Identifying the Informational/Signal Dimension in Principal Component Analysis

The identification of a reduced dimensional representation of the data is among the main issues of exploratory multidimensional data analysis and several solutions had been proposed in the literature according to the method. Principal Component Analysis (PCA) is the method that has received the larg...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 6; no. 11; p. 269
Main Authors Camiz, Sergio, Pillar, Valério
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 20.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The identification of a reduced dimensional representation of the data is among the main issues of exploratory multidimensional data analysis and several solutions had been proposed in the literature according to the method. Principal Component Analysis (PCA) is the method that has received the largest attention thus far and several identification methods—the so-called stopping rules—have been proposed, giving very different results in practice, and some comparative study has been carried out. Some inconsistencies in the previous studies led us to try to fix the distinction between signal from noise in PCA—and its limits—and propose a new testing method. This consists in the production of simulated data according to a predefined eigenvalues structure, including zero-eigenvalues. From random populations built according to several such structures, reduced-size samples were extracted and to them different levels of random normal noise were added. This controlled introduction of noise allows a clear distinction between expected signal and noise, the latter relegated to the non-zero eigenvalues in the samples corresponding to zero ones in the population. With this new method, we tested the performance of ten different stopping rules. Of every method, for every structure and every noise, both power (the ability to correctly identify the expected dimension) and type-I error (the detection of a dimension composed only by noise) have been measured, by counting the relative frequencies in which the smallest non-zero eigenvalue in the population was recognized as signal in the samples and that in which the largest zero-eigenvalue was recognized as noise, respectively. This way, the behaviour of the examined methods is clear and their comparison/evaluation is possible. The reported results show that both the generalization of the Bartlett’s test by Rencher and the Bootstrap method by Pillar result much better than all others: both are accounted for reasonable power, decreasing with noise, and very good type-I error. Thus, more than the others, these methods deserve being adopted.
AbstractList The identification of a reduced dimensional representation of the data is among the main issues of exploratory multidimensional data analysis and several solutions had been proposed in the literature according to the method. Principal Component Analysis (PCA) is the method that has received the largest attention thus far and several identification methods—the so-called stopping rules—have been proposed, giving very different results in practice, and some comparative study has been carried out. Some inconsistencies in the previous studies led us to try to fix the distinction between signal from noise in PCA—and its limits—and propose a new testing method. This consists in the production of simulated data according to a predefined eigenvalues structure, including zero-eigenvalues. From random populations built according to several such structures, reduced-size samples were extracted and to them different levels of random normal noise were added. This controlled introduction of noise allows a clear distinction between expected signal and noise, the latter relegated to the non-zero eigenvalues in the samples corresponding to zero ones in the population. With this new method, we tested the performance of ten different stopping rules. Of every method, for every structure and every noise, both power (the ability to correctly identify the expected dimension) and type-I error (the detection of a dimension composed only by noise) have been measured, by counting the relative frequencies in which the smallest non-zero eigenvalue in the population was recognized as signal in the samples and that in which the largest zero-eigenvalue was recognized as noise, respectively. This way, the behaviour of the examined methods is clear and their comparison/evaluation is possible. The reported results show that both the generalization of the Bartlett’s test by Rencher and the Bootstrap method by Pillar result much better than all others: both are accounted for reasonable power, decreasing with noise, and very good type-I error. Thus, more than the others, these methods deserve being adopted.
Author Camiz, Sergio
Pillar, Valério
Author_xml – sequence: 1
  givenname: Sergio
  orcidid: 0000-0002-2566-5207
  surname: Camiz
  fullname: Camiz, Sergio
– sequence: 2
  givenname: Valério
  orcidid: 0000-0001-6408-2891
  surname: Pillar
  fullname: Pillar, Valério
BookMark eNptkEtPAyEUhYmpibV25R-YxKWpZXjMwLKpr0kaNVHXhGGgpZlCBbrovxdbY4yRzSXnfvdwOedg4LzTAFyW8AZjDqcbmVZVWUJU8RMwRAjVkzrrg1_3MzCOcQ3z4SVmhA_BU9Npl6zZW7cs0koXjTM-ZCvrneynr3aZS3FrN9rFLBXWFS_BOmW3WZ77zTbv4FIxy9Q-2ngBTo3sox5_1xF4v797mz9OFs8PzXy2mChckTThrO6IaQmldY1aCCWjBjJFJMybItpJTLu2lloS1nKKCa1aogxUbZtbWpV4BJqjb-flWmyD3ciwF15acRB8WAoZklW9FpgYTGnHjek4YVxLKBFktWQdLgmFJntdHb22wX_sdExi7XchfygKRBliGapJpq6PlAo-xqDNz6slFF_5i1_5Z7r8QyubDqGmIG3_78wncmGKjg
CitedBy_id crossref_primary_10_3390_math8060973
crossref_primary_10_1016_j_ocsci_2023_02_007
crossref_primary_10_3390_math12010025
crossref_primary_10_1093_evolut_qpac004
crossref_primary_10_1108_IJSMS_08_2023_0154
crossref_primary_10_1080_10106049_2023_2213674
crossref_primary_10_1155_2020_8812660
crossref_primary_10_1007_s41976_019_00022_w
crossref_primary_10_1016_j_ijhm_2022_103206
Cites_doi 10.1002/0471725331
10.1214/aos/1176344552
10.1002/9780470316894
10.2737/RM-GTR-87
10.1207/s15327906mbr0102_10
10.2307/1940105
10.1080/03610910701855005
10.1080/00401706.1978.10489693
10.1214/aoms/1177704248
10.2307/3237314
10.1101/237883
10.1002/cem.2440
10.1007/BF02289162
10.1016/0167-9473(94)00020-J
10.2307/2347233
10.1556/ComEc.8.2007.1.4
10.1016/j.csda.2007.07.015
10.1086/285367
10.1007/BF02288367
10.1007/978-1-4899-4541-9
10.1186/1745-6150-2-2
10.1111/j.2517-6161.1954.tb00174.x
10.1556/ComEc.14.2013.2.6
10.2307/2529140
10.2307/2528963
10.2307/1939574
10.1080/00401706.1982.10487712
10.1111/j.2006.0030-1299.14714.x
10.1007/BF02291266
10.1080/00949655.2015.1112390
10.1016/j.chemolab.2013.12.003
10.1111/j.2517-6161.1956.tb00213.x
10.1002/9780470316924
10.1002/0471271357
10.2307/2346488
10.1111/1365-2435.13141
10.1016/j.csda.2004.06.015
10.1016/0022-0981(76)90076-9
10.1093/biomet/20A.1-2.32
10.1016/j.csda.2008.06.012
ContentType Journal Article
Copyright 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math6110269
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_34f355d9ffd9489ea0a2087a8d31450f
10_3390_math6110269
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c364t-987d4fb455772b00a85f08c4a022725da35db7aea48b953456b4cf0cbbda3ec13
IEDL.DBID BENPR
ISSN 2227-7390
IngestDate Wed Aug 27 01:30:10 EDT 2025
Fri Jul 25 11:59:11 EDT 2025
Tue Jul 01 02:57:48 EDT 2025
Thu Apr 24 22:57:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-987d4fb455772b00a85f08c4a022725da35db7aea48b953456b4cf0cbbda3ec13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2566-5207
0000-0001-6408-2891
OpenAccessLink https://www.proquest.com/docview/2582845074?pq-origsite=%requestingapplication%
PQID 2582845074
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_34f355d9ffd9489ea0a2087a8d31450f
proquest_journals_2582845074
crossref_primary_10_3390_math6110269
crossref_citationtrail_10_3390_math6110269
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-20
PublicationDateYYYYMMDD 2018-11-20
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-20
  day: 20
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2018
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Jackson (ref_9) 2005; 49
Carroll (ref_49) 1970; 35
Wishart (ref_35) 1928; 20
Gnanadesikan (ref_1) 1972; 28
Jackson (ref_8) 1993; 74
ref_11
Pillar (ref_24) 2018; 32
Robert (ref_47) 1976; 25
ref_51
Camiz (ref_21) 2007; 8
Saporta (ref_34) 2003; 1
ref_18
ref_16
Dray (ref_26) 2008; 52
Jolliffe (ref_6) 1972; 21
Caron (ref_12) 2016; 86
Frontier (ref_10) 1976; 25
Jolliffe (ref_23) 1982; 31
Feoli (ref_22) 2013; 14
Guttman (ref_5) 1954; 19
Barton (ref_41) 1956; 18
ref_27
Camacho (ref_53) 2014; 131
Jost (ref_43) 2006; 113
Eastment (ref_15) 1982; 24
Escoufier (ref_46) 1973; 29
Bartlett (ref_13) 1954; 16
Efron (ref_38) 1979; 7
Vieira (ref_20) 2012; 2
ref_33
ref_32
Anderson (ref_36) 1963; 34
(ref_25) 1995; 19
ref_30
Camacho (ref_52) 2012; 26
Cattell (ref_7) 1966; 1
Josse (ref_48) 2008; 53
ref_39
Jackson (ref_29) 1992; 139
ref_37
Eckart (ref_31) 1936; 1
Gauch (ref_28) 1982; 63
ref_45
ref_44
ref_40
ref_3
Auer (ref_17) 2008; 37
Pillar (ref_50) 1998; 22
ref_2
Pillar (ref_19) 1999; 10
Wold (ref_14) 1978; 20
ref_4
Cangelosi (ref_42) 2007; 2
References_xml – volume: 22
  start-page: 37
  year: 1998
  ident: ref_50
  article-title: Sampling sufficiency in ecological surveys
  publication-title: Abstr. Bot.
– ident: ref_37
  doi: 10.1002/0471725331
– volume: 7
  start-page: 1
  year: 1979
  ident: ref_38
  article-title: Bootstrap methods: Another look at jackknife
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344552
– ident: ref_32
  doi: 10.1002/9780470316894
– ident: ref_27
  doi: 10.2737/RM-GTR-87
– ident: ref_16
– volume: 1
  start-page: 245
  year: 1966
  ident: ref_7
  article-title: The scree test for the number of factors
  publication-title: Multivar. Behav. Res.
  doi: 10.1207/s15327906mbr0102_10
– volume: 63
  start-page: 1643
  year: 1982
  ident: ref_28
  article-title: Reduction by Eigenvector Ordinations
  publication-title: Ecology
  doi: 10.2307/1940105
– ident: ref_39
– volume: 37
  start-page: 962
  year: 2008
  ident: ref_17
  article-title: Choosing principal components: A new graphical method based on Bayesian model selection
  publication-title: Commun. Stat. Simul. Comput.
  doi: 10.1080/03610910701855005
– volume: 20
  start-page: 397
  year: 1978
  ident: ref_14
  article-title: Cross-validatory estimation of the number of components in factor and principal components models
  publication-title: Technometrics
  doi: 10.1080/00401706.1978.10489693
– volume: 34
  start-page: 122
  year: 1963
  ident: ref_36
  article-title: Asymptotic Theory for Principal Component Analysis
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177704248
– volume: 2
  start-page: 103
  year: 2012
  ident: ref_20
  article-title: Permutation tests to estimate significances on Principal Components Analysis
  publication-title: Comput. Ecol. Softw.
– volume: 10
  start-page: 895
  year: 1999
  ident: ref_19
  article-title: The bootstrapped ordination re-examined
  publication-title: J. Veg. Sci.
  doi: 10.2307/3237314
– ident: ref_18
  doi: 10.1101/237883
– volume: 26
  start-page: 361
  year: 2012
  ident: ref_52
  article-title: Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: Theoretical aspects
  publication-title: J. Chemom.
  doi: 10.1002/cem.2440
– volume: 19
  start-page: 149
  year: 1954
  ident: ref_5
  article-title: Some necessary conditions for common-factor analysis
  publication-title: Psychometrika
  doi: 10.1007/BF02289162
– volume: 19
  start-page: 669
  year: 1995
  ident: ref_25
  article-title: Selection of components in principal component analysis: A comparison of methods
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/0167-9473(94)00020-J
– volume: 25
  start-page: 257
  year: 1976
  ident: ref_47
  article-title: A Unifying Tool for Linear Multivariate Statistical Methods: The RV-Coefficient
  publication-title: Appl. Stat.
  doi: 10.2307/2347233
– ident: ref_4
– volume: 8
  start-page: 25
  year: 2007
  ident: ref_21
  article-title: Comparison of Single and Complete Linkage Clustering with the Hierarchical Factor Classification of Variables
  publication-title: Community Ecol.
  doi: 10.1556/ComEc.8.2007.1.4
– volume: 52
  start-page: 2228
  year: 2008
  ident: ref_26
  article-title: On the number of principal components: A test of dimensionality based on measurements of similarity between matrices
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2007.07.015
– volume: 139
  start-page: 930
  year: 1992
  ident: ref_29
  article-title: Null models and fish communities: Evidence of nonrandom patterns
  publication-title: Am. Nat.
  doi: 10.1086/285367
– volume: 1
  start-page: 211
  year: 1936
  ident: ref_31
  article-title: The approximation of one matrix by another of lower rank
  publication-title: Psychometrika
  doi: 10.1007/BF02288367
– ident: ref_40
  doi: 10.1007/978-1-4899-4541-9
– volume: 2
  start-page: 1
  year: 2007
  ident: ref_42
  article-title: Component retention in principal component analysis with application to cDNA microarray data
  publication-title: Biol. Direct
  doi: 10.1186/1745-6150-2-2
– ident: ref_45
– volume: 16
  start-page: 296
  year: 1954
  ident: ref_13
  article-title: A note on the multiplying factors for various χ 2 approximations
  publication-title: J. R. Stat. Soc. Ser. B Math.
  doi: 10.1111/j.2517-6161.1954.tb00174.x
– volume: 14
  start-page: 164
  year: 2013
  ident: ref_22
  article-title: Fuzzy Sets and Eigenanalysis in Community Studies: Classification and Ordination are “Two Faces of the Same Coin”
  publication-title: Community Ecol.
  doi: 10.1556/ComEc.14.2013.2.6
– volume: 29
  start-page: 751
  year: 1973
  ident: ref_46
  article-title: Le Traitement des Variables Vectorielles
  publication-title: Biometrics
  doi: 10.2307/2529140
– volume: 28
  start-page: 81
  year: 1972
  ident: ref_1
  article-title: Robust estimates, residuals, and outlier detection with multiresponse data
  publication-title: Biometrics
  doi: 10.2307/2528963
– ident: ref_30
– ident: ref_11
– volume: 74
  start-page: 2204
  year: 1993
  ident: ref_8
  article-title: Stopping Rules in Principal Components Analysis: A Comparison of Heuristical and Statistical Approaches
  publication-title: Ecology
  doi: 10.2307/1939574
– volume: 24
  start-page: 73
  year: 1982
  ident: ref_15
  article-title: Cross-validatory choice of the number of components from a principal component analysis
  publication-title: Technometrics
  doi: 10.1080/00401706.1982.10487712
– volume: 113
  start-page: 363
  year: 2006
  ident: ref_43
  article-title: Entropy and diversity
  publication-title: Oikos
  doi: 10.1111/j.2006.0030-1299.14714.x
– ident: ref_44
– volume: 35
  start-page: 245
  year: 1970
  ident: ref_49
  article-title: Fitting one matrix to another under choice of a central dilation and a rigid motion
  publication-title: Psychometrika
  doi: 10.1007/BF02291266
– volume: 31
  start-page: 300
  year: 1982
  ident: ref_23
  article-title: A note on the use of principal components in regression
  publication-title: J. R. Stat. Soc. Ser. C Appl. Stat.
– volume: 86
  start-page: 2405
  year: 2016
  ident: ref_12
  article-title: A Monte Carlo examination of the broken-stick distribution to identify components to retain in principal component analysis
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949655.2015.1112390
– volume: 131
  start-page: 37
  year: 2014
  ident: ref_53
  article-title: Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: Practical aspects
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2013.12.003
– volume: 18
  start-page: 79
  year: 1956
  ident: ref_41
  article-title: Some notes on ordered random intervals
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1956.tb00213.x
– ident: ref_51
  doi: 10.1002/9780470316924
– ident: ref_3
  doi: 10.1002/0471271357
– volume: 21
  start-page: 160
  year: 1972
  ident: ref_6
  article-title: Discarding Variables in a Principal Component Analysis. I: Artificial Data
  publication-title: Appl. Stat.
  doi: 10.2307/2346488
– volume: 1
  start-page: 42
  year: 2003
  ident: ref_34
  article-title: On the connection between the distribution of eigenvalues in multiple correspondence analysis and log-linear models
  publication-title: Revstat Stat. J.
– ident: ref_33
– ident: ref_2
– volume: 32
  start-page: 2435
  year: 2018
  ident: ref_24
  article-title: Constraints on the Functional Trait Space of Aquatic Invertebrates in Bromeliads
  publication-title: Funct. Ecol.
  doi: 10.1111/1365-2435.13141
– volume: 49
  start-page: 974
  year: 2005
  ident: ref_9
  article-title: How many principal components? stopping rules for determining the number of non-trivial axes revisited
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2004.06.015
– volume: 25
  start-page: 67
  year: 1976
  ident: ref_10
  article-title: Étude de la décroissance des valeurs propres dans une analyse en composantes principales: Comparaison avec le modèle du bâton brisé
  publication-title: J. Exp. Mar. Biol. Ecol.
  doi: 10.1016/0022-0981(76)90076-9
– volume: 20
  start-page: 32
  year: 1928
  ident: ref_35
  article-title: The Generalised Product Moment Distribution in Samples from a Normal Multivariate Population
  publication-title: Biometrika
  doi: 10.1093/biomet/20A.1-2.32
– volume: 53
  start-page: 82
  year: 2008
  ident: ref_48
  article-title: Testing the significance of the RV coefficient
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2008.06.012
SSID ssj0000913849
Score 2.138934
Snippet The identification of a reduced dimensional representation of the data is among the main issues of exploratory multidimensional data analysis and several...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 269
SubjectTerms Comparative studies
Data analysis
Datasets
Eigenvalues
Error correction
Error detection
Food science
Identification methods
Methods
Multidimensional data
Noise
Principal Component Analysis
Principal components analysis
rules comparison
simulated data
Statistical methods
stopping rules
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA_iSQ_iJ06n9LCTUNY2L01y9GsMYUPQwW4lSRsdSBU3_3_fa7pRUPDiNUmb8r7zmvd7jA1Sq5U3DuJMg4vBuTK2KEixJvwqaSTKCCX0J9N8PIOHuZh3Wn3RnbAADxwIN-Tg0SWW2vtSg9KVSUyWKGlUyVMQiSfriz6vc5hqbLBOuQIdCvI4nuuHGP-95ujrMrra3HFBDVL_D0PceJfRPttrw8LoOnzOAduq6kO2O9lgqi6P2DTU1DZ1SRGOR20lUUjmDZ8WL_SGO0LrpwxYtKijx5BJx2FS-_can4_WKCTHbDa6f74dx203hNjxHFaxVrIEb0EIDIhRWYwSPlEODIEAZqI0XJRWmsqAslpwDIwsOJ84a3Gqcik_Yds17nTKIo3W0YiUN-BwyjpLoGmZM0Zb7aTLe-xqTaDCtVDh1LHircAjA1Gz6FCzxwabxR8BIeP3ZTdE6c0SgrVuBpDZRcvs4i9m91h_zaei1bVlkdGfP5yVcPYfe5yzHQyKFNUbZkmfba8-v6oLDDxW9rKRsW-aDNYx
  priority: 102
  providerName: Directory of Open Access Journals
Title Identifying the Informational/Signal Dimension in Principal Component Analysis
URI https://www.proquest.com/docview/2582845074
https://doaj.org/article/34f355d9ffd9489ea0a2087a8d31450f
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4oXPRgfEYUSQ-cTBr62NLdkxEFiQmEqCTcmt1tiySmIOD_d6bdVhKN1320yezM7LezO98AtF0leCo1sz3BtM20jm2FimQL4q8KZYg6QgH90bg7nLLnWTAzAbeNeVZZ-sTcUcdLTTHyjkf3OwzRC7tbfdpUNYpuV00JjX2oowvmvAb1Xn88eamiLMR6yZkoEvN8PN93EAe-d3HP8-iJ885WlDP2_3LI-S4zOIYjAw-t-2I9T2AvyU7hcFRxq27OYFzk1ub5SRa2WyajqAjqdV4Xc_rCI7H2UyTMWmTWpIioYzOZ_zLD-VbJRnIO00H_7WFom6oItva7bGsLHsYsVSwIEBij0UgepA7XTBIZoBfE0g9iFcpEMq5E4CNAUkynjlYKuxLt-hdQy_BPl2AJ9JIycP2cJI4rrYg8zdNSCiV0qLsNuC0FFGlDGU6VKz4iPDqQNKMdaTagXQ1eFUwZfw_rkaSrIURvnTcs1_PIWEvksxRxUCzSNBaMi0Q60nN4KHnsu6gDaQOa5TpFxuY20Y-GXP3ffQ0HCHs4ZRR6ThNq2_VXcoPQYqtasM8HTy2jRa38gP4Nuu3RKg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLbGOAAHxFMMBvQAF6RqXZquyQEhXmOwh5AYEreSpO2YhDpgQ4g_xW_E7mMggbhxTdJUcr7YjhN_BtirayliZbjNJDc2Nya0NQLJlsRf5SsfMUIB_W6v0brlV3feXQk-ilwYelZZ6MRUUYcjQzHyGqP7HY7eCz96erapahTdrhYlNDJYtKP3NzyyjQ8vz3B99xlrnvdPW3ZeVcA2boNPbDxkhzzW3PPQsUTQKeHFjjBcEZke80LleqH2VaS40NJz0cHQ3MSO0Rq7IlN3cd4ZmOUuWnLKTG9eTGM6xLEpuMzSALHfqaHX-dBAC8voQfU3w5fWB_ih_lOb1lyCxdwZtY4z9CxDKUpWYKE7ZXIdr0Ivy-RNs6EsbLfy_KUshFi7GQ5ohjOqEUBxN2uYWNdZ_B6bSdmMEvzeKrhP1uD2X6S1DuUE_7QBlkSdrLy6m1LSCW00UbUxo5TU0vimUYGDQkCByQnKqU7GY4AHFZJm8E2aFdibDn7KeDl-H3ZCkp4OITLttGH0MgjyvRm4PEavK5RxHEouZKQcxRzhKxG6dURcXIFqsU5BvsPHwRceN__u3oW5Vr_bCTqXvfYWzKPDJSiXkTlVKE9eXqNtdGomeidFkgX3_w3dT8FZC0Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB60guhBfGJ97kEvwtJtku0mBxG1Fp-l-ABva5LdVEFatRXxr_nrnNlHFRRvXpNsFiZfZiaTzDcAW3WjpNNW-EwJ6wtrE98gkHxF_FWRjhAjFNC_aDeOb8TpbXg7Bh9lLgw9qyx1Yqaok76lGHmN0f2OQO9F1FzxLKLTbO09PftUQYpuWstyGjlEztL3Nzy-DXZPmrjW24y1jq4Pj_2iwoBveUMMfTxwJ8IZEYboZCIAtQxdIK3QRKzHwkTzMDGRTrWQRoUcnQ0jrAusMdiV2jrHecdhIqJTUQUmDo7anctRhIcYN6VQeVIg5yqooQ9630B7y-h59TczmFUL-GEMMgvXmoWZwjX19nMszcFY2puH6YsRr-tgAdp5Xm-WG-Vhu1dkM-UBxdrVQ5dmaFLFAIrCeQ89r5NH87GZVE-_h997JRPKItz8i7yWoNLDPy2Dp1BD67DOM4I6aawh4jZmtVZG2cg2qrBTCii2BV05Vc14jPHYQtKMv0mzClujwU85S8fvww5I0qMhRK2dNfRfunGxU2MuHPpgiXIuUUKqVAeaBTLSMuF1xJ-rwlq5TnGx3wfxFzpX_u7ehEmEbXx-0j5bhSn0viQlNrJgDSrDl9d0HT2codkooOTB3X-j9xNjSRDW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+the+Informational%2FSignal+Dimension+in+Principal+Component+Analysis&rft.jtitle=Mathematics+%28Basel%29&rft.au=Camiz%2C+Sergio&rft.au=Pillar%2C+Val%C3%A9rio+D&rft.date=2018-11-20&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=6&rft.issue=11&rft.spage=269&rft_id=info:doi/10.3390%2Fmath6110269&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon