Identifying the Informational/Signal Dimension in Principal Component Analysis
The identification of a reduced dimensional representation of the data is among the main issues of exploratory multidimensional data analysis and several solutions had been proposed in the literature according to the method. Principal Component Analysis (PCA) is the method that has received the larg...
Saved in:
Published in | Mathematics (Basel) Vol. 6; no. 11; p. 269 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
20.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The identification of a reduced dimensional representation of the data is among the main issues of exploratory multidimensional data analysis and several solutions had been proposed in the literature according to the method. Principal Component Analysis (PCA) is the method that has received the largest attention thus far and several identification methods—the so-called stopping rules—have been proposed, giving very different results in practice, and some comparative study has been carried out. Some inconsistencies in the previous studies led us to try to fix the distinction between signal from noise in PCA—and its limits—and propose a new testing method. This consists in the production of simulated data according to a predefined eigenvalues structure, including zero-eigenvalues. From random populations built according to several such structures, reduced-size samples were extracted and to them different levels of random normal noise were added. This controlled introduction of noise allows a clear distinction between expected signal and noise, the latter relegated to the non-zero eigenvalues in the samples corresponding to zero ones in the population. With this new method, we tested the performance of ten different stopping rules. Of every method, for every structure and every noise, both power (the ability to correctly identify the expected dimension) and type-I error (the detection of a dimension composed only by noise) have been measured, by counting the relative frequencies in which the smallest non-zero eigenvalue in the population was recognized as signal in the samples and that in which the largest zero-eigenvalue was recognized as noise, respectively. This way, the behaviour of the examined methods is clear and their comparison/evaluation is possible. The reported results show that both the generalization of the Bartlett’s test by Rencher and the Bootstrap method by Pillar result much better than all others: both are accounted for reasonable power, decreasing with noise, and very good type-I error. Thus, more than the others, these methods deserve being adopted. |
---|---|
AbstractList | The identification of a reduced dimensional representation of the data is among the main issues of exploratory multidimensional data analysis and several solutions had been proposed in the literature according to the method. Principal Component Analysis (PCA) is the method that has received the largest attention thus far and several identification methods—the so-called stopping rules—have been proposed, giving very different results in practice, and some comparative study has been carried out. Some inconsistencies in the previous studies led us to try to fix the distinction between signal from noise in PCA—and its limits—and propose a new testing method. This consists in the production of simulated data according to a predefined eigenvalues structure, including zero-eigenvalues. From random populations built according to several such structures, reduced-size samples were extracted and to them different levels of random normal noise were added. This controlled introduction of noise allows a clear distinction between expected signal and noise, the latter relegated to the non-zero eigenvalues in the samples corresponding to zero ones in the population. With this new method, we tested the performance of ten different stopping rules. Of every method, for every structure and every noise, both power (the ability to correctly identify the expected dimension) and type-I error (the detection of a dimension composed only by noise) have been measured, by counting the relative frequencies in which the smallest non-zero eigenvalue in the population was recognized as signal in the samples and that in which the largest zero-eigenvalue was recognized as noise, respectively. This way, the behaviour of the examined methods is clear and their comparison/evaluation is possible. The reported results show that both the generalization of the Bartlett’s test by Rencher and the Bootstrap method by Pillar result much better than all others: both are accounted for reasonable power, decreasing with noise, and very good type-I error. Thus, more than the others, these methods deserve being adopted. |
Author | Camiz, Sergio Pillar, Valério |
Author_xml | – sequence: 1 givenname: Sergio orcidid: 0000-0002-2566-5207 surname: Camiz fullname: Camiz, Sergio – sequence: 2 givenname: Valério orcidid: 0000-0001-6408-2891 surname: Pillar fullname: Pillar, Valério |
BookMark | eNptkEtPAyEUhYmpibV25R-YxKWpZXjMwLKpr0kaNVHXhGGgpZlCBbrovxdbY4yRzSXnfvdwOedg4LzTAFyW8AZjDqcbmVZVWUJU8RMwRAjVkzrrg1_3MzCOcQ3z4SVmhA_BU9Npl6zZW7cs0koXjTM-ZCvrneynr3aZS3FrN9rFLBXWFS_BOmW3WZ77zTbv4FIxy9Q-2ngBTo3sox5_1xF4v797mz9OFs8PzXy2mChckTThrO6IaQmldY1aCCWjBjJFJMybItpJTLu2lloS1nKKCa1aogxUbZtbWpV4BJqjb-flWmyD3ciwF15acRB8WAoZklW9FpgYTGnHjek4YVxLKBFktWQdLgmFJntdHb22wX_sdExi7XchfygKRBliGapJpq6PlAo-xqDNz6slFF_5i1_5Z7r8QyubDqGmIG3_78wncmGKjg |
CitedBy_id | crossref_primary_10_3390_math8060973 crossref_primary_10_1016_j_ocsci_2023_02_007 crossref_primary_10_3390_math12010025 crossref_primary_10_1093_evolut_qpac004 crossref_primary_10_1108_IJSMS_08_2023_0154 crossref_primary_10_1080_10106049_2023_2213674 crossref_primary_10_1155_2020_8812660 crossref_primary_10_1007_s41976_019_00022_w crossref_primary_10_1016_j_ijhm_2022_103206 |
Cites_doi | 10.1002/0471725331 10.1214/aos/1176344552 10.1002/9780470316894 10.2737/RM-GTR-87 10.1207/s15327906mbr0102_10 10.2307/1940105 10.1080/03610910701855005 10.1080/00401706.1978.10489693 10.1214/aoms/1177704248 10.2307/3237314 10.1101/237883 10.1002/cem.2440 10.1007/BF02289162 10.1016/0167-9473(94)00020-J 10.2307/2347233 10.1556/ComEc.8.2007.1.4 10.1016/j.csda.2007.07.015 10.1086/285367 10.1007/BF02288367 10.1007/978-1-4899-4541-9 10.1186/1745-6150-2-2 10.1111/j.2517-6161.1954.tb00174.x 10.1556/ComEc.14.2013.2.6 10.2307/2529140 10.2307/2528963 10.2307/1939574 10.1080/00401706.1982.10487712 10.1111/j.2006.0030-1299.14714.x 10.1007/BF02291266 10.1080/00949655.2015.1112390 10.1016/j.chemolab.2013.12.003 10.1111/j.2517-6161.1956.tb00213.x 10.1002/9780470316924 10.1002/0471271357 10.2307/2346488 10.1111/1365-2435.13141 10.1016/j.csda.2004.06.015 10.1016/0022-0981(76)90076-9 10.1093/biomet/20A.1-2.32 10.1016/j.csda.2008.06.012 |
ContentType | Journal Article |
Copyright | 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math6110269 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_34f355d9ffd9489ea0a2087a8d31450f 10_3390_math6110269 |
GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c364t-987d4fb455772b00a85f08c4a022725da35db7aea48b953456b4cf0cbbda3ec13 |
IEDL.DBID | BENPR |
ISSN | 2227-7390 |
IngestDate | Wed Aug 27 01:30:10 EDT 2025 Fri Jul 25 11:59:11 EDT 2025 Tue Jul 01 02:57:48 EDT 2025 Thu Apr 24 22:57:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-987d4fb455772b00a85f08c4a022725da35db7aea48b953456b4cf0cbbda3ec13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2566-5207 0000-0001-6408-2891 |
OpenAccessLink | https://www.proquest.com/docview/2582845074?pq-origsite=%requestingapplication% |
PQID | 2582845074 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_34f355d9ffd9489ea0a2087a8d31450f proquest_journals_2582845074 crossref_primary_10_3390_math6110269 crossref_citationtrail_10_3390_math6110269 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-20 |
PublicationDateYYYYMMDD | 2018-11-20 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2018 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Jackson (ref_9) 2005; 49 Carroll (ref_49) 1970; 35 Wishart (ref_35) 1928; 20 Gnanadesikan (ref_1) 1972; 28 Jackson (ref_8) 1993; 74 ref_11 Pillar (ref_24) 2018; 32 Robert (ref_47) 1976; 25 ref_51 Camiz (ref_21) 2007; 8 Saporta (ref_34) 2003; 1 ref_18 ref_16 Dray (ref_26) 2008; 52 Jolliffe (ref_6) 1972; 21 Caron (ref_12) 2016; 86 Frontier (ref_10) 1976; 25 Jolliffe (ref_23) 1982; 31 Feoli (ref_22) 2013; 14 Guttman (ref_5) 1954; 19 Barton (ref_41) 1956; 18 ref_27 Camacho (ref_53) 2014; 131 Jost (ref_43) 2006; 113 Eastment (ref_15) 1982; 24 Escoufier (ref_46) 1973; 29 Bartlett (ref_13) 1954; 16 Efron (ref_38) 1979; 7 Vieira (ref_20) 2012; 2 ref_33 ref_32 Anderson (ref_36) 1963; 34 (ref_25) 1995; 19 ref_30 Camacho (ref_52) 2012; 26 Cattell (ref_7) 1966; 1 Josse (ref_48) 2008; 53 ref_39 Jackson (ref_29) 1992; 139 ref_37 Eckart (ref_31) 1936; 1 Gauch (ref_28) 1982; 63 ref_45 ref_44 ref_40 ref_3 Auer (ref_17) 2008; 37 Pillar (ref_50) 1998; 22 ref_2 Pillar (ref_19) 1999; 10 Wold (ref_14) 1978; 20 ref_4 Cangelosi (ref_42) 2007; 2 |
References_xml | – volume: 22 start-page: 37 year: 1998 ident: ref_50 article-title: Sampling sufficiency in ecological surveys publication-title: Abstr. Bot. – ident: ref_37 doi: 10.1002/0471725331 – volume: 7 start-page: 1 year: 1979 ident: ref_38 article-title: Bootstrap methods: Another look at jackknife publication-title: Ann. Stat. doi: 10.1214/aos/1176344552 – ident: ref_32 doi: 10.1002/9780470316894 – ident: ref_27 doi: 10.2737/RM-GTR-87 – ident: ref_16 – volume: 1 start-page: 245 year: 1966 ident: ref_7 article-title: The scree test for the number of factors publication-title: Multivar. Behav. Res. doi: 10.1207/s15327906mbr0102_10 – volume: 63 start-page: 1643 year: 1982 ident: ref_28 article-title: Reduction by Eigenvector Ordinations publication-title: Ecology doi: 10.2307/1940105 – ident: ref_39 – volume: 37 start-page: 962 year: 2008 ident: ref_17 article-title: Choosing principal components: A new graphical method based on Bayesian model selection publication-title: Commun. Stat. Simul. Comput. doi: 10.1080/03610910701855005 – volume: 20 start-page: 397 year: 1978 ident: ref_14 article-title: Cross-validatory estimation of the number of components in factor and principal components models publication-title: Technometrics doi: 10.1080/00401706.1978.10489693 – volume: 34 start-page: 122 year: 1963 ident: ref_36 article-title: Asymptotic Theory for Principal Component Analysis publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177704248 – volume: 2 start-page: 103 year: 2012 ident: ref_20 article-title: Permutation tests to estimate significances on Principal Components Analysis publication-title: Comput. Ecol. Softw. – volume: 10 start-page: 895 year: 1999 ident: ref_19 article-title: The bootstrapped ordination re-examined publication-title: J. Veg. Sci. doi: 10.2307/3237314 – ident: ref_18 doi: 10.1101/237883 – volume: 26 start-page: 361 year: 2012 ident: ref_52 article-title: Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: Theoretical aspects publication-title: J. Chemom. doi: 10.1002/cem.2440 – volume: 19 start-page: 149 year: 1954 ident: ref_5 article-title: Some necessary conditions for common-factor analysis publication-title: Psychometrika doi: 10.1007/BF02289162 – volume: 19 start-page: 669 year: 1995 ident: ref_25 article-title: Selection of components in principal component analysis: A comparison of methods publication-title: Comput. Stat. Data Anal. doi: 10.1016/0167-9473(94)00020-J – volume: 25 start-page: 257 year: 1976 ident: ref_47 article-title: A Unifying Tool for Linear Multivariate Statistical Methods: The RV-Coefficient publication-title: Appl. Stat. doi: 10.2307/2347233 – ident: ref_4 – volume: 8 start-page: 25 year: 2007 ident: ref_21 article-title: Comparison of Single and Complete Linkage Clustering with the Hierarchical Factor Classification of Variables publication-title: Community Ecol. doi: 10.1556/ComEc.8.2007.1.4 – volume: 52 start-page: 2228 year: 2008 ident: ref_26 article-title: On the number of principal components: A test of dimensionality based on measurements of similarity between matrices publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2007.07.015 – volume: 139 start-page: 930 year: 1992 ident: ref_29 article-title: Null models and fish communities: Evidence of nonrandom patterns publication-title: Am. Nat. doi: 10.1086/285367 – volume: 1 start-page: 211 year: 1936 ident: ref_31 article-title: The approximation of one matrix by another of lower rank publication-title: Psychometrika doi: 10.1007/BF02288367 – ident: ref_40 doi: 10.1007/978-1-4899-4541-9 – volume: 2 start-page: 1 year: 2007 ident: ref_42 article-title: Component retention in principal component analysis with application to cDNA microarray data publication-title: Biol. Direct doi: 10.1186/1745-6150-2-2 – ident: ref_45 – volume: 16 start-page: 296 year: 1954 ident: ref_13 article-title: A note on the multiplying factors for various χ 2 approximations publication-title: J. R. Stat. Soc. Ser. B Math. doi: 10.1111/j.2517-6161.1954.tb00174.x – volume: 14 start-page: 164 year: 2013 ident: ref_22 article-title: Fuzzy Sets and Eigenanalysis in Community Studies: Classification and Ordination are “Two Faces of the Same Coin” publication-title: Community Ecol. doi: 10.1556/ComEc.14.2013.2.6 – volume: 29 start-page: 751 year: 1973 ident: ref_46 article-title: Le Traitement des Variables Vectorielles publication-title: Biometrics doi: 10.2307/2529140 – volume: 28 start-page: 81 year: 1972 ident: ref_1 article-title: Robust estimates, residuals, and outlier detection with multiresponse data publication-title: Biometrics doi: 10.2307/2528963 – ident: ref_30 – ident: ref_11 – volume: 74 start-page: 2204 year: 1993 ident: ref_8 article-title: Stopping Rules in Principal Components Analysis: A Comparison of Heuristical and Statistical Approaches publication-title: Ecology doi: 10.2307/1939574 – volume: 24 start-page: 73 year: 1982 ident: ref_15 article-title: Cross-validatory choice of the number of components from a principal component analysis publication-title: Technometrics doi: 10.1080/00401706.1982.10487712 – volume: 113 start-page: 363 year: 2006 ident: ref_43 article-title: Entropy and diversity publication-title: Oikos doi: 10.1111/j.2006.0030-1299.14714.x – ident: ref_44 – volume: 35 start-page: 245 year: 1970 ident: ref_49 article-title: Fitting one matrix to another under choice of a central dilation and a rigid motion publication-title: Psychometrika doi: 10.1007/BF02291266 – volume: 31 start-page: 300 year: 1982 ident: ref_23 article-title: A note on the use of principal components in regression publication-title: J. R. Stat. Soc. Ser. C Appl. Stat. – volume: 86 start-page: 2405 year: 2016 ident: ref_12 article-title: A Monte Carlo examination of the broken-stick distribution to identify components to retain in principal component analysis publication-title: J. Stat. Comput. Simul. doi: 10.1080/00949655.2015.1112390 – volume: 131 start-page: 37 year: 2014 ident: ref_53 article-title: Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: Practical aspects publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2013.12.003 – volume: 18 start-page: 79 year: 1956 ident: ref_41 article-title: Some notes on ordered random intervals publication-title: J. R. Stat. Soc. Ser. B Methodol. doi: 10.1111/j.2517-6161.1956.tb00213.x – ident: ref_51 doi: 10.1002/9780470316924 – ident: ref_3 doi: 10.1002/0471271357 – volume: 21 start-page: 160 year: 1972 ident: ref_6 article-title: Discarding Variables in a Principal Component Analysis. I: Artificial Data publication-title: Appl. Stat. doi: 10.2307/2346488 – volume: 1 start-page: 42 year: 2003 ident: ref_34 article-title: On the connection between the distribution of eigenvalues in multiple correspondence analysis and log-linear models publication-title: Revstat Stat. J. – ident: ref_33 – ident: ref_2 – volume: 32 start-page: 2435 year: 2018 ident: ref_24 article-title: Constraints on the Functional Trait Space of Aquatic Invertebrates in Bromeliads publication-title: Funct. Ecol. doi: 10.1111/1365-2435.13141 – volume: 49 start-page: 974 year: 2005 ident: ref_9 article-title: How many principal components? stopping rules for determining the number of non-trivial axes revisited publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2004.06.015 – volume: 25 start-page: 67 year: 1976 ident: ref_10 article-title: Étude de la décroissance des valeurs propres dans une analyse en composantes principales: Comparaison avec le modèle du bâton brisé publication-title: J. Exp. Mar. Biol. Ecol. doi: 10.1016/0022-0981(76)90076-9 – volume: 20 start-page: 32 year: 1928 ident: ref_35 article-title: The Generalised Product Moment Distribution in Samples from a Normal Multivariate Population publication-title: Biometrika doi: 10.1093/biomet/20A.1-2.32 – volume: 53 start-page: 82 year: 2008 ident: ref_48 article-title: Testing the significance of the RV coefficient publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2008.06.012 |
SSID | ssj0000913849 |
Score | 2.138934 |
Snippet | The identification of a reduced dimensional representation of the data is among the main issues of exploratory multidimensional data analysis and several... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 269 |
SubjectTerms | Comparative studies Data analysis Datasets Eigenvalues Error correction Error detection Food science Identification methods Methods Multidimensional data Noise Principal Component Analysis Principal components analysis rules comparison simulated data Statistical methods stopping rules |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA_iSQ_iJ06n9LCTUNY2L01y9GsMYUPQwW4lSRsdSBU3_3_fa7pRUPDiNUmb8r7zmvd7jA1Sq5U3DuJMg4vBuTK2KEixJvwqaSTKCCX0J9N8PIOHuZh3Wn3RnbAADxwIN-Tg0SWW2vtSg9KVSUyWKGlUyVMQiSfriz6vc5hqbLBOuQIdCvI4nuuHGP-95ujrMrra3HFBDVL_D0PceJfRPttrw8LoOnzOAduq6kO2O9lgqi6P2DTU1DZ1SRGOR20lUUjmDZ8WL_SGO0LrpwxYtKijx5BJx2FS-_can4_WKCTHbDa6f74dx203hNjxHFaxVrIEb0EIDIhRWYwSPlEODIEAZqI0XJRWmsqAslpwDIwsOJ84a3Gqcik_Yds17nTKIo3W0YiUN-BwyjpLoGmZM0Zb7aTLe-xqTaDCtVDh1LHircAjA1Gz6FCzxwabxR8BIeP3ZTdE6c0SgrVuBpDZRcvs4i9m91h_zaei1bVlkdGfP5yVcPYfe5yzHQyKFNUbZkmfba8-v6oLDDxW9rKRsW-aDNYx priority: 102 providerName: Directory of Open Access Journals |
Title | Identifying the Informational/Signal Dimension in Principal Component Analysis |
URI | https://www.proquest.com/docview/2582845074 https://doaj.org/article/34f355d9ffd9489ea0a2087a8d31450f |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4oXPRgfEYUSQ-cTBr62NLdkxEFiQmEqCTcmt1tiySmIOD_d6bdVhKN1320yezM7LezO98AtF0leCo1sz3BtM20jm2FimQL4q8KZYg6QgH90bg7nLLnWTAzAbeNeVZZ-sTcUcdLTTHyjkf3OwzRC7tbfdpUNYpuV00JjX2oowvmvAb1Xn88eamiLMR6yZkoEvN8PN93EAe-d3HP8-iJ885WlDP2_3LI-S4zOIYjAw-t-2I9T2AvyU7hcFRxq27OYFzk1ub5SRa2WyajqAjqdV4Xc_rCI7H2UyTMWmTWpIioYzOZ_zLD-VbJRnIO00H_7WFom6oItva7bGsLHsYsVSwIEBij0UgepA7XTBIZoBfE0g9iFcpEMq5E4CNAUkynjlYKuxLt-hdQy_BPl2AJ9JIycP2cJI4rrYg8zdNSCiV0qLsNuC0FFGlDGU6VKz4iPDqQNKMdaTagXQ1eFUwZfw_rkaSrIURvnTcs1_PIWEvksxRxUCzSNBaMi0Q60nN4KHnsu6gDaQOa5TpFxuY20Y-GXP3ffQ0HCHs4ZRR6ThNq2_VXcoPQYqtasM8HTy2jRa38gP4Nuu3RKg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLbGOAAHxFMMBvQAF6RqXZquyQEhXmOwh5AYEreSpO2YhDpgQ4g_xW_E7mMggbhxTdJUcr7YjhN_BtirayliZbjNJDc2Nya0NQLJlsRf5SsfMUIB_W6v0brlV3feXQk-ilwYelZZ6MRUUYcjQzHyGqP7HY7eCz96erapahTdrhYlNDJYtKP3NzyyjQ8vz3B99xlrnvdPW3ZeVcA2boNPbDxkhzzW3PPQsUTQKeHFjjBcEZke80LleqH2VaS40NJz0cHQ3MSO0Rq7IlN3cd4ZmOUuWnLKTG9eTGM6xLEpuMzSALHfqaHX-dBAC8voQfU3w5fWB_ih_lOb1lyCxdwZtY4z9CxDKUpWYKE7ZXIdr0Ivy-RNs6EsbLfy_KUshFi7GQ5ohjOqEUBxN2uYWNdZ_B6bSdmMEvzeKrhP1uD2X6S1DuUE_7QBlkSdrLy6m1LSCW00UbUxo5TU0vimUYGDQkCByQnKqU7GY4AHFZJm8E2aFdibDn7KeDl-H3ZCkp4OITLttGH0MgjyvRm4PEavK5RxHEouZKQcxRzhKxG6dURcXIFqsU5BvsPHwRceN__u3oW5Vr_bCTqXvfYWzKPDJSiXkTlVKE9eXqNtdGomeidFkgX3_w3dT8FZC0Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB60guhBfGJ97kEvwtJtku0mBxG1Fp-l-ABva5LdVEFatRXxr_nrnNlHFRRvXpNsFiZfZiaTzDcAW3WjpNNW-EwJ6wtrE98gkHxF_FWRjhAjFNC_aDeOb8TpbXg7Bh9lLgw9qyx1Yqaok76lGHmN0f2OQO9F1FzxLKLTbO09PftUQYpuWstyGjlEztL3Nzy-DXZPmrjW24y1jq4Pj_2iwoBveUMMfTxwJ8IZEYboZCIAtQxdIK3QRKzHwkTzMDGRTrWQRoUcnQ0jrAusMdiV2jrHecdhIqJTUQUmDo7anctRhIcYN6VQeVIg5yqooQ9630B7y-h59TczmFUL-GEMMgvXmoWZwjX19nMszcFY2puH6YsRr-tgAdp5Xm-WG-Vhu1dkM-UBxdrVQ5dmaFLFAIrCeQ89r5NH87GZVE-_h997JRPKItz8i7yWoNLDPy2Dp1BD67DOM4I6aawh4jZmtVZG2cg2qrBTCii2BV05Vc14jPHYQtKMv0mzClujwU85S8fvww5I0qMhRK2dNfRfunGxU2MuHPpgiXIuUUKqVAeaBTLSMuF1xJ-rwlq5TnGx3wfxFzpX_u7ehEmEbXx-0j5bhSn0viQlNrJgDSrDl9d0HT2codkooOTB3X-j9xNjSRDW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+the+Informational%2FSignal+Dimension+in+Principal+Component+Analysis&rft.jtitle=Mathematics+%28Basel%29&rft.au=Camiz%2C+Sergio&rft.au=Pillar%2C+Val%C3%A9rio+D&rft.date=2018-11-20&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=6&rft.issue=11&rft.spage=269&rft_id=info:doi/10.3390%2Fmath6110269&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |