Stepped frequency ultrasound computed tomography with waveform inversion

Routine US (ultrasound) scans for breast imaging run on a conventional console suffer from machine and operator dependence and are subject to personal interpretation. Recently, the framework of USCT (ultrasound computed tomography) has emerged as a safe, powerful and operator independent alternative...

Full description

Saved in:
Bibliographic Details
Published inBiomedical physics & engineering express Vol. 10; no. 2; pp. 25024 - 25039
Main Author Forte, Luca A
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.03.2024
Subjects
Online AccessGet full text
ISSN2057-1976
2057-1976
DOI10.1088/2057-1976/ad25bb

Cover

Loading…
Abstract Routine US (ultrasound) scans for breast imaging run on a conventional console suffer from machine and operator dependence and are subject to personal interpretation. Recently, the framework of USCT (ultrasound computed tomography) has emerged as a safe, powerful and operator independent alternative to diagnostic US scans and x-rays mammography. The most known systems employ one circular array or a combination of transmitters and receivers by exploiting reflection, diffraction and transmission data. These systems are based on a pulsed transmission. Following propagation in tissue, the signals are usually recorded with a direct RF sampling scheme and stored as digital time-series. Image reconstruction is performed in the frequency domain in the 400 kHz–1 MHz bandwidth over a limited number of discrete frequencies. In this paper, we propose a new architecture based on the stepped frequency continuous waveform (SFCW) principle. In this scheme, the transmission is a continuous one and the received waveforms undergo a homo-dyne stage. By sequentially transmitting single tones at different frequencies, data can be collected directly in the frequency domain at specific frequencies, with programmable frequency steps and with any desired SNR. We describe in detail the transmitter and the receiver paths and compare with a conventional pulsed USCT architecture. Finally, we highlight the benefits of a SFCW-USCT device and comment on SNR, absorbed power, data fidelity and data storage.
AbstractList Routine US (ultrasound) scans for breast imaging run on a conventional console suffer from machine and operator dependence and are subject to personal interpretation. Recently, the framework of USCT (ultrasound computed tomography) has emerged as a safe, powerful and operator independent alternative to diagnostic US scans and x-rays mammography. The most known systems employ one circular array or a combination of transmitters and receivers by exploiting reflection, diffraction and transmission data. These systems are based on a pulsed transmission. Following propagation in tissue, the signals are usually recorded with a direct RF sampling scheme and stored as digital time-series. Image reconstruction is performed in the frequency domain in the 400 kHz-1 MHz bandwidth over a limited number of discrete frequencies. In this paper, we propose a new architecture based on the stepped frequency continuous waveform (SFCW) principle. In this scheme, the transmission is a continuous one and the received waveforms undergo a homo-dyne stage. By sequentially transmitting single tones at different frequencies, data can be collected directly in the frequency domain at specific frequencies, with programmable frequency steps and with any desired SNR. We describe in detail the transmitter and the receiver paths and compare with a conventional pulsed USCT architecture. Finally, we highlight the benefits of a SFCW-USCT device and comment on SNR, absorbed power, data fidelity and data storage.Routine US (ultrasound) scans for breast imaging run on a conventional console suffer from machine and operator dependence and are subject to personal interpretation. Recently, the framework of USCT (ultrasound computed tomography) has emerged as a safe, powerful and operator independent alternative to diagnostic US scans and x-rays mammography. The most known systems employ one circular array or a combination of transmitters and receivers by exploiting reflection, diffraction and transmission data. These systems are based on a pulsed transmission. Following propagation in tissue, the signals are usually recorded with a direct RF sampling scheme and stored as digital time-series. Image reconstruction is performed in the frequency domain in the 400 kHz-1 MHz bandwidth over a limited number of discrete frequencies. In this paper, we propose a new architecture based on the stepped frequency continuous waveform (SFCW) principle. In this scheme, the transmission is a continuous one and the received waveforms undergo a homo-dyne stage. By sequentially transmitting single tones at different frequencies, data can be collected directly in the frequency domain at specific frequencies, with programmable frequency steps and with any desired SNR. We describe in detail the transmitter and the receiver paths and compare with a conventional pulsed USCT architecture. Finally, we highlight the benefits of a SFCW-USCT device and comment on SNR, absorbed power, data fidelity and data storage.
Routine US (ultrasound) scans for breast imaging run on a conventional console suffer from machine and operator dependence and are subject to personal interpretation. Recently, the framework of USCT (ultrasound computed tomography) has emerged as a safe, powerful and operator independent alternative to diagnostic US scans and x-rays mammography. The most known systems employ one circular array or a combination of transmitters and receivers by exploiting reflection, diffraction and transmission data. These systems are based on a pulsed transmission. Following propagation in tissue, the signals are usually recorded with a direct RF sampling scheme and stored as digital time-series. Image reconstruction is performed in the frequency domain in the 400 kHz-1 MHz bandwidth over a limited number of discrete frequencies. In this paper, we propose a new architecture based on the stepped frequency continuous waveform (SFCW) principle. In this scheme, the transmission is a continuous one and the received waveforms undergo a homo-dyne stage. By sequentially transmitting single tones at different frequencies, data can be collected directly in the frequency domain at specific frequencies, with programmable frequency steps and with any desired SNR. We describe in detail the transmitter and the receiver paths and compare with a conventional pulsed USCT architecture. Finally, we highlight the benefits of a SFCW-USCT device and comment on SNR, absorbed power, data fidelity and data storage.
Author Forte, Luca A
Author_xml – sequence: 1
  givenname: Luca A
  orcidid: 0000-0001-9110-5956
  surname: Forte
  fullname: Forte, Luca A
  organization: University of Dundee School of Science and Engineering, Nethergate, Dundee, DD1 4HN, Scotland, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38306965$$D View this record in MEDLINE/PubMed
BookMark eNp9kM1PAjEQxRuDEUTunsweOYi0221pj4aomJB4UM9Nv1aWsNva7oL89y5ZJB6Mp5nM-73JzLsEvcpVFoBrBO8QZGyaQjKbID6jU2lSotQZGJxGvV99H4xiXEMIEU0p5eQC9DHDkHJKBmDxWlvvrUnyYD8bW-l90mzqIKNrKpNoV_qmbtXale4jSL_aJ7uiXiU7ubW5C2VSVFsbYuGqK3Cey020o2MdgvfHh7f5YrJ8eXqe3y8nGtOsnnCFLMPKUEgUl0wpqjIjJUQScYyZZDONMLMaMWwN1ERC3QqcGsapNsjgIRh3e31w7cGxFmURtd1sZGVdE0XKU5IxMiO8RW-OaKNKa4QPRSnDXvx83wKwA3RwMQabnxAExSFjcQhRHEIUXcat5bazFM6LtWtC1T77Hz7-A1fefh08qYApgWkmvMnxN-ngi3E
Cites_doi 10.1117/12.845379
10.1118/1.2432161
10.1177/016173467900100302
10.1016/j.jappgeo.2014.11.003
10.1088/0266-5611/15/6/309
10.1002/(SICI)1098-1098(1997)8:1 3.0.CO;2-#
10.1016/j.jappgeo.2014.10.016
10.1155/2015/454028
10.1143/JJAP.32.2507
10.1118/1.1897463
10.1007/0-306-47107-8_11
10.1117/12.462173)
10.1109/42.730401
10.1109/ULTSYM.2013.0300
10.1109/TUFFC.2017.2706189
10.5772/intechopen.69794
10.1163/156939393X00598
10.1117/12.708789
10.1177/016173467900100205
10.1088/0031-9155/60/14/5381
10.1016/j.ultras.2008.05.005
10.1126/science.7302585
ContentType Journal Article
Copyright 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
2024 IOP Publishing Ltd.
Copyright_xml – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
– notice: 2024 IOP Publishing Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/2057-1976/ad25bb
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2057-1976
ExternalDocumentID 38306965
10_1088_2057_1976_ad25bb
bpexad25bb
Genre Journal Article
GroupedDBID 53G
AAGCD
AAJIO
AATNI
ABHWH
ABJNI
ABVAM
ACGFS
ACHIP
ADEQX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
CJUJL
CRLBU
EBS
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
RIN
ROL
RPA
AAYXX
AEINN
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c364t-9b1e83bd605b9a8bb6b4daa01a19338a87c138ec183ed0c5a0c19396d896cd1d3
IEDL.DBID IOP
ISSN 2057-1976
IngestDate Fri Jul 11 10:23:15 EDT 2025
Sun Jun 15 01:31:11 EDT 2025
Tue Aug 05 12:01:41 EDT 2025
Tue Aug 20 22:15:35 EDT 2024
Tue Jun 17 22:16:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords ultrasound computed tomography
breast cancer
frequency domain waveform inversion
stepped frequency
Language English
License This article is available under the terms of the IOP-Standard License.
2024 IOP Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-9b1e83bd605b9a8bb6b4daa01a19338a87c138ec183ed0c5a0c19396d896cd1d3
Notes BPEX-103551.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9110-5956
OpenAccessLink https://iopscience.iop.org/article/10.1088/2057-1976/ad25bb/pdf
PMID 38306965
PQID 2925485759
PQPubID 23479
PageCount 16
ParticipantIDs iop_journals_10_1088_2057_1976_ad25bb
proquest_miscellaneous_2925485759
crossref_primary_10_1088_2057_1976_ad25bb
pubmed_primary_38306965
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biomedical physics & engineering express
PublicationTitleAbbrev BPEX
PublicationTitleAlternate Biomed. Phys. Eng. Express
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Seyfried (bpexad25bbbib34) 2014; 111
Duric (bpexad25bbbib1) 2018
Carson (bpexad25bbbib10) 1981; 214
Huang (bpexad25bbbib15) 2013/1168
Norton (bpexad25bbbib7) 1979; 1
Chambers (bpexad25bbbib21) 2002
Roy (bpexad25bbbib14) 2010; 7629
Dorn (bpexad25bbbib25) 1999; 15
Natarajan (bpexad25bbbib30) 2010
Leach (bpexad25bbbib26) 2002; vol 4687
Wehner (bpexad25bbbib32) 1987
Yamada (bpexad25bbbib19) 1993; 32
Miyashita (bpexad25bbbib20) 2002; 25
Nguyen (bpexad25bbbib35) 2016
Miyashita (bpexad25bbbib22) 1993; 7
Andre (bpexad25bbbib36) 1997; 8
Greenleaf (bpexad25bbbib6) 1977; 77CH1264-1SU
Norton (bpexad25bbbib8) 1979; 1
Li (bpexad25bbbib12) 2009; 49
Joahimowicz (bpexad25bbbib23) 1998; 17
Podilchuk (bpexad25bbbib28) 2012
Duric (bpexad25bbbib11) 2005; 32
Johnson (bpexad25bbbib24) 1999
Sandhu (bpexad25bbbib3) 2015; 60
Lenox (bpexad25bbbib5) 2015; 2015
Sandhu (bpexad25bbbib18)
Lee (bpexad25bbbib29) 2015
Hormati (bpexad25bbbib13) 2010; 7629
Duric (bpexad25bbbib31) 2007; 34
Sandhu (bpexad25bbbib27) 2015
Ruiter (bpexad25bbbib9) 2017; 1–3
Seyfried (bpexad25bbbib33) 2015; 112
Lenox (bpexad25bbbib4) 2017; 64
Huang (bpexad25bbbib16) 2015/0025
Pratt (bpexad25bbbib17) 2007
Roy (bpexad25bbbib2) 2013
References_xml – year: 2010
  ident: bpexad25bbbib30
  article-title: Step-FMCW Signaling and Target Detection for Ultrasound Imaging Systems with Conformal Transducer Arrays
  doi: 10.1117/12.845379
– year: 2002
  ident: bpexad25bbbib21
  article-title: Ultrasound imaging using diffraction tomography in a cylindrical geometry
– year: 2013/1168
  ident: bpexad25bbbib15
  publication-title: Ultrasound Waveform Tomography with Spatial and Edge Regularization, WO 2013/116854 A1
– volume: 34
  start-page: 773
  year: 2007
  ident: bpexad25bbbib31
  article-title: Detection of breast cancer with ultrasound tomography: First results with the Computed Ultrasound Risk Evaluation CURE prototyp
  publication-title: Med. Phys.
  doi: 10.1118/1.2432161
– volume: 1
  start-page: 210
  year: 1979
  ident: bpexad25bbbib8
  article-title: Ultrasonic Reflectivity Imaging in Three Dimensions: Reconstruction with Spherical Transducer Arrays
  publication-title: Ultrason. Imaging
  doi: 10.1177/016173467900100302
– volume: 112
  start-page: 42
  year: 2015
  ident: bpexad25bbbib33
  article-title: Stepped-frequency radar signal processing
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2014.11.003
– volume: 77CH1264-1SU
  start-page: 989
  year: 1977
  ident: bpexad25bbbib6
  article-title: Quantitative Cross-sectional Imaging of Ultrasound Parameters, Ultrasonics Symposium
  publication-title: Proc., IEEE Cat.
– volume: 15
  start-page: 1523
  year: 1999
  ident: bpexad25bbbib25
  article-title: A nonlinear inversion method for 3D-electromagnetic imaging using adjoint field
  publication-title: Inverse Prob.
  doi: 10.1088/0266-5611/15/6/309
– volume: 8
  start-page: 137
  year: 1997
  ident: bpexad25bbbib36
  article-title: High-speed data acquisition in a diffraction tomography system employing large-scale toroidal arrays
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/(SICI)1098-1098(1997)8:1 3.0.CO;2-#
– volume: 111
  start-page: 234
  year: 2014
  ident: bpexad25bbbib34
  article-title: Investigations on the sensitivity of a stepped-frequency radar utilizing a vector network analyzer for Ground Penetrating Radar
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2014.10.016
– ident: bpexad25bbbib18
  publication-title: Ultrasound Waveform Tomography Method and System, US 10,743,837 B2
– start-page: 1
  year: 2012
  ident: bpexad25bbbib28
  article-title: Speckle Reduction using Stepped-Frequency Continuous Wave Ultrasound, IEEE Signal Processing
– volume: 2015
  year: 2015
  ident: bpexad25bbbib5
  article-title: Imaging Performance of Quantitative Transmission Ultrasound
  publication-title: Int. J. Biomed. Imaging
  doi: 10.1155/2015/454028
– volume: 32
  start-page: 2507
  year: 1993
  ident: bpexad25bbbib19
  article-title: Experimental Image Quality Estimation of Ultrasonic Diffraction Tomography
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.32.2507
– volume: 32
  start-page: 1375
  year: 2005
  ident: bpexad25bbbib11
  article-title: Development of ultrasound tomography for breast imaging: Technical assessment
  publication-title: Med. Phys.
  doi: 10.1118/1.1897463
– volume: 25
  start-page: 87
  year: 2002
  ident: bpexad25bbbib20
  article-title: A New Circular-Scanning Ultrasonic Diffraction Tomography
  publication-title: Acoust. Imaging
  doi: 10.1007/0-306-47107-8_11
– volume: vol 4687
  year: 2002
  ident: bpexad25bbbib26
  doi: 10.1117/12.462173)
– year: 2016
  ident: bpexad25bbbib35
  article-title: Stepped-Frequency Radar Sensors: Theory, Analysis and Design
  publication-title: Springer Briefs in Electrical and Computer Engineering
– volume: 17
  start-page: 562
  year: 1998
  ident: bpexad25bbbib23
  article-title: Convergence and stability assessment of Newton-Kantorovich reconstruction algorithms for microwave tomography
  publication-title: IEEE Trans. Medical Imaging
  doi: 10.1109/42.730401
– year: 2015
  ident: bpexad25bbbib27
  article-title: Frequency domain ultrasound waveform tomography breast imaging
  publication-title: Wayne State University Dissertations
– start-page: 1174
  year: 2013
  ident: bpexad25bbbib2
  article-title: Breast imaging using ultrasound tomography: From clinical requirements to system design
  publication-title: IEEE International Ultrasonics Symposium (IUS)
  doi: 10.1109/ULTSYM.2013.0300
– volume: 64
  start-page: 1161
  year: 2017
  ident: bpexad25bbbib4
  article-title: 3-D Nonlinear Acoustic Inverse Scattering: Algorithm and Quantitative Results
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2017.2706189
– year: 2018
  ident: bpexad25bbbib1
  article-title: Breast Imaging, chapter in Breast Ultrasound Tomography
  publication-title: IntechOpen
  doi: 10.5772/intechopen.69794
– volume: 7
  start-page: 1421
  year: 1993
  ident: bpexad25bbbib22
  article-title: Wave CT as a Short-Range Sensing with Super-resolution
  publication-title: J. Electromagnetic Waves And Applications
  doi: 10.1163/156939393X00598
– year: 1999
  ident: bpexad25bbbib24
– year: 2015/0025
  ident: bpexad25bbbib16
  publication-title: Ultrasound Waveform Tomography with Wave-Energy-Based Preconditioning, US 2015/0025388 A1
– year: 2007
  ident: bpexad25bbbib17
  article-title: Sound-speed and attenuation imaging of breast tissue using waveform tomography of transmission ultrasound data
  doi: 10.1117/12.708789
– volume: 1
  start-page: 154
  year: 1979
  ident: bpexad25bbbib7
  article-title: Ultrasonic reflectivity tomography: Reconstruction with circular transducer arrays
  publication-title: Ultrason. Imaging
  doi: 10.1177/016173467900100205
– volume: 60
  start-page: 5381
  year: 2015
  ident: bpexad25bbbib3
  article-title: Frequency domain ultrasound waveform tomography: breast imaging using a ring transducer
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/60/14/5381
– volume: 7629
  year: 2010
  ident: bpexad25bbbib14
  article-title: Sound speed estimation using wave-based ultrasound tomography: theory and gpu implementation
– volume: 7629
  year: 2010
  ident: bpexad25bbbib13
  article-title: Sound Speed Estimation Robust ultrasound travel-time tomography using the bent ray model
– year: 1987
  ident: bpexad25bbbib32
– year: 2015
  ident: bpexad25bbbib29
  article-title: Image Reconstruction for Multi-static Stepped Frequency-Modulated Continuous Wave (FMCW) Ultrasound Imaging Systems With Reconfigurable Arrays
– volume: 49
  start-page: 61
  year: 2009
  ident: bpexad25bbbib12
  article-title: An improved automatic time-of-flight picker for medical ultrasound tomography
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2008.05.005
– volume: 1–3
  year: 2017
  ident: bpexad25bbbib9
– volume: 214
  start-page: 1141
  year: 1981
  ident: bpexad25bbbib10
  article-title: Breast imaging in coronal planes with simultaneous pulse echo and transmission ultrasound
  publication-title: Science
  doi: 10.1126/science.7302585
SSID ssj0001626695
Score 2.248673
Snippet Routine US (ultrasound) scans for breast imaging run on a conventional console suffer from machine and operator dependence and are subject to personal...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 25024
SubjectTerms breast cancer
frequency domain waveform inversion
Image Processing, Computer-Assisted - methods
Phantoms, Imaging
stepped frequency
Tomography, X-Ray Computed
Ultrasonography - methods
ultrasound computed tomography
Title Stepped frequency ultrasound computed tomography with waveform inversion
URI https://iopscience.iop.org/article/10.1088/2057-1976/ad25bb
https://www.ncbi.nlm.nih.gov/pubmed/38306965
https://www.proquest.com/docview/2925485759
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS_QwEA8-Ll4-FR_f-iKCHjx03T6SJngSUVbBx0HBgxAySQofarfsdn399U42XUVR-fBW2ilJJp3Obx6ZIWQLTX_tYg5RmpgkyvK8iGRmIPJt9ywUEqz0Z4dPz3j3Kju5ZtcTZO_tLEyvan79bbwMhYIDC5uEOIHmOsujGNXorrYJA5gk06ng3LcvOD6_eHewIFTnkjWhya9e_KCKJnG471HmSNsczZKb8TxDkslte1hD27x8KuH4y4XMkT8NCqX7gXSeTLhygXR9xlflLC36Ib_6mQ7v6r4e-M5L1IT2D5bWvfumzDX1Tlz6qB-cR770X_kQnG-L5Oro8PKgGzWNFiKT8qyOJMROpGDRtAGpBQCHzGrdiTXCu1RokZs4Fc6g-DvbMUx3DD6Q3ArJjY1tukSmyl7p_hKKiNKYzALTIDLGjNA8lzouYryF2Mu1yM6Y56oK9TTUKA4uhPL8UJ4fKvCjRbaRdaoRqsEPdJsf6KByT544UR7gJZmqbIE0461VKEA-KqJL1xsOVCLRRh71KW2R5bDnbzND873DJWcr_zmTVTKT4IAhR22NTNX9oVtH0FLDxujjfAW5muft
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ4SKiXFgRtt-VhpPbAIcvmYcc-ImC1PEo5gMTN9diOhNpmo93stuXXdxxnQSBASNyiZCJPPseeb-zxDCFf0PXXLuYQpYlJoizPi0hmBiJfds9CIcFKf3b42xkfXGbHV-yqrXPanIUZVu3U38XLkCg4QNgGxAl011kexWhGd7VNGMBuZYt5sshSnvrk-Uffz-8WWZCuc8na7cnHXr5njuaxyaeZZmNx-u_Ij5muIdDkZ3dSQ9fcPEjj-IqPWSZvWzZK94L4Cplz5SoZ-MivyllajEKc9T86-VWP9NhXYKImlIGwtB7-btNdU7-YS__oqfMMmF6X07AIt0Yu-4cX-4OoLbgQmZRndSQhdiIFiy4OSC0AOGRW616skealQovcxKlwBqcBZ3uG6Z7BB5JbIbmxsU3fk4VyWLqPhCKzNCazwDSIjDEjNM-ljosYbyEHcx2yM8NdVSGvhmr2w4VQHhPlMVEBkw75ivCpdnCNn5HbvicHlfvrhRPliV6SKcQWZWbdq3Ag-d0RXbrhZKwSib5yU6-0Qz6Efr_VDN34HpecfXqhJltk6fygr06Pzk4-kzcJth3C1tbJQj2auA3kMTVsNv_qfz7A7VE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stepped+frequency+ultrasound+computed+tomography+with+waveform+inversion&rft.jtitle=Biomedical+physics+%26+engineering+express&rft.au=te%2C+Luca+A&rft.date=2024-03-01&rft.issn=2057-1976&rft.eissn=2057-1976&rft.volume=10&rft.issue=2&rft_id=info:doi/10.1088%2F2057-1976%2Fad25bb&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-1976&client=summon