Nonlinear optical response of graphene in terahertz and near-infrared frequency regime
In this review, we discuss our recent theoretical work on the nonlinear optical response of graphene and its sister structure in terahertz (THz) and near-infrared frequency regime. Due to Dirac-like linear energymomentum dispersion, the third-order nonlinear current in graphene is much stronger than...
Saved in:
Published in | Frontiers of Optoelectronics (Online) Vol. 8; no. 1; pp. 3 - 26 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Higher Education Press
01.03.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 2095-2759 2095-2767 |
DOI | 10.1007/s12200-014-0428-0 |
Cover
Loading…
Abstract | In this review, we discuss our recent theoretical work on the nonlinear optical response of graphene and its sister structure in terahertz (THz) and near-infrared frequency regime. Due to Dirac-like linear energymomentum dispersion, the third-order nonlinear current in graphene is much stronger than that in conventional semiconductors. The nonlinear current grows rapidly with increasing temperature and decreasing frequency. The third-order nonlinear current can be as strong as the linear current under moderate electric field strength of 104 V/cm. In bilayer graphene (BLG) with low energy trigonal warping effect, not only the optical response is strongly nonlinear, the optical nonlinearity is well-preserved at elevated temperature. In the presence ofa bandgap (such as semihydrogenated graphene (SHG)), there exists two well separated linear response and nonlinear response peaks. This suggests that SHG can have a unique potential as a two-color nonlinear material in the THz frequency regime where the relative intensity of the two colors can be tuned with the electric field. In a graphene superlattice structure of Kronig-Penney type periodic potential, the Dirac cone is elliptically deformed. We found that not only the optical nonlinearity is preserved in such a system, the total optical response is further enhanced by a factor proportional to the band anisotropy. This suggests that graphene superlattice is another potential candidate in THz device application. |
---|---|
AbstractList | In this review, we discuss our recent theoretical work on the nonlinear optical response of graphene and its sister structure in terahertz (THz) and near-infrared frequency regime. Due to Dirac-like linear energy-momentum dispersion, the third-order nonlinear current in graphene is much stronger than that in conventional semiconductors. The nonlinear current grows rapidly with increasing temperature and decreasing frequency. The third-order nonlinear current can be as strong as the linear current under moderate electric field strength of 10
4
V/cm. In bilayer graphene (BLG) with low energy trigonal warping effect, not only the optical response is strongly nonlinear, the optical nonlinearity is well-preserved at elevated temperature. In the presence of a bandgap (such as semihydrogenated graphene (SHG)), there exists two well separated linear response and nonlinear response peaks. This suggests that SHG can have a unique potential as a two-color nonlinear material in the THz frequency regime where the relative intensity of the two colors can be tuned with the electric field. In a graphene superlattice structure of Kronig-Penney type periodic potential, the Dirac cone is elliptically deformed. We found that not only the optical nonlinearity is preserved in such a system, the total optical response is further enhanced by a factor proportional to the band anisotropy. This suggests that graphene superlattice is another potential candidate in THz device application. In this review, we discuss our recent theoretical work on the nonlinear optical response of graphene and its sister structure in terahertz (THz) and near-infrared frequency regime. Due to Dirac-like linear energy-momentum dispersion, the third-order nonlinear current in graphene is much stronger than that in conventional semiconductors. The nonlinear current grows rapidly with increasing temperature and decreasing frequency. The third-order nonlinear current can be as strong as the linear current under moderate electric field strength of 10 4 V/cm. In bilayer graphene (BLG) with low energy trigonal warping effect, not only the optical response is strongly nonlinear, the optical nonlinearity is well-preserved at elevated temperature. In the presence of a bandgap (such as semihydrogenated graphene (SHG)), there exists two well separated linear response and nonlinear response peaks. This suggests that SHG can have a unique potential as a two-color nonlinear material in the THz frequency regime where the relative intensity of the two colors can be tuned with the electric field. In a graphene superlattice structure of Kronig-Penney type periodic potential, the Dirac cone is elliptically deformed. We found that not only the optical nonlinearity is preserved in such a system, the total optical response is further enhanced by a factor proportional to the band anisotropy. This suggests that graphene superlattice is another potential candidate in THz device application. In this review, we discuss our recent theoretical work on the nonlinear optical response of graphene and its sister structure in terahertz (THz) and near-infrared frequency regime. Due to Dirac-like linear energymomentum dispersion, the third-order nonlinear current in graphene is much stronger than that in conventional semiconductors. The nonlinear current grows rapidly with increasing temperature and decreasing frequency. The third-order nonlinear current can be as strong as the linear current under moderate electric field strength of 104 V/cm. In bilayer graphene (BLG) with low energy trigonal warping effect, not only the optical response is strongly nonlinear, the optical nonlinearity is well-preserved at elevated temperature. In the presence ofa bandgap (such as semihydrogenated graphene (SHG)), there exists two well separated linear response and nonlinear response peaks. This suggests that SHG can have a unique potential as a two-color nonlinear material in the THz frequency regime where the relative intensity of the two colors can be tuned with the electric field. In a graphene superlattice structure of Kronig-Penney type periodic potential, the Dirac cone is elliptically deformed. We found that not only the optical nonlinearity is preserved in such a system, the total optical response is further enhanced by a factor proportional to the band anisotropy. This suggests that graphene superlattice is another potential candidate in THz device application. |
Author | Yee Sin ANG Qinjun CHEN Chao ZHANG |
AuthorAffiliation | School of Physics, University of Wollongong, New South Wales 2522, Australia Institute of Superconducting and Electronic Materials, University of Wollongong, New South Wales 2522, Australia |
Author_xml | – sequence: 1 givenname: Yee Sin surname: ANG fullname: ANG, Yee Sin organization: School of Physics, University of Wollongong, New South Wales 2522, Australia – sequence: 2 givenname: Qinjun surname: CHEN fullname: CHEN, Qinjun organization: Institute of Superconducting and Electronic Materials, University of Wollongong, New South Wales 2522, Australia – sequence: 3 givenname: Chao surname: ZHANG fullname: ZHANG, Chao email: czhang@uow.edu.au organization: Institute of Superconducting and Electronic Materials, University of Wollongong, New South Wales 2522, Australia |
BookMark | eNp9kT1PxDAMhiMEEnDwA9gi9kK-mrYjQnxJCBbEGqWp0wu6S4pTBvj15HQnBoab7OXxaz8-JYcxRSDkgrMrzlhznbkQjFWMq4op0VbsgJwI1tWVaHRz-NfX3TE5zzn0THKhpWybE_L-kuIqRLBI0zQHZ1cUIU8pZqDJ0xHttIQINEQ6A9ol4PxDbRzoBqlC9GgRBuoRPr8guu9Cj2ENZ-TI21WG811dkLf7u7fbx-r59eHp9ua5clKruWo962stwA6irtWgeFeDclLaDryXDWO6G1jjfK96p71XljsvVdP3ba3rwckF4duxDlPOCN5MGNYWvw1nZqPGbNWYosZs1BhWmOYf48Js55DijDas9pJiS-aSEkdA85G-MJb79kLtFlqGsdiDYSp-s_FY8gLgfvRyt-kyxfGzRP6dp7Xa_FNw-QsEdJkm |
CitedBy_id | crossref_primary_10_3390_nano12122097 crossref_primary_10_1016_j_optcom_2020_125319 crossref_primary_10_1002_jbm_b_34248 crossref_primary_10_1088_1361_6463_aaf0f7 crossref_primary_10_1098_rspa_2017_0433 crossref_primary_10_7498_aps_64_237801 crossref_primary_10_1088_1402_4896_ab1ac6 crossref_primary_10_1088_1361_648X_ab8e87 crossref_primary_10_3390_nano9020165 crossref_primary_10_1364_JOSAB_424447 crossref_primary_10_1038_s41467_018_03413_7 crossref_primary_10_1063_1_5006277 crossref_primary_10_1103_PhysRevB_108_035414 crossref_primary_10_1088_1674_1056_ab928e crossref_primary_10_1002_inf2_12168 crossref_primary_10_1103_PhysRevB_93_235430 crossref_primary_10_1007_s11664_021_08904_w crossref_primary_10_1016_j_optcom_2020_125337 crossref_primary_10_1364_JOSAB_403512 crossref_primary_10_1109_JSTQE_2016_2564402 |
Cites_doi | 10.1103/PhysRevB.73.045432 10.1209/0295-5075/79/27002 10.1038/nature09866 10.1103/PhysRevLett.108.245501 10.1103/PhysRevLett.107.126402 10.1103/PhysRevB.39.13020 10.1038/nphoton.2011.177 10.1021/nl801752r 10.1088/0022-3727/45/39/395303 10.1103/PhysRevLett.107.156801 10.1103/PhysRevB.86.075443 10.1126/science.1156965 10.1002/adma.200803616 10.1088/0957-4484/19/46/465401 10.1063/1.3292026 10.1007/BF01339716 10.1038/nphys2493 10.1103/PhysRevLett.97.036802 10.1038/nphys547 10.1038/nphys2208 10.1038/nature04235 10.1103/PhysRevB.82.205430 10.1016/j.ssc.2007.03.054 10.1103/PhysRevLett.95.146801 10.1088/0953-8984/21/4/045301 10.1021/nl300084j 10.1021/nn4009406 10.1103/PhysRevB.77.241402 10.1063/1.2814080 10.1103/PhysRevB.73.245403 10.1063/1.3483872 10.1364/JOSAB.29.000274 10.1103/PhysRevLett.98.206805 10.1063/1.2809413 10.1103/PhysRevB.73.235411 10.1103/PhysRevLett.96.086805 10.1103/PhysRevLett.17.1015 10.1103/PhysRevB.66.081105 10.1119/1.1969607 10.1103/PhysRevB.84.195425 10.1103/RevModPhys.83.407 10.1103/PhysRevB.83.115422 10.1038/nmat1849 10.1063/1.3527934 10.1038/asiamat.2010.7 10.1103/PhysRevLett.96.256802 10.1103/PhysRevLett.102.247204 10.1038/nphys781 10.1103/PhysRevLett.106.136806 10.1016/j.ssc.2010.07.016 10.1103/PhysRevX.3.021014 10.1103/PhysRevB.75.233407 10.1103/PhysRevLett.100.236801 10.1103/PhysRevB.85.155415 10.1103/PhysRevLett.95.226801 10.1103/PhysRevLett.97.026402 10.1103/RevModPhys.80.1337 10.1103/PhysRevLett.102.026807 10.1103/RevModPhys.81.109 10.1103/PhysRevLett.108.155501 10.1103/PhysRevLett.97.016801 10.1103/PhysRevLett.99.066802 10.1038/nature04233 10.1103/PhysRevLett.109.106602 10.1038/nphys384 10.1103/PhysRevLett.111.136804 10.1038/nphys2494 10.1038/nphoton.2010.186 10.1103/PhysRevB.77.041407 10.1063/1.3549201 10.1016/j.ssc.2008.02.024 10.1038/nnano.2008.58 10.1063/1.2930875 10.1088/0953-8984/20/38/384204 10.1103/PhysRevLett.105.097401 10.1103/PhysRevB.73.125411 10.1103/PhysRevB.50.7526 10.1103/PhysRevLett.100.046403 10.1142/S0217984910024626 10.1007/s12274-008-8053-0 10.1038/nnano.2010.89 10.1103/PhysRevLett.101.157402 10.1103/PhysRev.71.622 10.1103/PhysRevB.86.115431 10.1038/nphys1198 10.1103/PhysRevLett.102.166808 10.1109/22.989974 10.1038/nphys989 10.1103/PhysRevB.82.201402 10.1103/PhysRevB.77.115449 10.1103/PhysRevLett.89.266603 10.1088/1367-2630/14/6/063028 10.1126/science.1137201 10.1038/nphys890 10.1103/PhysRevLett.103.207401 10.1021/nl9039636 10.1103/PhysRevLett.100.117401 10.1103/RevModPhys.82.3045 10.1103/PhysRevLett.101.126804 10.1021/nl0731872 10.1103/PhysRev.56.340 10.1063/1.3205115 10.1103/PhysRevB.76.153410 10.1126/science.1102896 |
ContentType | Journal Article |
Copyright | Copyright reserved, 2014, Higher Education Press and Springer-Verlag Berlin Heidelberg Higher Education Press and Springer-Verlag Berlin Heidelberg 2014 |
Copyright_xml | – notice: Copyright reserved, 2014, Higher Education Press and Springer-Verlag Berlin Heidelberg – notice: Higher Education Press and Springer-Verlag Berlin Heidelberg 2014 |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION |
DOI | 10.1007/s12200-014-0428-0 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
DocumentTitleAlternate | Nonlinear optical response of graphene in terahertz and near-infrared frequency regime |
EISSN | 2095-2767 |
EndPage | 26 |
ExternalDocumentID | 10_1007_s12200_014_0428_0 10.1007/s12200-014-0428-0 664275921 |
GroupedDBID | 2RA 92L ALMA_UNASSIGNED_HOLDINGS CQIGP M~E W92 ~WA -EM 06D 0VY 1-T 29~ 2JY 2KG 30V 4.4 408 5VS 8UJ 96X AABHQ AAFGU AAFWJ AAIAL AAJKR AAKKN AARHV AARTL AATLR AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZJ ABDZT ABECU ABFGW ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTMW ABWNU ABXPI ACACY ACBMV ACBRV ACGFS ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACTTH ACULB ACVWB ACWMK ACZOJ ADHIR ADINQ ADKNI ADKPE ADMDM ADRFC ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEKMD AEOHA AEPYU AESTI AETLH AEVTX AEXYK AFLOW AFNRJ AFPKN AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGQMX AGWZB AGYKE AHBXF AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ ALFXC ALWAN AMKLP ANMIH AOCGG AUKKA AXYYD B-. BDATZ BGNMA C24 C6C CSCUP DNIVK EBLON EBS EIOEI EJD ESBYG FERAY FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GROUPED_DOAJ HF~ HG6 HMJXF HRMNR HZ~ I0C IKXTQ IXD J-C JBSCW JZLTJ KOV M4Y MA- NQJWS NU0 O9J P4S R89 RLLFE ROL RPM RSV S.. S16 SAP SCL SEG SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG U2A UG4 UOJIU UTJUX UZXMN VFIZW W48 XT3 YLTOR Z7R Z7X Z83 Z88 0R~ AAYZH ABEEZ ADMLS AEFQL AFBBN AFGXO ZMTXR -SI -S~ AAXDM AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CAJEI CITATION Q-- U1G U5S |
ID | FETCH-LOGICAL-c364t-8f0b562ead2554d4195e4c33a9eff370069d07cfb4bc6ff4a1cf347bb8565dc3 |
IEDL.DBID | C24 |
ISSN | 2095-2759 |
IngestDate | Thu Apr 24 22:59:11 EDT 2025 Tue Jul 01 01:20:50 EDT 2025 Fri Feb 21 02:37:27 EST 2025 Tue Feb 27 04:43:00 EST 2024 Wed Feb 14 10:31:19 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | terahertz (THz) response photomixing graphene nonlinear effect |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-8f0b562ead2554d4195e4c33a9eff370069d07cfb4bc6ff4a1cf347bb8565dc3 |
Notes | In this review, we discuss our recent theoretical work on the nonlinear optical response of graphene and its sister structure in terahertz (THz) and near-infrared frequency regime. Due to Dirac-like linear energymomentum dispersion, the third-order nonlinear current in graphene is much stronger than that in conventional semiconductors. The nonlinear current grows rapidly with increasing temperature and decreasing frequency. The third-order nonlinear current can be as strong as the linear current under moderate electric field strength of 104 V/cm. In bilayer graphene (BLG) with low energy trigonal warping effect, not only the optical response is strongly nonlinear, the optical nonlinearity is well-preserved at elevated temperature. In the presence ofa bandgap (such as semihydrogenated graphene (SHG)), there exists two well separated linear response and nonlinear response peaks. This suggests that SHG can have a unique potential as a two-color nonlinear material in the THz frequency regime where the relative intensity of the two colors can be tuned with the electric field. In a graphene superlattice structure of Kronig-Penney type periodic potential, the Dirac cone is elliptically deformed. We found that not only the optical nonlinearity is preserved in such a system, the total optical response is further enhanced by a factor proportional to the band anisotropy. This suggests that graphene superlattice is another potential candidate in THz device application. graphene, terahertz (THz) response, nonlinear effect, photomixing 11-5738/TN Document accepted on :2014-07-18 Document received on :2014-03-16 terahertz (THz) response photomixing graphene nonlinear effect |
OpenAccessLink | https://journal.hep.com.cn/foe/EN/10.1007/s12200-014-0428-0 |
PageCount | 24 |
ParticipantIDs | crossref_primary_10_1007_s12200_014_0428_0 crossref_citationtrail_10_1007_s12200_014_0428_0 springer_journals_10_1007_s12200_014_0428_0 higheredpress_frontiers_10_1007_s12200_014_0428_0 chongqing_primary_664275921 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-03-01 |
PublicationDateYYYYMMDD | 2015-03-01 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationSubtitle | Selected Publications from Chinese Universities |
PublicationTitle | Frontiers of Optoelectronics (Online) |
PublicationTitleAbbrev | Front. Optoelectron |
PublicationTitleAlternate | Frontiers of Optoelectronics |
PublicationYear | 2015 |
Publisher | Higher Education Press |
Publisher_xml | – name: Higher Education Press |
References | Brey, Fertig (CR45) 2006; 73 Hasan, Kane (CR63) 2010; 82 Castro Neto, Guinea, Peres, Novoselov, Geim (CR61) 2009; 81 Hendry, Hale, Moger, Savchenko, Mikhailov (CR73) 2010; 105 Betz, Jhang, Pallecchi, Ferreira, Feve, Berroir, Placais (CR104) 2012; 9 Gao, Wang, Zhang (CR87) 2008; 19 Wolff, Pearson (CR88) 1966; 17 Koshino, Ando (CR94) 2006; 73 Wang, Hernandez, Lotya, Coleman, Blau (CR79) 2009; 21 Bianco, Butler, Jiang, Restrepo, Windl, Goldberger (CR66) 2013; 7 Xu, Yan, Zhang, Wang, Xu, Tang, Duan, Zhang (CR67) 2013; 111 Chaves, Covaci, Rakhimov, Farias, Peeters (CR36) 2010; 82 McCann, Fal’ko (CR93) 2006; 96 Geim, Novoselov (CR15) 2007; 6 Park, Yang, Son, Cohen, Louie (CR49) 2008; 101 Wang, Dou, Zhang (CR9) 2010; 2 Zhai, Chang (CR38) 2012; 85 Ezawa (CR47) 2006; 73 Fleurence, Friedlein, Ozaki, Kawai, Wang, Yamada-Takamura (CR64) 2012; 108 Herbut, Juricic, Vafek (CR22) 2008; 100 Mikhailov (CR74) 2007; 79 Wallace (CR3) 1947; 71 Suzuura, Ando (CR52) 2002; 89 Stander, Huard, Goldhaber-Gordon (CR7) 2009; 102 Butscher, Milde, Hirtschulz, Malic, Knorr (CR91) 2007; 91 Bolotin, Sikes, Jiang, Klima, Fudenberg, Hone, Kim, Stormer (CR13) 2008; 146 Nandkishore, Levitov, Chubukov (CR58) 2012; 8 Mikhailov, Ziegler (CR75) 2008; 20 Park, Son, Yang, Cohen, Louie (CR50) 2008; 8 Kuzmenko, van Heumen, Carbone, van der Marel (CR31) 2008; 100 Nair, Blake, Grigorenko, Novoselov, Booth, Stauber, Peres, Geim (CR29) 2008; 320 Vogt, De Padova, Quaresima, Avila, Frantzeskakis, Asensio, Resta, Ealet, Le Lay (CR65) 2012; 108 Chen, Ma, Zhang (CR96) 2010; 96 Pereira, Peeters, Costa Filho, Farias (CR35) 2009; 21 Bao, Liu, Lei (CR92) 2010; 374 Han, Ozyilmaz, Zhang, Kim (CR46) 2007; 98 Balandin, Ghosh, Bao, Calizo, Teweldebrhan, Miao, Lau (CR56) 2008; 8 Lim, Chen, Clark, Goh, Ng, Tan, Friend, Ho, Chua (CR78) 2011; 5 Dong, Xu, Tan (CR89) 2010; 150 Hwang, Das Sarma (CR102) 2008; 77 Katsnelson, Novoselov, Geim (CR4) 2006; 2 Morozov, Novoselov, Katsnelson, Schedin, Ponomarenko, Jiang, Geim (CR51) 2006; 97 Peres, Guinea, Castro Neto (CR23) 2006; 73 Liu, Ma, Wright, Zhang (CR10) 2008; 103 Moon, Han, Lee, Choi (CR98) 2011; 84 Klein (CR5) 1929; 53 Zhang, Chen, Ma (CR27) 2008; 77 Zhang (CR84) 2002; 66 Park, Lee, Wolff-Fabris, Koh, Eom, Kim, Farhan, Jo, Kim, Shim, Kim (CR99) 2011; 107 Xu, Cao (CR106) 2010; 24 Ang, Zhang (CR71) 2012; 45 Dragoman, Dragoman (CR54) 2007; 91 Weiss, Zhang, Gerhardts, Klitzing, Weimann (CR107) 1989; 39 Cserti, Csordás, Dávid (CR24) 2007; 99 Young, Kim (CR6) 2009; 5 Sarma, Adam, Hwang (CR59) 2011; 83 Siegel (CR72) 2002; 50 Song, Reizer, Levitov (CR103) 2012; 109 Ang, Sultan, Zhang (CR69) 2010; 97 Falkovsky, Pershoguba (CR26) 2007; 76 Moldovan, Masir, Covaci, Peeters (CR37) 2012; 86 Wright, Xu, Cao, Zhang (CR77) 2009; 95 Rycerz, TworzydŁo, Beenakker (CR32) 2007; 3 Khveschenko (CR53) 2006; 97 Chen, Park, Boudouris, Horng, Geng, Girit, Zettl, Crommie, Segalman, Louie, Wang (CR86) 2011; 471 Wright, Cao, Zhang (CR8) 2009; 103 Edwards (CR97) 1963; 31 Wu, Mao, Jones, Yao, Zhang, Xu (CR81) 2012; 12 Martin, Akerman, Ulbricht, Lohmann, Smet, von Klitzing, Yacoby (CR25) 2008; 4 Ziegler (CR21) 2007; 75 Wei, Bao, Pu, Lau, Shi (CR55) 2009; 102 Gusynin, Sharapov (CR19) 2005; 95 Novoselov, Jiang, Zhang, Morozov, Stormer, Zeitler, Maan, Boebinger, Kim, Geim (CR20) 2007; 315 Kane, Mele (CR57) 2005; 95 McCann, Abergel, Fal’ko (CR95) 2007; 143 Ishikawa (CR82) 2010; 82 Yu, Lupton, Gao, Zhang, Liu (CR11) 2008; 1 Gunlycke, White (CR33) 2011; 106 Chen, Jang, Xiao, Ishigami, Fuhrer (CR14) 2008; 3 Schwierz (CR17) 2010; 5 Shareef, Ang, Zhang (CR68) 2012; 29 Novoselov, Geim, Morozov, Jiang, Katsnelson, Grigorieva, Dubonos, Firsov (CR1) 2005; 438 Gusynin, Sharapov, Carbotte (CR28) 2006; 96 Dragoman, Neculoiu, Deligeorgis, Konstantinidis, Dragoman, Cismaru, Muller, Plana (CR76) 2010; 97 San-Jose, Prada, McCann, Schomerus (CR41) 2009; 102 Ang, Zhang (CR70) 2011; 98 Li, Henriksen, Jiang, Hao, Martin, Kim, Stormer, Basov (CR30) 2008; 4 Garcia-Pomar, Cortijo, Nieto-Vesperinas (CR34) 2008; 100 Péterfalvi, Oroszlány, Lambert, Cserti (CR39) 2012; 14 Majidi, Zareyan (CR44) 2012; 86 Graham, Shi, Ralph, Park, McEuen (CR105) 2012; 9 Wang, Hernandez, Lotya, Coleman, Blau (CR100) 2009; 21 Zhang, Tan, Stormer, Kim (CR18) 2005; 438 Lim, Chen, Clark, Goh, Ng, Tan, Friend, Ho, Chua (CR101) 2011; 5 Sun, Wu, Divin, Li, Berger, de Heer, First, Norris (CR90) 2008; 101 Majidi, Zareyan (CR40) 2011; 83 Park, Yang, Son, Cohen, Louie (CR48) 2008; 4 Xia, Farmer, Lin, Avouris (CR16) 2010; 10 Trushin, Schliemann (CR42) 2011; 107 Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos, Grigorieva, Firsov (CR2) 2004; 306 Beenakker (CR62) 2008; 80 Ludwig, Fisher, Shankar, Grinstein (CR85) 1994; 50 Min, Borghi, Polini, MacDonald (CR43) 2008; 77 Hong, Dadap, Petrone, Yeh, Hone, Osgood (CR80) 2013; 3 Bonaccorso, Sun, Hasan, Ferrari (CR60) 2010; 4 Cai, Lu, Kong, Zhu, Zhang, Wei, Wu, Liu (CR12) 2006; 97 Feynman (CR83) 1939; 56 J Wang (428_CR100) 2009; 21 J Z Cai (428_CR12) 2006; 97 E Bianco (428_CR66) 2013; 7 M Koshino (428_CR94) 2006; 73 I F Herbut (428_CR22) 2008; 100 K S Novoselov (428_CR1) 2005; 438 J H Chen (428_CR14) 2008; 3 R Nandkishore (428_CR58) 2012; 8 A W W Ludwig (428_CR85) 1994; 50 C McCann (428_CR95) 2007; 143 S Butscher (428_CR91) 2007; 91 V P Gusynin (428_CR28) 2006; 96 O Klein (428_CR5) 1929; 53 A R Wright (428_CR77) 2009; 95 E H Hwang (428_CR102) 2008; 77 Y S Ang (428_CR71) 2012; 45 P A Wolff (428_CR88) 1966; 17 S A Mikhailov (428_CR75) 2008; 20 L Chen (428_CR96) 2010; 96 L Majidi (428_CR44) 2012; 86 L Brey (428_CR45) 2006; 73 S Y Hong (428_CR80) 2013; 3 M I Katsnelson (428_CR4) 2006; 2 F Xia (428_CR16) 2010; 10 D Sun (428_CR90) 2008; 101 P R Wallace (428_CR3) 1947; 71 J C Song (428_CR103) 2012; 109 A Chaves (428_CR36) 2010; 82 M Y Han (428_CR46) 2007; 98 A R Wright (428_CR8) 2009; 103 D Gunlycke (428_CR33) 2011; 106 P H Siegel (428_CR72) 2002; 50 J Liu (428_CR10) 2008; 103 Y S Ang (428_CR70) 2011; 98 H M Dong (428_CR89) 2010; 150 H Min (428_CR43) 2008; 77 R R Nair (428_CR29) 2008; 320 V P Gusynin (428_CR19) 2005; 95 C H Park (428_CR49) 2008; 101 J Martin (428_CR25) 2008; 4 M Ezawa (428_CR47) 2006; 73 E McCann (428_CR93) 2006; 96 D C Yu (428_CR11) 2008; 1 D Dragoman (428_CR54) 2007; 91 M Trushin (428_CR42) 2011; 107 C Zhang (428_CR27) 2008; 77 Z Q Li (428_CR30) 2008; 4 F Zhai (428_CR38) 2012; 85 E Hendry (428_CR73) 2010; 105 J L Garcia-Pomar (428_CR34) 2008; 100 K S Novoselov (428_CR2) 2004; 306 X L Wang (428_CR9) 2010; 2 A B Kuzmenko (428_CR31) 2008; 100 J Cserti (428_CR24) 2007; 99 L Majidi (428_CR40) 2011; 83 D Moldovan (428_CR37) 2012; 86 C Zhang (428_CR84) 2002; 66 D Weiss (428_CR107) 1989; 39 D V Khveschenko (428_CR53) 2006; 97 J M Pereira Jr (428_CR35) 2009; 21 J Park (428_CR99) 2011; 107 L A Falkovsky (428_CR26) 2007; 76 N Stander (428_CR7) 2009; 102 H Suzuura (428_CR52) 2002; 89 Y Xu (428_CR67) 2013; 111 S A Mikhailov (428_CR74) 2007; 79 C H Park (428_CR48) 2008; 4 Y Zhang (428_CR18) 2005; 438 W S Bao (428_CR92) 2010; 374 C Y Moon (428_CR98) 2011; 84 A C Betz (428_CR104) 2012; 9 C F Chen (428_CR86) 2011; 471 M Dragoman (428_CR76) 2010; 97 A A Balandin (428_CR56) 2008; 8 S D Sarma (428_CR59) 2011; 83 K Ziegler (428_CR21) 2007; 75 C L Kane (428_CR57) 2005; 95 M W Graham (428_CR105) 2012; 9 F Gao (428_CR87) 2008; 19 S Wu (428_CR81) 2012; 12 G K Lim (428_CR78) 2011; 5 C H Park (428_CR50) 2008; 8 C W J Beenakker (428_CR62) 2008; 80 G K Lim (428_CR101) 2011; 5 A H Castro Neto (428_CR61) 2009; 81 M Z Hasan (428_CR63) 2010; 82 S V Morozov (428_CR51) 2006; 97 A K Geim (428_CR15) 2007; 6 N M R Peres (428_CR23) 2006; 73 F Schwierz (428_CR17) 2010; 5 Y S Ang (428_CR69) 2010; 97 P Wei (428_CR55) 2009; 102 A Rycerz (428_CR32) 2007; 3 R P Feynman (428_CR83) 1939; 56 S Shareef (428_CR68) 2012; 29 W F Edwards (428_CR97) 1963; 31 A F Young (428_CR6) 2009; 5 P San-Jose (428_CR41) 2009; 102 A Fleurence (428_CR64) 2012; 108 K S Novoselov (428_CR20) 2007; 315 P Vogt (428_CR65) 2012; 108 K L Ishikawa (428_CR82) 2010; 82 F Bonaccorso (428_CR60) 2010; 4 K I Bolotin (428_CR13) 2008; 146 X G Xu (428_CR106) 2010; 24 C G Péterfalvi (428_CR39) 2012; 14 J Wang (428_CR79) 2009; 21 |
References_xml | – volume: 97 start-page: 026402 issue: 2 year: 2006 ident: CR12 article-title: Pressure-induced transition in magnetoresistance of singlewalled carbon nanotubes publication-title: Physical Review Letters – volume: 150 start-page: 1770 issue: 37–38 year: 2010 end-page: 1773 ident: CR89 article-title: Temperature relaxation and energy loss of hot carriers in graphene publication-title: Solid State Communications – volume: 84 start-page: 195425 issue: 19 year: 2011 ident: CR98 article-title: Low-velocity anisotropic Dirac fermions on the side surface of topological insulators publication-title: Physical Review B: Condensed Matter and Materials Physics – volume: 101 start-page: 126804 issue: 12 year: 2008 ident: CR49 article-title: New generation of massless Dirac fermions in graphene under external periodic potentials publication-title: Physical Review Letters – volume: 109 start-page: 106602 issue: 10 year: 2012 ident: CR103 article-title: Disorder-assisted electronphonon scattering and cooling pathways in graphene publication-title: Physical Review Letters – volume: 96 start-page: 086805 issue: 8 year: 2006 ident: CR93 article-title: Landau-level degeneracy and quantum Hall effect in a graphite bilayer publication-title: Physical Review Letters – volume: 95 start-page: 226801 issue: 22 year: 2005 ident: CR57 article-title: Quantum spin Hall effect in graphene publication-title: Physical Review Letters – volume: 31 start-page: 482 issue: 7 year: 1963 end-page: 489 ident: CR97 article-title: Special relativity in anisotropic space publication-title: American Journal of Physics – volume: 315 start-page: 1379 issue: 5817 year: 2007 ident: CR20 article-title: Roomtemperature quantum Hall effect in graphene publication-title: Science – volume: 29 start-page: 274 issue: 3 year: 2012 end-page: 279 ident: CR68 article-title: Room-temperature strong terahertz photon mixing in grapheme publication-title: Journal of the Optical Society of America. B, Optical Physics – volume: 8 start-page: 2920 issue: 9 year: 2008 end-page: 2924 ident: CR50 article-title: Electron beam supercollimation in graphene superlattices publication-title: Nano Letters – volume: 471 start-page: 617 issue: 7340 year: 2011 end-page: 620 ident: CR86 article-title: Controlling inelastic light scattering quantum pathways in graphene publication-title: Nature – volume: 438 start-page: 197 issue: 7065 year: 2005 end-page: 200 ident: CR1 article-title: Two-dimensional gas of massless Dirac fermions in graphene publication-title: Nature – volume: 111 start-page: 136804 issue: 13 year: 2013 ident: CR67 article-title: Large-gap quantum spin Hall insulators in tin films publication-title: Physical Review Letters – volume: 8 start-page: 158 issue: 2 year: 2012 end-page: 163 ident: CR58 article-title: Chiral superconductivity from repulsive interactions in doped graphene publication-title: Nature Physics – volume: 3 start-page: 021014 issue: 2 year: 2013 ident: CR80 article-title: Optical third-harmonic generation in graphene publication-title: Physical Review X – volume: 21 start-page: 2430 issue: 23 year: 2009 end-page: 2435 ident: CR100 article-title: Broadband nonlinear optical response of graphene dispersions publication-title: Advanced Materials – volume: 73 start-page: 245403 issue: 24 year: 2006 ident: CR94 article-title: Transport in bilayer graphene: calculations within a self-consistent Born approximation publication-title: Physical Review B: Condensed Matter and Materials Physics – volume: 4 start-page: 213 issue: 3 year: 2008 end-page: 217 ident: CR48 article-title: Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials publication-title: Nature Physics – volume: 100 start-page: 117401 issue: 11 year: 2008 ident: CR31 article-title: Universal optical conductance of graphite publication-title: Physical Review Letters – volume: 21 start-page: 045301 issue: 4 year: 2009 ident: CR35 article-title: Valley polarization due to trigonal warping on tunneling electrons in graphene publication-title: Journal of Physics Condensed Matter – volume: 66 start-page: 081105 issue: 8 year: 2002 ident: CR84 article-title: Frequency-dependent electrical transport under intense terahertz radiation publication-title: Physical Review B: Condensed Matter and Materials Physics – volume: 95 start-page: 146801 issue: 14 year: 2005 ident: CR19 article-title: Unconventional integer quantum Hall effect in graphene publication-title: Physical Review Letters – volume: 98 start-page: 206805 issue: 20 year: 2007 ident: CR46 article-title: Energy band-gap engineering of graphene nanoribbons publication-title: Physical Review Letters – volume: 100 start-page: 236801 issue: 23 year: 2008 ident: CR34 article-title: Fully valleypolarized electron beams in graphene publication-title: Physical Review Letters – volume: 89 start-page: 266603 issue: 26 year: 2002 ident: CR52 article-title: Crossover from symplectic to orthogonal class in a two-dimensional honeycomb lattice publication-title: Physical Review Letters – volume: 320 start-page: 1308 issue: 5881 year: 2008 ident: CR29 article-title: Fine structure constant defines visual transparency of graphene publication-title: Science – volume: 24 start-page: 2243 issue: 21 year: 2010 end-page: 2249 ident: CR106 article-title: Nonlinear response induced strong absorptance of graphene in the terahertz regime publication-title: Modern Physics Letters B – volume: 73 start-page: 235411 issue: 23 year: 2006 ident: CR45 article-title: Electronic states of graphene nanoribbons studied with the Dirac equation publication-title: Physical Review B: Condensed Matter and Materials Physics – volume: 98 start-page: 042107 issue: 4 year: 2011 ident: CR70 article-title: Subgap optical conductivity in semihydrogenated graphene publication-title: Applied Physics Letters – volume: 103 start-page: 103711 issue: 10 year: 2008 ident: CR10 article-title: Orbital magnetization of graphene and graphene nanoribbons publication-title: Journal of Applied Physics – volume: 85 start-page: 155415 issue: 15 year: 2012 ident: CR38 article-title: Valley filtering in graphene with a Dirac gap publication-title: Physical Review B: Condensed Matter and Materials Physics – volume: 39 start-page: 13020 issue: 17 year: 1989 end-page: 13023 ident: CR107 article-title: Density of states in a two-dimensional electron gas in the presence of a one-dimensional superlattice potential publication-title: Physical Review B: Condensed Matter and Materials Physics – volume: 56 start-page: 340 issue: 4 year: 1939 end-page: 343 ident: CR83 article-title: Forces in molecules publication-title: Physical Review – volume: 77 start-page: 041407 issue: 4 year: 2008 ident: CR43 article-title: Pseudospin magnetism in graphene publication-title: Physical Review B – volume: 1 start-page: 497 issue: 6 year: 2008 end-page: 501 ident: CR11 article-title: A unified geometric rule for designing nanomagnetism in graphene publication-title: Nano Research – volume: 102 start-page: 026807 issue: 2 year: 2009 ident: CR7 article-title: Evidence for Klein tunneling in graphene p-n junctions publication-title: Physical Review Letters – volume: 83 start-page: 115422 issue: 11 year: 2011 ident: CR40 article-title: Pseudospin polarized quantum transport in monolayer graphene publication-title: Physical Review B: Condensed Matter and Materials Physics – volume: 86 start-page: 115431 issue: 11 year: 2012 ident: CR37 article-title: Resonant valley filtering of massive Dirac electrons publication-title: Physical Review B: Condensed Matter and Materials Physics – volume: 107 start-page: 126402 issue: 12 year: 2011 ident: CR99 article-title: Anisotropic Dirac fermions in a Bi square net of SrMnBi2 publication-title: Physical Review Letters – volume: 77 start-page: 241402 issue: 24 year: 2008 ident: CR27 article-title: Orientation dependence of the optical spectra in graphene at high frequencies publication-title: Physical Review B – volume: 2 start-page: 620 issue: 9 year: 2006 end-page: 625 ident: CR4 article-title: Chiral tunnelling and the Klein paradox in graphene publication-title: Nature Physics – volume: 7 start-page: 4414 issue: 5 year: 2013 end-page: 4421 ident: CR66 article-title: Stability and exfoliation of germanane: a germanium graphane analogue publication-title: ACS Nano – volume: 45 start-page: 395303 issue: 39 year: 2012 ident: CR71 article-title: Enhanced optical conductance in graphene superlattice due to anisotropic band dispersion publication-title: Journal of Physics. D, Applied Physics – volume: 14 start-page: 063028 issue: 6 year: 2012 ident: CR39 article-title: Intraband electron focusing in bilayer graphene publication-title: New Journal of Physics – volume: 108 start-page: 245501 issue: 24 year: 2012 ident: CR64 article-title: Experimental evidence for epitaxial silicene on diboride thin films publication-title: Physical Review Letters – volume: 100 start-page: 046403 issue: 4 year: 2008 ident: CR22 article-title: Coulomb interaction, ripples, and the minimal conductivity of graphene publication-title: Physical Review Letters – volume: 71 start-page: 622 issue: 9 year: 1947 end-page: 634 ident: CR3 article-title: The band theory of graphite publication-title: Physical Review – volume: 4 start-page: 611 issue: 9 year: 2010 end-page: 622 ident: CR60 article-title: Graphene photonics and optoelectronics publication-title: Nature Photonics – volume: 5 start-page: 554 issue: 9 year: 2011 end-page: 560 ident: CR78 article-title: Giant broadband nonlinear optical absorption response in dispersed graphene single sheets publication-title: Nature Photonics – volume: 97 start-page: 243110 issue: 24 year: 2010 ident: CR69 article-title: Nonlinear optical spectrum of bilayer graphene in the terahertz regime publication-title: Applied Physics Letters – volume: 9 start-page: 109 issue: 2 year: 2012 end-page: 112 ident: CR104 article-title: Supercollision cooling in undoped graphene publication-title: Nature Physics – volume: 106 start-page: 136806 issue: 13 year: 2011 ident: CR33 article-title: Graphene valley filter using a line defect publication-title: Physical Review Letters – volume: 80 start-page: 1337 issue: 4 year: 2008 end-page: 1354 ident: CR62 article-title: Colloquium: Andreev reflection and Klein tunneling in graphene publication-title: Reviews of Modern Physics – volume: 105 start-page: 097401 issue: 9 year: 2010 ident: CR73 article-title: Coherent nonlinear optical response of graphene publication-title: Physical Review Letters – volume: 99 start-page: 066802 issue: 6 year: 2007 ident: CR24 article-title: Role of the trigonal warping on the minimal conductivity of bilayer graphene publication-title: Physical Review Letters – volume: 3 start-page: 172 issue: 3 year: 2007 end-page: 175 ident: CR32 article-title: Valley filter and valley valve in graphene publication-title: Nature Physics – volume: 146 start-page: 351 issue: 9–10 year: 2008 end-page: 355 ident: CR13 article-title: Ultrahigh electron mobility in suspended graphene publication-title: Solid State Communications – volume: 102 start-page: 247204 issue: 24 year: 2009 ident: CR41 article-title: Pseudospin valve in bilayer graphene: towards graphene-based pseudospintronics publication-title: Physical Review Letters – volume: 20 start-page: 384204 issue: 38 year: 2008 ident: CR75 article-title: Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects publication-title: Journal of Physics Condensed Matter – volume: 12 start-page: 2032 issue: 4 year: 2012 end-page: 2036 ident: CR81 article-title: Quantumenhanced tunable second-order optical nonlinearity in bilayer graphene publication-title: Nano Letters – volume: 101 start-page: 157402 issue: 15 year: 2008 ident: CR90 article-title: Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy publication-title: Physical Review Letters – volume: 82 start-page: 3045 issue: 4 year: 2010 end-page: 3067 ident: CR63 article-title: Colloquium: topological insulators publication-title: Reviews of Modern Physics – volume: 4 start-page: 532 issue: 7 year: 2008 end-page: 535 ident: CR30 article-title: Dirac charge dynamics in graphene by infrared spectroscopy publication-title: Nature Physics – volume: 82 start-page: 205430 issue: 20 year: 2010 ident: CR36 article-title: Wave-packet dynamics and valley filter in strained graphene publication-title: Physical Review B: Condensed Matter and Materials Physics – volume: 19 start-page: 465401 issue: 46 year: 2008 ident: CR87 article-title: Strong photon-mixing of terahertz waves in semiconductor quantum wells induced by Rashba spinorbit coupling publication-title: Nanotechnology – volume: 96 start-page: 256802 issue: 25 year: 2006 ident: CR28 article-title: Unusual microwave response of dirac quasiparticles in graphene publication-title: Physical Review Letters – volume: 53 start-page: 157 issue: 3–4 year: 1929 end-page: 165 ident: CR5 article-title: Die reflexion von elektronen an einem potentialsprung nach der relativistischen dynamik von Dirac publication-title: Zeitschrift fur Physik – volume: 73 start-page: 125411 issue: 12 year: 2006 ident: CR23 article-title: Electronic properties of disordered two-dimensional carbon publication-title: Physical Review B: Condensed Matter and Materials Physics – volume: 91 start-page: 203103 issue: 20 year: 2007 ident: CR91 article-title: Hot electron relaxation and phonon dynamics in graphene publication-title: Applied Physics Letters – volume: 82 start-page: 201402 issue: 20 year: 2010 ident: CR82 article-title: Nonlinear optical response of graphene in time domain publication-title: Physical Review B – volume: 79 start-page: 27002 issue: 2 year: 2007 ident: CR74 article-title: Non-linear electromagnetic response of graphene publication-title: Europhysics Letters – volume: 50 start-page: 7526 issue: 11 year: 1994 end-page: 7552 ident: CR85 article-title: Integer quantum Hall transition: an alternative approach and exact results publication-title: Physical Review B: Condensed Matter and Materials Physics – volume: 5 start-page: 222 issue: 3 year: 2009 end-page: 226 ident: CR6 article-title: Quantum interference and Klein tunnelling in graphene heterojunctions publication-title: Nature Physics – volume: 10 start-page: 715 issue: 2 year: 2010 end-page: 718 ident: CR16 article-title: Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature publication-title: Nano Letters – volume: 108 start-page: 155501 issue: 15 year: 2012 ident: CR65 article-title: Silicene: compelling experimental evidence for graphenelike two-dimensional silicon publication-title: Physical Review Letters – volume: 97 start-page: 093101 issue: 9 year: 2010 ident: CR76 article-title: Millimeter-wave generation via frequency multiplication in graphene publication-title: Applied Physics Letters – volume: 75 start-page: 233407 issue: 23 year: 2007 ident: CR21 article-title: Minimal conductivity of graphene: nonuniversal values from the Kubo formula publication-title: Physical Review B: Condensed Matter and Materials Physics – volume: 9 start-page: 103 issue: 2 year: 2012 end-page: 108 ident: CR105 article-title: Photocurrent measurements of supercollision cooling in graphene publication-title: Nature Physics – volume: 97 start-page: 036802 year: 2006 ident: CR53 article-title: Electron localization properties in graphene publication-title: Physical Review Letters – volume: 86 start-page: 075443 issue: 7 year: 2012 ident: CR44 article-title: Enhanced Andreev reflection in gapped graphene publication-title: Physical Review B: Condensed Matter and Materials Physics – volume: 5 start-page: 554 issue: 9 year: 2011 end-page: 560 ident: CR101 article-title: Giant broadband nonlinear optical absorption response in dispersed graphene single sheets publication-title: Nature photonics – volume: 2 start-page: 31 issue: 1 year: 2010 end-page: 38 ident: CR9 article-title: Zero-gap materials for future spintronics, electronics and optics publication-title: NPG Asia Materials – volume: 83 start-page: 407 issue: 2 year: 2011 end-page: 439 ident: CR59 article-title: Electronic transport in twodimensional graphene publication-title: Reviews of Modern Physics – volume: 143 start-page: 110 issue: -2 year: 2007 end-page: 115 ident: CR95 article-title: Electrons in bilayer graphene publication-title: Solid State Communications – volume: 107 start-page: 156801 issue: 15 year: 2011 ident: CR42 article-title: Pseudospin in optical and transport properties of graphene publication-title: Physical Review Letters – volume: 374 start-page: 1266 issue: 10 year: 2010 end-page: 1269 ident: CR92 article-title: Hot-electron transport in graphene driven by intense terahertz fields. Physics Letters publication-title: [Part A] – volume: 73 start-page: 045432 issue: 4 year: 2006 ident: CR47 article-title: Peculiar width dependence of the electronic properties of carbon nanoribbons publication-title: Physical Review B: Condensed Matter and Materials Physics – volume: 103 start-page: 207401 issue: 20 year: 2009 ident: CR8 article-title: Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime publication-title: Physical Review Letters – volume: 77 start-page: 115449 issue: 11 year: 2008 ident: CR102 article-title: Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene publication-title: Physical Review B: Condensed Matter and Materials Physics – volume: 8 start-page: 902 issue: 3 year: 2008 end-page: 907 ident: CR56 article-title: Superior thermal conductivity of single-layer graphene publication-title: Nano Letters – volume: 96 start-page: 023107 issue: 2 year: 2010 ident: CR96 article-title: Vertical absorption edge and temperature dependent resistivity in semihydrogenated graphene publication-title: Applied Physics Letters – volume: 91 start-page: 203116 issue: 20 year: 2007 ident: CR54 article-title: Giant thermoelectric effect in graphene publication-title: Applied Physics Letters – volume: 6 start-page: 183 issue: 3 year: 2007 end-page: 191 ident: CR15 article-title: The rise of graphene publication-title: Nature Materials – volume: 50 start-page: 910 issue: 3 year: 2002 end-page: 928 ident: CR72 article-title: Terahertz technology publication-title: IEEE Transactions on Microwave Theory and Techniques – volume: 3 start-page: 206 issue: 4 year: 2008 end-page: 209 ident: CR14 article-title: Intrinsic and extrinsic performance limits of graphene devices on SiO publication-title: Nature Nanotechnology – volume: 438 start-page: 201 issue: 7065 year: 2005 end-page: 204 ident: CR18 article-title: Experimental observation of the quantum Hall effect and Berry’s phase in graphene publication-title: Nature – volume: 5 start-page: 487 issue: 7 year: 2010 end-page: 496 ident: CR17 article-title: Graphene transistors publication-title: Nature Nanotechnology – volume: 76 start-page: 153410 issue: 15 year: 2007 ident: CR26 article-title: Optical far-infrared properties of a graphene monolayer and multilayer publication-title: Physical Review B: Condensed Matter and Materials Physics – volume: 95 start-page: 072101 issue: 7 year: 2009 ident: CR77 article-title: Strong nonlinear optical response of graphene in the terahertz regime publication-title: Applied Physics Letters – volume: 102 start-page: 166808 issue: 16 year: 2009 ident: CR55 article-title: Anomalous thermoelectric transport of Dirac particles in graphene publication-title: Physical Review Letters – volume: 17 start-page: 1015 issue: 19 year: 1966 end-page: 1017 ident: CR88 article-title: Theory of optical mixing by mobile carriers in semiconductors publication-title: Physical Review Letters – volume: 4 start-page: 144 issue: 2 year: 2008 end-page: 148 ident: CR25 article-title: Observation of electron-hole puddles in graphene using a scanning single-electron transistor publication-title: Nature Physics – volume: 21 start-page: 2430 issue: 23 year: 2009 end-page: 2435 ident: CR79 article-title: Broadband nonlinear optical response of graphene dispersions publication-title: Advanced Materials – volume: 306 start-page: 666 issue: 5696 year: 2004 end-page: 669 ident: CR2 article-title: Electric field effect in atomically thin carbon films publication-title: Science – volume: 97 start-page: 016801 issue: 1 year: 2006 ident: CR51 article-title: Strong suppression of weak localization in graphene publication-title: Physical Review Letters – volume: 81 start-page: 109 year: 2009 end-page: 162 ident: CR61 article-title: The electronic properties of graphene publication-title: Reviews of Modern Physics – volume: 73 start-page: 045432 issue: 4 year: 2006 ident: 428_CR47 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.73.045432 – volume: 79 start-page: 27002 issue: 2 year: 2007 ident: 428_CR74 publication-title: Europhysics Letters doi: 10.1209/0295-5075/79/27002 – volume: 471 start-page: 617 issue: 7340 year: 2011 ident: 428_CR86 publication-title: Nature doi: 10.1038/nature09866 – volume: 108 start-page: 245501 issue: 24 year: 2012 ident: 428_CR64 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.108.245501 – volume: 107 start-page: 126402 issue: 12 year: 2011 ident: 428_CR99 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.107.126402 – volume: 39 start-page: 13020 issue: 17 year: 1989 ident: 428_CR107 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.39.13020 – volume: 5 start-page: 554 issue: 9 year: 2011 ident: 428_CR101 publication-title: Nature photonics doi: 10.1038/nphoton.2011.177 – volume: 8 start-page: 2920 issue: 9 year: 2008 ident: 428_CR50 publication-title: Nano Letters doi: 10.1021/nl801752r – volume: 45 start-page: 395303 issue: 39 year: 2012 ident: 428_CR71 publication-title: Journal of Physics. D, Applied Physics doi: 10.1088/0022-3727/45/39/395303 – volume: 107 start-page: 156801 issue: 15 year: 2011 ident: 428_CR42 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.107.156801 – volume: 86 start-page: 075443 issue: 7 year: 2012 ident: 428_CR44 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.86.075443 – volume: 320 start-page: 1308 issue: 5881 year: 2008 ident: 428_CR29 publication-title: Science doi: 10.1126/science.1156965 – volume: 21 start-page: 2430 issue: 23 year: 2009 ident: 428_CR79 publication-title: Advanced Materials doi: 10.1002/adma.200803616 – volume: 19 start-page: 465401 issue: 46 year: 2008 ident: 428_CR87 publication-title: Nanotechnology doi: 10.1088/0957-4484/19/46/465401 – volume: 96 start-page: 023107 issue: 2 year: 2010 ident: 428_CR96 publication-title: Applied Physics Letters doi: 10.1063/1.3292026 – volume: 53 start-page: 157 issue: 3–4 year: 1929 ident: 428_CR5 publication-title: Zeitschrift fur Physik doi: 10.1007/BF01339716 – volume: 9 start-page: 103 issue: 2 year: 2012 ident: 428_CR105 publication-title: Nature Physics doi: 10.1038/nphys2493 – volume: 97 start-page: 036802 year: 2006 ident: 428_CR53 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.97.036802 – volume: 3 start-page: 172 issue: 3 year: 2007 ident: 428_CR32 publication-title: Nature Physics doi: 10.1038/nphys547 – volume: 8 start-page: 158 issue: 2 year: 2012 ident: 428_CR58 publication-title: Nature Physics doi: 10.1038/nphys2208 – volume: 438 start-page: 201 issue: 7065 year: 2005 ident: 428_CR18 publication-title: Nature doi: 10.1038/nature04235 – volume: 82 start-page: 205430 issue: 20 year: 2010 ident: 428_CR36 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.82.205430 – volume: 143 start-page: 110 issue: -2 year: 2007 ident: 428_CR95 publication-title: Solid State Communications doi: 10.1016/j.ssc.2007.03.054 – volume: 95 start-page: 146801 issue: 14 year: 2005 ident: 428_CR19 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.95.146801 – volume: 21 start-page: 045301 issue: 4 year: 2009 ident: 428_CR35 publication-title: Journal of Physics Condensed Matter doi: 10.1088/0953-8984/21/4/045301 – volume: 12 start-page: 2032 issue: 4 year: 2012 ident: 428_CR81 publication-title: Nano Letters doi: 10.1021/nl300084j – volume: 7 start-page: 4414 issue: 5 year: 2013 ident: 428_CR66 publication-title: ACS Nano doi: 10.1021/nn4009406 – volume: 77 start-page: 241402 issue: 24 year: 2008 ident: 428_CR27 publication-title: Physical Review B doi: 10.1103/PhysRevB.77.241402 – volume: 91 start-page: 203116 issue: 20 year: 2007 ident: 428_CR54 publication-title: Applied Physics Letters doi: 10.1063/1.2814080 – volume: 73 start-page: 245403 issue: 24 year: 2006 ident: 428_CR94 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.73.245403 – volume: 97 start-page: 093101 issue: 9 year: 2010 ident: 428_CR76 publication-title: Applied Physics Letters doi: 10.1063/1.3483872 – volume: 29 start-page: 274 issue: 3 year: 2012 ident: 428_CR68 publication-title: Journal of the Optical Society of America. B, Optical Physics doi: 10.1364/JOSAB.29.000274 – volume: 5 start-page: 554 issue: 9 year: 2011 ident: 428_CR78 publication-title: Nature Photonics doi: 10.1038/nphoton.2011.177 – volume: 98 start-page: 206805 issue: 20 year: 2007 ident: 428_CR46 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.98.206805 – volume: 91 start-page: 203103 issue: 20 year: 2007 ident: 428_CR91 publication-title: Applied Physics Letters doi: 10.1063/1.2809413 – volume: 73 start-page: 235411 issue: 23 year: 2006 ident: 428_CR45 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.73.235411 – volume: 96 start-page: 086805 issue: 8 year: 2006 ident: 428_CR93 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.96.086805 – volume: 17 start-page: 1015 issue: 19 year: 1966 ident: 428_CR88 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.17.1015 – volume: 66 start-page: 081105 issue: 8 year: 2002 ident: 428_CR84 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.66.081105 – volume: 31 start-page: 482 issue: 7 year: 1963 ident: 428_CR97 publication-title: American Journal of Physics doi: 10.1119/1.1969607 – volume: 84 start-page: 195425 issue: 19 year: 2011 ident: 428_CR98 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.84.195425 – volume: 83 start-page: 407 issue: 2 year: 2011 ident: 428_CR59 publication-title: Reviews of Modern Physics doi: 10.1103/RevModPhys.83.407 – volume: 83 start-page: 115422 issue: 11 year: 2011 ident: 428_CR40 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.83.115422 – volume: 6 start-page: 183 issue: 3 year: 2007 ident: 428_CR15 publication-title: Nature Materials doi: 10.1038/nmat1849 – volume: 97 start-page: 243110 issue: 24 year: 2010 ident: 428_CR69 publication-title: Applied Physics Letters doi: 10.1063/1.3527934 – volume: 2 start-page: 31 issue: 1 year: 2010 ident: 428_CR9 publication-title: NPG Asia Materials doi: 10.1038/asiamat.2010.7 – volume: 96 start-page: 256802 issue: 25 year: 2006 ident: 428_CR28 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.96.256802 – volume: 102 start-page: 247204 issue: 24 year: 2009 ident: 428_CR41 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.102.247204 – volume: 4 start-page: 144 issue: 2 year: 2008 ident: 428_CR25 publication-title: Nature Physics doi: 10.1038/nphys781 – volume: 106 start-page: 136806 issue: 13 year: 2011 ident: 428_CR33 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.106.136806 – volume: 150 start-page: 1770 issue: 37–38 year: 2010 ident: 428_CR89 publication-title: Solid State Communications doi: 10.1016/j.ssc.2010.07.016 – volume: 3 start-page: 021014 issue: 2 year: 2013 ident: 428_CR80 publication-title: Physical Review X doi: 10.1103/PhysRevX.3.021014 – volume: 75 start-page: 233407 issue: 23 year: 2007 ident: 428_CR21 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.75.233407 – volume: 100 start-page: 236801 issue: 23 year: 2008 ident: 428_CR34 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.100.236801 – volume: 85 start-page: 155415 issue: 15 year: 2012 ident: 428_CR38 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.85.155415 – volume: 95 start-page: 226801 issue: 22 year: 2005 ident: 428_CR57 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.95.226801 – volume: 97 start-page: 026402 issue: 2 year: 2006 ident: 428_CR12 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.97.026402 – volume: 80 start-page: 1337 issue: 4 year: 2008 ident: 428_CR62 publication-title: Reviews of Modern Physics doi: 10.1103/RevModPhys.80.1337 – volume: 102 start-page: 026807 issue: 2 year: 2009 ident: 428_CR7 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.102.026807 – volume: 81 start-page: 109 year: 2009 ident: 428_CR61 publication-title: Reviews of Modern Physics doi: 10.1103/RevModPhys.81.109 – volume: 108 start-page: 155501 issue: 15 year: 2012 ident: 428_CR65 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.108.155501 – volume: 97 start-page: 016801 issue: 1 year: 2006 ident: 428_CR51 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.97.016801 – volume: 99 start-page: 066802 issue: 6 year: 2007 ident: 428_CR24 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.99.066802 – volume: 438 start-page: 197 issue: 7065 year: 2005 ident: 428_CR1 publication-title: Nature doi: 10.1038/nature04233 – volume: 109 start-page: 106602 issue: 10 year: 2012 ident: 428_CR103 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.109.106602 – volume: 2 start-page: 620 issue: 9 year: 2006 ident: 428_CR4 publication-title: Nature Physics doi: 10.1038/nphys384 – volume: 111 start-page: 136804 issue: 13 year: 2013 ident: 428_CR67 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.111.136804 – volume: 9 start-page: 109 issue: 2 year: 2012 ident: 428_CR104 publication-title: Nature Physics doi: 10.1038/nphys2494 – volume: 4 start-page: 611 issue: 9 year: 2010 ident: 428_CR60 publication-title: Nature Photonics doi: 10.1038/nphoton.2010.186 – volume: 77 start-page: 041407 issue: 4 year: 2008 ident: 428_CR43 publication-title: Physical Review B doi: 10.1103/PhysRevB.77.041407 – volume: 98 start-page: 042107 issue: 4 year: 2011 ident: 428_CR70 publication-title: Applied Physics Letters doi: 10.1063/1.3549201 – volume: 146 start-page: 351 issue: 9–10 year: 2008 ident: 428_CR13 publication-title: Solid State Communications doi: 10.1016/j.ssc.2008.02.024 – volume: 21 start-page: 2430 issue: 23 year: 2009 ident: 428_CR100 publication-title: Advanced Materials doi: 10.1002/adma.200803616 – volume: 3 start-page: 206 issue: 4 year: 2008 ident: 428_CR14 publication-title: Nature Nanotechnology doi: 10.1038/nnano.2008.58 – volume: 103 start-page: 103711 issue: 10 year: 2008 ident: 428_CR10 publication-title: Journal of Applied Physics doi: 10.1063/1.2930875 – volume: 20 start-page: 384204 issue: 38 year: 2008 ident: 428_CR75 publication-title: Journal of Physics Condensed Matter doi: 10.1088/0953-8984/20/38/384204 – volume: 105 start-page: 097401 issue: 9 year: 2010 ident: 428_CR73 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.105.097401 – volume: 73 start-page: 125411 issue: 12 year: 2006 ident: 428_CR23 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.73.125411 – volume: 50 start-page: 7526 issue: 11 year: 1994 ident: 428_CR85 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.50.7526 – volume: 100 start-page: 046403 issue: 4 year: 2008 ident: 428_CR22 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.100.046403 – volume: 24 start-page: 2243 issue: 21 year: 2010 ident: 428_CR106 publication-title: Modern Physics Letters B doi: 10.1142/S0217984910024626 – volume: 1 start-page: 497 issue: 6 year: 2008 ident: 428_CR11 publication-title: Nano Research doi: 10.1007/s12274-008-8053-0 – volume: 5 start-page: 487 issue: 7 year: 2010 ident: 428_CR17 publication-title: Nature Nanotechnology doi: 10.1038/nnano.2010.89 – volume: 101 start-page: 157402 issue: 15 year: 2008 ident: 428_CR90 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.101.157402 – volume: 71 start-page: 622 issue: 9 year: 1947 ident: 428_CR3 publication-title: Physical Review doi: 10.1103/PhysRev.71.622 – volume: 86 start-page: 115431 issue: 11 year: 2012 ident: 428_CR37 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.86.115431 – volume: 5 start-page: 222 issue: 3 year: 2009 ident: 428_CR6 publication-title: Nature Physics doi: 10.1038/nphys1198 – volume: 102 start-page: 166808 issue: 16 year: 2009 ident: 428_CR55 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.102.166808 – volume: 50 start-page: 910 issue: 3 year: 2002 ident: 428_CR72 publication-title: IEEE Transactions on Microwave Theory and Techniques doi: 10.1109/22.989974 – volume: 4 start-page: 532 issue: 7 year: 2008 ident: 428_CR30 publication-title: Nature Physics doi: 10.1038/nphys989 – volume: 82 start-page: 201402 issue: 20 year: 2010 ident: 428_CR82 publication-title: Physical Review B doi: 10.1103/PhysRevB.82.201402 – volume: 77 start-page: 115449 issue: 11 year: 2008 ident: 428_CR102 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.77.115449 – volume: 89 start-page: 266603 issue: 26 year: 2002 ident: 428_CR52 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.89.266603 – volume: 374 start-page: 1266 issue: 10 year: 2010 ident: 428_CR92 publication-title: [Part A] – volume: 14 start-page: 063028 issue: 6 year: 2012 ident: 428_CR39 publication-title: New Journal of Physics doi: 10.1088/1367-2630/14/6/063028 – volume: 315 start-page: 1379 issue: 5817 year: 2007 ident: 428_CR20 publication-title: Science doi: 10.1126/science.1137201 – volume: 4 start-page: 213 issue: 3 year: 2008 ident: 428_CR48 publication-title: Nature Physics doi: 10.1038/nphys890 – volume: 103 start-page: 207401 issue: 20 year: 2009 ident: 428_CR8 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.103.207401 – volume: 10 start-page: 715 issue: 2 year: 2010 ident: 428_CR16 publication-title: Nano Letters doi: 10.1021/nl9039636 – volume: 100 start-page: 117401 issue: 11 year: 2008 ident: 428_CR31 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.100.117401 – volume: 82 start-page: 3045 issue: 4 year: 2010 ident: 428_CR63 publication-title: Reviews of Modern Physics doi: 10.1103/RevModPhys.82.3045 – volume: 101 start-page: 126804 issue: 12 year: 2008 ident: 428_CR49 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.101.126804 – volume: 8 start-page: 902 issue: 3 year: 2008 ident: 428_CR56 publication-title: Nano Letters doi: 10.1021/nl0731872 – volume: 56 start-page: 340 issue: 4 year: 1939 ident: 428_CR83 publication-title: Physical Review doi: 10.1103/PhysRev.56.340 – volume: 95 start-page: 072101 issue: 7 year: 2009 ident: 428_CR77 publication-title: Applied Physics Letters doi: 10.1063/1.3205115 – volume: 76 start-page: 153410 issue: 15 year: 2007 ident: 428_CR26 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.76.153410 – volume: 306 start-page: 666 issue: 5696 year: 2004 ident: 428_CR2 publication-title: Science doi: 10.1126/science.1102896 |
SSID | ssib031263387 ssib044084465 ssib013581866 ssib051630257 ssj0002710203 ssib020093027 ssib058688231 |
Score | 2.185756 |
SecondaryResourceType | review_article |
Snippet | In this review, we discuss our recent theoretical work on the nonlinear optical response of graphene and its sister structure in terahertz (THz) and... In this review, we discuss our recent theoretical work on the nonlinear optical response of graphene and its sister structure in terahertz (THz) and... |
SourceID | crossref springer higheredpress chongqing |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3 |
SubjectTerms | Biomedical Engineering and Bioengineering Electrical Engineering Engineering graphene nonlinear effect photomixing Physics Review Article terahertz (THz) response 三阶非线性 低频率 光学非线性 太赫兹 石墨 超晶格结构 近红外 非线性光学响应 |
Title | Nonlinear optical response of graphene in terahertz and near-infrared frequency regime |
URI | http://lib.cqvip.com/qk/71244X/201501/664275921.html https://journal.hep.com.cn/foe/EN/10.1007/s12200-014-0428-0 https://link.springer.com/article/10.1007/s12200-014-0428-0 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD54YUERL6Oy44087JMSaNP0Mo_D4AVFn1Tcp9CkiQra0c7sw-6Dv91z0nZGWRnwJZCSlDYnly_Jd74D8EsaYcJeXHCcCQsujY55HuiEW6u11UGhtfevuLxKzm7k-V181_hxj1q2e3sl6WfqqbObEOQFHRJxgmSV52Exxq07devBVHI8JEGvbIpR6PSf7ubafBSKBLdlkzxFXCbRsDYfI0BBHJBODmoErcE-wrJAOMJFGvfa29Gvvoo0Gh6G5f0r_sGntW7lwRM3bOEJrv9dvPr17GQdVhsgyvp1z9mAOVt2YK0BpawZ8qMOLH9QLOzAD88YNaNNuL2qRTbyig1f_IE4q2q-rWVDx7wQNs6j7LFk5OSM3zT-x_KyYFSFY7-uiPrOXFVzuf8yChHxbLfg-uT4enDGmyAN3ESJHPPMBRoxFHZI3JzIQqLhrTRRlPesc1FKSshFkBqnpTaJczIPjYtkqnWGULIw0TYslMPS_gTmEF2mIkdAkzmJsCoPpM2yyLkw1bG0tgu7k5ZVL7UWh0pw_4QWEWEXgratlWnkzSnKxpOaCjOTqRSaSpGpVNCFw0mV9n0zCoefDKgcCUxQuPJZdY5aI6tmaphReudbpXdhCbFbXNPh9mBhXP2x-4iPxvoAFvunvy-OD_y4oDQZYHr5Rk9uRP8dLicAww |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0VqgpQ1Y-FqltK8YETldXYcT72WK2KtgX2tCBuVuzYBQmyNLsc6K9nxkmWUtBKHC3ZkZWxPc-eN28A9pSVVgySkuNJWHJlTcKLyKTcOWOciUpjQn7F8TgdnahfZ8lZKxZNuTD_xe-_zYSUlPssiC5BYsor8FLhRZnYe8N02C0dQTJe-T0yoTd_ish17VjIFC9jizbVWSapsK6dICxB758tnmcked5QV1kiCOEySwZdTPSpWZEyw_m0-v0H_c0DD_f6PNA1XBlorY_CrcGLHbyDNy38ZN-b9fIeXriqB29bKMrajT7rwcY_OoU9eBV4ona2CafjRlqjqNn0OjyDs7ph2To29SzIX-PpyS4qRqnNOKf5X1ZUJaMhHFdzTYR35uuGwX3LqDDElduCycGPyXDE29IM3MapmvPcRwaREy5DvJKoEi2SOGXjuBg47-OM9I_LKLPeKGNT71UhrI9VZkyOALK08QdYraaV-wjMI6bMZIEwJvcKwVQRKZfnsfciM4lyrg_biz-rrxsFDp3irQktIkUfou5fa9uKmlNtjUt9L8dMptJoKk2m0lEf9hdDuu8t6SweGFB7kpWgIuXLxnztjKzbA2FJ70_P6r0La6PJ8ZE--jk-3IZ1RG9JQ4j7DKvz-sbtIEKamy9hb9wBnyD7Og |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BEYgK8VioupSHD5xAVhPHeewRLazKa8WhoN6s-EUrleySTQ_tr2fGiXepQCtxtGRHiWdif_Z88w3AK2mESSe55bgSWi6Nznmd6II7p7XTidU65Fd8mRdH3-THk_xkqHO6imz3GJLscxpIpanpDpfWH24S34SgjOiUSBQksXwTbuFBJcRpp8U0OlRK4l7VBq9QJIDidLGdpaLAI9q6TdWXSUAstnMEK4gJyvWljaD9OFRbFghNuCjzSYyU_uutSK_hdNH8-IVfc23fu3caSBzOBrLrX0HYsLfNHsL9AZSyt70XPYIbrhnBgwGgsuH3X41g9w_1whHcDuxRs3oM3-e94EbdssUyXI6ztufeOrbwLIhi45rKzhpGCc_4Tt0VqxvLaAhHH2-JBs982_O6LxmVi_jpnsDx7P3x9IgPBRu4yQrZ8conGvEUOiceVKSV6AROmiyrJ877rCRVZJuUxmupTeG9rFPjM1lqXSGstCbbg51m0bh9YB6RZilqBDeVlwix6kS6qsq8T0udS-fGcLCeWbXsdTlUgWcptIhIx5DEuVZmkDqnihvnaiPSTKZSaCpFplLJGF6vh8TnbemcXjOg8iQ2QaXLt415E42shmViS--n_9X7Jdz5-m6mPn-YfzqAuwjp8p4l9wx2uvbCPUfY1OkX4df4DdURA5A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+optical+response+of+graphene+in+terahertz+and+near-infrared+frequency+regime&rft.jtitle=Frontiers+of+Optoelectronics+%28Online%29&rft.au=Ang%2C+Yee+Sin&rft.au=Chen%2C+Qinjun&rft.au=Zhang%2C+Chao&rft.date=2015-03-01&rft.issn=2095-2759&rft.eissn=2095-2767&rft.volume=8&rft.issue=1&rft.spage=3&rft.epage=26&rft_id=info:doi/10.1007%2Fs12200-014-0428-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12200_014_0428_0 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71244X%2F71244X.jpg |