_EYoiVw35YOtOMIFVueiqUbS5kYj0fa2IjWYoiHfBMIX8HSPCKNdJomx4QKI20FhuUCBeddP9KOsWIO_g2aUG7UJFY1dGFcqotjkotxWOsi42iHMNohjnYom-RqVWVWSGv8VbhV2SMsV9k8BLjhBkJC_5rkurJR_fnXxk7-VfqCbD53e-Hj3eDhlGxxjLdz5k6LNMAAyRmAkiw6zyfeBy9o1mg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+a+continuous+fiber+trajectory+for+4D+printing+of+thermally+stimulated+composite+structures&rft.jtitle=Science+China.+Technological+sciences&rft.au=Tian%2C+XiaoYong&rft.au=Wang%2C+QingRui&rft.au=Li%2C+DiChen&rft.date=2020-04-01&rft.issn=1674-7321&rft.eissn=1869-1900&rft.volume=63&rft.issue=4&rft.spage=571&rft.epage=577&rft_id=info:doi/10.1007%2Fs11431-019-1485-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11431_019_1485_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-7321&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-7321&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-7321&client=summon |