Nonlinear optical response of graphene in terahertz and near-infrared frequency regime

In this review, we discuss our recent theoretical work on the nonlinear optical response of graphene and its sister structure in terahertz (THz) and near-infrared frequency regime. Due to Dirac-like linear energymomentum dispersion, the third-order nonlinear current in graphene is much stronger than...

Full description

Saved in:
Bibliographic Details
Published inFrontiers of Optoelectronics (Online) Vol. 8; no. 1; pp. 3 - 26
Main Authors ANG, Yee Sin, CHEN, Qinjun, ZHANG, Chao
Format Journal Article
LanguageEnglish
Published Heidelberg Higher Education Press 01.03.2015
Subjects
Online AccessGet full text
ISSN2095-2759
2095-2767
DOI10.1007/s12200-014-0428-0

Cover

Loading…
Abstract In this review, we discuss our recent theoretical work on the nonlinear optical response of graphene and its sister structure in terahertz (THz) and near-infrared frequency regime. Due to Dirac-like linear energymomentum dispersion, the third-order nonlinear current in graphene is much stronger than that in conventional semiconductors. The nonlinear current grows rapidly with increasing temperature and decreasing frequency. The third-order nonlinear current can be as strong as the linear current under moderate electric field strength of 104 V/cm. In bilayer graphene (BLG) with low energy trigonal warping effect, not only the optical response is strongly nonlinear, the optical nonlinearity is well-preserved at elevated temperature. In the presence ofa bandgap (such as semihydrogenated graphene (SHG)), there exists two well separated linear response and nonlinear response peaks. This suggests that SHG can have a unique potential as a two-color nonlinear material in the THz frequency regime where the relative intensity of the two colors can be tuned with the electric field. In a graphene superlattice structure of Kronig-Penney type periodic potential, the Dirac cone is elliptically deformed. We found that not only the optical nonlinearity is preserved in such a system, the total optical response is further enhanced by a factor proportional to the band anisotropy. This suggests that graphene superlattice is another potential candidate in THz device application.
AbstractList In this review, we discuss our recent theoretical work on the nonlinear optical response of graphene and its sister structure in terahertz (THz) and near-infrared frequency regime. Due to Dirac-like linear energy-momentum dispersion, the third-order nonlinear current in graphene is much stronger than that in conventional semiconductors. The nonlinear current grows rapidly with increasing temperature and decreasing frequency. The third-order nonlinear current can be as strong as the linear current under moderate electric field strength of 10 4 V/cm. In bilayer graphene (BLG) with low energy trigonal warping effect, not only the optical response is strongly nonlinear, the optical nonlinearity is well-preserved at elevated temperature. In the presence of a bandgap (such as semihydrogenated graphene (SHG)), there exists two well separated linear response and nonlinear response peaks. This suggests that SHG can have a unique potential as a two-color nonlinear material in the THz frequency regime where the relative intensity of the two colors can be tuned with the electric field. In a graphene superlattice structure of Kronig-Penney type periodic potential, the Dirac cone is elliptically deformed. We found that not only the optical nonlinearity is preserved in such a system, the total optical response is further enhanced by a factor proportional to the band anisotropy. This suggests that graphene superlattice is another potential candidate in THz device application.
In this review, we discuss our recent theoretical work on the nonlinear optical response of graphene and its sister structure in terahertz (THz) and near-infrared frequency regime. Due to Dirac-like linear energy-momentum dispersion, the third-order nonlinear current in graphene is much stronger than that in conventional semiconductors. The nonlinear current grows rapidly with increasing temperature and decreasing frequency. The third-order nonlinear current can be as strong as the linear current under moderate electric field strength of 10 4 V/cm. In bilayer graphene (BLG) with low energy trigonal warping effect, not only the optical response is strongly nonlinear, the optical nonlinearity is well-preserved at elevated temperature. In the presence of a bandgap (such as semihydrogenated graphene (SHG)), there exists two well separated linear response and nonlinear response peaks. This suggests that SHG can have a unique potential as a two-color nonlinear material in the THz frequency regime where the relative intensity of the two colors can be tuned with the electric field. In a graphene superlattice structure of Kronig-Penney type periodic potential, the Dirac cone is elliptically deformed. We found that not only the optical nonlinearity is preserved in such a system, the total optical response is further enhanced by a factor proportional to the band anisotropy. This suggests that graphene superlattice is another potential candidate in THz device application.
In this review, we discuss our recent theoretical work on the nonlinear optical response of graphene and its sister structure in terahertz (THz) and near-infrared frequency regime. Due to Dirac-like linear energymomentum dispersion, the third-order nonlinear current in graphene is much stronger than that in conventional semiconductors. The nonlinear current grows rapidly with increasing temperature and decreasing frequency. The third-order nonlinear current can be as strong as the linear current under moderate electric field strength of 104 V/cm. In bilayer graphene (BLG) with low energy trigonal warping effect, not only the optical response is strongly nonlinear, the optical nonlinearity is well-preserved at elevated temperature. In the presence ofa bandgap (such as semihydrogenated graphene (SHG)), there exists two well separated linear response and nonlinear response peaks. This suggests that SHG can have a unique potential as a two-color nonlinear material in the THz frequency regime where the relative intensity of the two colors can be tuned with the electric field. In a graphene superlattice structure of Kronig-Penney type periodic potential, the Dirac cone is elliptically deformed. We found that not only the optical nonlinearity is preserved in such a system, the total optical response is further enhanced by a factor proportional to the band anisotropy. This suggests that graphene superlattice is another potential candidate in THz device application.
Author Yee Sin ANG Qinjun CHEN Chao ZHANG
AuthorAffiliation School of Physics, University of Wollongong, New South Wales 2522, Australia Institute of Superconducting and Electronic Materials, University of Wollongong, New South Wales 2522, Australia
Author_xml – sequence: 1
  givenname: Yee Sin
  surname: ANG
  fullname: ANG, Yee Sin
  organization: School of Physics, University of Wollongong, New South Wales 2522, Australia
– sequence: 2
  givenname: Qinjun
  surname: CHEN
  fullname: CHEN, Qinjun
  organization: Institute of Superconducting and Electronic Materials, University of Wollongong, New South Wales 2522, Australia
– sequence: 3
  givenname: Chao
  surname: ZHANG
  fullname: ZHANG, Chao
  email: czhang@uow.edu.au
  organization: Institute of Superconducting and Electronic Materials, University of Wollongong, New South Wales 2522, Australia
BookMark eNp9kT1PxDAMhiMEEnDwA9gi9kK-mrYjQnxJCBbEGqWp0wu6S4pTBvj15HQnBoab7OXxaz8-JYcxRSDkgrMrzlhznbkQjFWMq4op0VbsgJwI1tWVaHRz-NfX3TE5zzn0THKhpWybE_L-kuIqRLBI0zQHZ1cUIU8pZqDJ0xHttIQINEQ6A9ol4PxDbRzoBqlC9GgRBuoRPr8guu9Cj2ENZ-TI21WG811dkLf7u7fbx-r59eHp9ua5clKruWo962stwA6irtWgeFeDclLaDryXDWO6G1jjfK96p71XljsvVdP3ba3rwckF4duxDlPOCN5MGNYWvw1nZqPGbNWYosZs1BhWmOYf48Js55DijDas9pJiS-aSEkdA85G-MJb79kLtFlqGsdiDYSp-s_FY8gLgfvRyt-kyxfGzRP6dp7Xa_FNw-QsEdJkm
CitedBy_id crossref_primary_10_3390_nano12122097
crossref_primary_10_1016_j_optcom_2020_125319
crossref_primary_10_1002_jbm_b_34248
crossref_primary_10_1088_1361_6463_aaf0f7
crossref_primary_10_1098_rspa_2017_0433
crossref_primary_10_7498_aps_64_237801
crossref_primary_10_1088_1402_4896_ab1ac6
crossref_primary_10_1088_1361_648X_ab8e87
crossref_primary_10_3390_nano9020165
crossref_primary_10_1364_JOSAB_424447
crossref_primary_10_1038_s41467_018_03413_7
crossref_primary_10_1063_1_5006277
crossref_primary_10_1103_PhysRevB_108_035414
crossref_primary_10_1088_1674_1056_ab928e
crossref_primary_10_1002_inf2_12168
crossref_primary_10_1103_PhysRevB_93_235430
crossref_primary_10_1007_s11664_021_08904_w
crossref_primary_10_1016_j_optcom_2020_125337
crossref_primary_10_1364_JOSAB_403512
crossref_primary_10_1109_JSTQE_2016_2564402
Cites_doi 10.1103/PhysRevB.73.045432
10.1209/0295-5075/79/27002
10.1038/nature09866
10.1103/PhysRevLett.108.245501
10.1103/PhysRevLett.107.126402
10.1103/PhysRevB.39.13020
10.1038/nphoton.2011.177
10.1021/nl801752r
10.1088/0022-3727/45/39/395303
10.1103/PhysRevLett.107.156801
10.1103/PhysRevB.86.075443
10.1126/science.1156965
10.1002/adma.200803616
10.1088/0957-4484/19/46/465401
10.1063/1.3292026
10.1007/BF01339716
10.1038/nphys2493
10.1103/PhysRevLett.97.036802
10.1038/nphys547
10.1038/nphys2208
10.1038/nature04235
10.1103/PhysRevB.82.205430
10.1016/j.ssc.2007.03.054
10.1103/PhysRevLett.95.146801
10.1088/0953-8984/21/4/045301
10.1021/nl300084j
10.1021/nn4009406
10.1103/PhysRevB.77.241402
10.1063/1.2814080
10.1103/PhysRevB.73.245403
10.1063/1.3483872
10.1364/JOSAB.29.000274
10.1103/PhysRevLett.98.206805
10.1063/1.2809413
10.1103/PhysRevB.73.235411
10.1103/PhysRevLett.96.086805
10.1103/PhysRevLett.17.1015
10.1103/PhysRevB.66.081105
10.1119/1.1969607
10.1103/PhysRevB.84.195425
10.1103/RevModPhys.83.407
10.1103/PhysRevB.83.115422
10.1038/nmat1849
10.1063/1.3527934
10.1038/asiamat.2010.7
10.1103/PhysRevLett.96.256802
10.1103/PhysRevLett.102.247204
10.1038/nphys781
10.1103/PhysRevLett.106.136806
10.1016/j.ssc.2010.07.016
10.1103/PhysRevX.3.021014
10.1103/PhysRevB.75.233407
10.1103/PhysRevLett.100.236801
10.1103/PhysRevB.85.155415
10.1103/PhysRevLett.95.226801
10.1103/PhysRevLett.97.026402
10.1103/RevModPhys.80.1337
10.1103/PhysRevLett.102.026807
10.1103/RevModPhys.81.109
10.1103/PhysRevLett.108.155501
10.1103/PhysRevLett.97.016801
10.1103/PhysRevLett.99.066802
10.1038/nature04233
10.1103/PhysRevLett.109.106602
10.1038/nphys384
10.1103/PhysRevLett.111.136804
10.1038/nphys2494
10.1038/nphoton.2010.186
10.1103/PhysRevB.77.041407
10.1063/1.3549201
10.1016/j.ssc.2008.02.024
10.1038/nnano.2008.58
10.1063/1.2930875
10.1088/0953-8984/20/38/384204
10.1103/PhysRevLett.105.097401
10.1103/PhysRevB.73.125411
10.1103/PhysRevB.50.7526
10.1103/PhysRevLett.100.046403
10.1142/S0217984910024626
10.1007/s12274-008-8053-0
10.1038/nnano.2010.89
10.1103/PhysRevLett.101.157402
10.1103/PhysRev.71.622
10.1103/PhysRevB.86.115431
10.1038/nphys1198
10.1103/PhysRevLett.102.166808
10.1109/22.989974
10.1038/nphys989
10.1103/PhysRevB.82.201402
10.1103/PhysRevB.77.115449
10.1103/PhysRevLett.89.266603
10.1088/1367-2630/14/6/063028
10.1126/science.1137201
10.1038/nphys890
10.1103/PhysRevLett.103.207401
10.1021/nl9039636
10.1103/PhysRevLett.100.117401
10.1103/RevModPhys.82.3045
10.1103/PhysRevLett.101.126804
10.1021/nl0731872
10.1103/PhysRev.56.340
10.1063/1.3205115
10.1103/PhysRevB.76.153410
10.1126/science.1102896
ContentType Journal Article
Copyright Copyright reserved, 2014, Higher Education Press and Springer-Verlag Berlin Heidelberg
Higher Education Press and Springer-Verlag Berlin Heidelberg 2014
Copyright_xml – notice: Copyright reserved, 2014, Higher Education Press and Springer-Verlag Berlin Heidelberg
– notice: Higher Education Press and Springer-Verlag Berlin Heidelberg 2014
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
DOI 10.1007/s12200-014-0428-0
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
DocumentTitleAlternate Nonlinear optical response of graphene in terahertz and near-infrared frequency regime
EISSN 2095-2767
EndPage 26
ExternalDocumentID 10_1007_s12200_014_0428_0
10.1007/s12200-014-0428-0
664275921
GroupedDBID 2RA
92L
ALMA_UNASSIGNED_HOLDINGS
CQIGP
M~E
W92
~WA
-EM
06D
0VY
1-T
29~
2JY
2KG
30V
4.4
408
5VS
8UJ
96X
AABHQ
AAFGU
AAFWJ
AAIAL
AAJKR
AAKKN
AARHV
AARTL
AATLR
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZJ
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTMW
ABWNU
ABXPI
ACACY
ACBMV
ACBRV
ACGFS
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACTTH
ACULB
ACVWB
ACWMK
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AEOHA
AEPYU
AESTI
AETLH
AEVTX
AEXYK
AFLOW
AFNRJ
AFPKN
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGQMX
AGWZB
AGYKE
AHBXF
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
ALFXC
ALWAN
AMKLP
ANMIH
AOCGG
AUKKA
AXYYD
B-.
BDATZ
BGNMA
C24
C6C
CSCUP
DNIVK
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GROUPED_DOAJ
HF~
HG6
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IXD
J-C
JBSCW
JZLTJ
KOV
M4Y
MA-
NQJWS
NU0
O9J
P4S
R89
RLLFE
ROL
RPM
RSV
S..
S16
SAP
SCL
SEG
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
XT3
YLTOR
Z7R
Z7X
Z83
Z88
0R~
AAYZH
ABEEZ
ADMLS
AEFQL
AFBBN
AFGXO
ZMTXR
-SI
-S~
AAXDM
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CAJEI
CITATION
Q--
U1G
U5S
ID FETCH-LOGICAL-c364t-8f0b562ead2554d4195e4c33a9eff370069d07cfb4bc6ff4a1cf347bb8565dc3
IEDL.DBID C24
ISSN 2095-2759
IngestDate Thu Apr 24 22:59:11 EDT 2025
Tue Jul 01 01:20:50 EDT 2025
Fri Feb 21 02:37:27 EST 2025
Tue Feb 27 04:43:00 EST 2024
Wed Feb 14 10:31:19 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords terahertz (THz) response
photomixing
graphene
nonlinear effect
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-8f0b562ead2554d4195e4c33a9eff370069d07cfb4bc6ff4a1cf347bb8565dc3
Notes In this review, we discuss our recent theoretical work on the nonlinear optical response of graphene and its sister structure in terahertz (THz) and near-infrared frequency regime. Due to Dirac-like linear energymomentum dispersion, the third-order nonlinear current in graphene is much stronger than that in conventional semiconductors. The nonlinear current grows rapidly with increasing temperature and decreasing frequency. The third-order nonlinear current can be as strong as the linear current under moderate electric field strength of 104 V/cm. In bilayer graphene (BLG) with low energy trigonal warping effect, not only the optical response is strongly nonlinear, the optical nonlinearity is well-preserved at elevated temperature. In the presence ofa bandgap (such as semihydrogenated graphene (SHG)), there exists two well separated linear response and nonlinear response peaks. This suggests that SHG can have a unique potential as a two-color nonlinear material in the THz frequency regime where the relative intensity of the two colors can be tuned with the electric field. In a graphene superlattice structure of Kronig-Penney type periodic potential, the Dirac cone is elliptically deformed. We found that not only the optical nonlinearity is preserved in such a system, the total optical response is further enhanced by a factor proportional to the band anisotropy. This suggests that graphene superlattice is another potential candidate in THz device application.
graphene, terahertz (THz) response, nonlinear effect, photomixing
11-5738/TN
Document accepted on :2014-07-18
Document received on :2014-03-16
terahertz (THz) response
photomixing
graphene
nonlinear effect
OpenAccessLink https://journal.hep.com.cn/foe/EN/10.1007/s12200-014-0428-0
PageCount 24
ParticipantIDs crossref_primary_10_1007_s12200_014_0428_0
crossref_citationtrail_10_1007_s12200_014_0428_0
springer_journals_10_1007_s12200_014_0428_0
higheredpress_frontiers_10_1007_s12200_014_0428_0
chongqing_primary_664275921
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-01
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationSubtitle Selected Publications from Chinese Universities
PublicationTitle Frontiers of Optoelectronics (Online)
PublicationTitleAbbrev Front. Optoelectron
PublicationTitleAlternate Frontiers of Optoelectronics
PublicationYear 2015
Publisher Higher Education Press
Publisher_xml – name: Higher Education Press
References Brey, Fertig (CR45) 2006; 73
Hasan, Kane (CR63) 2010; 82
Castro Neto, Guinea, Peres, Novoselov, Geim (CR61) 2009; 81
Hendry, Hale, Moger, Savchenko, Mikhailov (CR73) 2010; 105
Betz, Jhang, Pallecchi, Ferreira, Feve, Berroir, Placais (CR104) 2012; 9
Gao, Wang, Zhang (CR87) 2008; 19
Wolff, Pearson (CR88) 1966; 17
Koshino, Ando (CR94) 2006; 73
Wang, Hernandez, Lotya, Coleman, Blau (CR79) 2009; 21
Bianco, Butler, Jiang, Restrepo, Windl, Goldberger (CR66) 2013; 7
Xu, Yan, Zhang, Wang, Xu, Tang, Duan, Zhang (CR67) 2013; 111
Chaves, Covaci, Rakhimov, Farias, Peeters (CR36) 2010; 82
McCann, Fal’ko (CR93) 2006; 96
Geim, Novoselov (CR15) 2007; 6
Park, Yang, Son, Cohen, Louie (CR49) 2008; 101
Wang, Dou, Zhang (CR9) 2010; 2
Zhai, Chang (CR38) 2012; 85
Ezawa (CR47) 2006; 73
Fleurence, Friedlein, Ozaki, Kawai, Wang, Yamada-Takamura (CR64) 2012; 108
Herbut, Juricic, Vafek (CR22) 2008; 100
Mikhailov (CR74) 2007; 79
Wallace (CR3) 1947; 71
Suzuura, Ando (CR52) 2002; 89
Stander, Huard, Goldhaber-Gordon (CR7) 2009; 102
Butscher, Milde, Hirtschulz, Malic, Knorr (CR91) 2007; 91
Bolotin, Sikes, Jiang, Klima, Fudenberg, Hone, Kim, Stormer (CR13) 2008; 146
Nandkishore, Levitov, Chubukov (CR58) 2012; 8
Mikhailov, Ziegler (CR75) 2008; 20
Park, Son, Yang, Cohen, Louie (CR50) 2008; 8
Kuzmenko, van Heumen, Carbone, van der Marel (CR31) 2008; 100
Nair, Blake, Grigorenko, Novoselov, Booth, Stauber, Peres, Geim (CR29) 2008; 320
Vogt, De Padova, Quaresima, Avila, Frantzeskakis, Asensio, Resta, Ealet, Le Lay (CR65) 2012; 108
Chen, Ma, Zhang (CR96) 2010; 96
Pereira, Peeters, Costa Filho, Farias (CR35) 2009; 21
Bao, Liu, Lei (CR92) 2010; 374
Han, Ozyilmaz, Zhang, Kim (CR46) 2007; 98
Balandin, Ghosh, Bao, Calizo, Teweldebrhan, Miao, Lau (CR56) 2008; 8
Lim, Chen, Clark, Goh, Ng, Tan, Friend, Ho, Chua (CR78) 2011; 5
Dong, Xu, Tan (CR89) 2010; 150
Hwang, Das Sarma (CR102) 2008; 77
Katsnelson, Novoselov, Geim (CR4) 2006; 2
Morozov, Novoselov, Katsnelson, Schedin, Ponomarenko, Jiang, Geim (CR51) 2006; 97
Peres, Guinea, Castro Neto (CR23) 2006; 73
Liu, Ma, Wright, Zhang (CR10) 2008; 103
Moon, Han, Lee, Choi (CR98) 2011; 84
Klein (CR5) 1929; 53
Zhang, Chen, Ma (CR27) 2008; 77
Zhang (CR84) 2002; 66
Park, Lee, Wolff-Fabris, Koh, Eom, Kim, Farhan, Jo, Kim, Shim, Kim (CR99) 2011; 107
Xu, Cao (CR106) 2010; 24
Ang, Zhang (CR71) 2012; 45
Dragoman, Dragoman (CR54) 2007; 91
Weiss, Zhang, Gerhardts, Klitzing, Weimann (CR107) 1989; 39
Cserti, Csordás, Dávid (CR24) 2007; 99
Young, Kim (CR6) 2009; 5
Sarma, Adam, Hwang (CR59) 2011; 83
Siegel (CR72) 2002; 50
Song, Reizer, Levitov (CR103) 2012; 109
Ang, Sultan, Zhang (CR69) 2010; 97
Falkovsky, Pershoguba (CR26) 2007; 76
Moldovan, Masir, Covaci, Peeters (CR37) 2012; 86
Wright, Xu, Cao, Zhang (CR77) 2009; 95
Rycerz, TworzydŁo, Beenakker (CR32) 2007; 3
Khveschenko (CR53) 2006; 97
Chen, Park, Boudouris, Horng, Geng, Girit, Zettl, Crommie, Segalman, Louie, Wang (CR86) 2011; 471
Wright, Cao, Zhang (CR8) 2009; 103
Edwards (CR97) 1963; 31
Wu, Mao, Jones, Yao, Zhang, Xu (CR81) 2012; 12
Martin, Akerman, Ulbricht, Lohmann, Smet, von Klitzing, Yacoby (CR25) 2008; 4
Ziegler (CR21) 2007; 75
Wei, Bao, Pu, Lau, Shi (CR55) 2009; 102
Gusynin, Sharapov (CR19) 2005; 95
Novoselov, Jiang, Zhang, Morozov, Stormer, Zeitler, Maan, Boebinger, Kim, Geim (CR20) 2007; 315
Kane, Mele (CR57) 2005; 95
McCann, Abergel, Fal’ko (CR95) 2007; 143
Ishikawa (CR82) 2010; 82
Yu, Lupton, Gao, Zhang, Liu (CR11) 2008; 1
Gunlycke, White (CR33) 2011; 106
Chen, Jang, Xiao, Ishigami, Fuhrer (CR14) 2008; 3
Schwierz (CR17) 2010; 5
Shareef, Ang, Zhang (CR68) 2012; 29
Novoselov, Geim, Morozov, Jiang, Katsnelson, Grigorieva, Dubonos, Firsov (CR1) 2005; 438
Gusynin, Sharapov, Carbotte (CR28) 2006; 96
Dragoman, Neculoiu, Deligeorgis, Konstantinidis, Dragoman, Cismaru, Muller, Plana (CR76) 2010; 97
San-Jose, Prada, McCann, Schomerus (CR41) 2009; 102
Ang, Zhang (CR70) 2011; 98
Li, Henriksen, Jiang, Hao, Martin, Kim, Stormer, Basov (CR30) 2008; 4
Garcia-Pomar, Cortijo, Nieto-Vesperinas (CR34) 2008; 100
Péterfalvi, Oroszlány, Lambert, Cserti (CR39) 2012; 14
Majidi, Zareyan (CR44) 2012; 86
Graham, Shi, Ralph, Park, McEuen (CR105) 2012; 9
Wang, Hernandez, Lotya, Coleman, Blau (CR100) 2009; 21
Zhang, Tan, Stormer, Kim (CR18) 2005; 438
Lim, Chen, Clark, Goh, Ng, Tan, Friend, Ho, Chua (CR101) 2011; 5
Sun, Wu, Divin, Li, Berger, de Heer, First, Norris (CR90) 2008; 101
Majidi, Zareyan (CR40) 2011; 83
Park, Yang, Son, Cohen, Louie (CR48) 2008; 4
Xia, Farmer, Lin, Avouris (CR16) 2010; 10
Trushin, Schliemann (CR42) 2011; 107
Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos, Grigorieva, Firsov (CR2) 2004; 306
Beenakker (CR62) 2008; 80
Ludwig, Fisher, Shankar, Grinstein (CR85) 1994; 50
Min, Borghi, Polini, MacDonald (CR43) 2008; 77
Hong, Dadap, Petrone, Yeh, Hone, Osgood (CR80) 2013; 3
Bonaccorso, Sun, Hasan, Ferrari (CR60) 2010; 4
Cai, Lu, Kong, Zhu, Zhang, Wei, Wu, Liu (CR12) 2006; 97
Feynman (CR83) 1939; 56
J Wang (428_CR100) 2009; 21
J Z Cai (428_CR12) 2006; 97
E Bianco (428_CR66) 2013; 7
M Koshino (428_CR94) 2006; 73
I F Herbut (428_CR22) 2008; 100
K S Novoselov (428_CR1) 2005; 438
J H Chen (428_CR14) 2008; 3
R Nandkishore (428_CR58) 2012; 8
A W W Ludwig (428_CR85) 1994; 50
C McCann (428_CR95) 2007; 143
S Butscher (428_CR91) 2007; 91
V P Gusynin (428_CR28) 2006; 96
O Klein (428_CR5) 1929; 53
A R Wright (428_CR77) 2009; 95
E H Hwang (428_CR102) 2008; 77
Y S Ang (428_CR71) 2012; 45
P A Wolff (428_CR88) 1966; 17
S A Mikhailov (428_CR75) 2008; 20
L Chen (428_CR96) 2010; 96
L Majidi (428_CR44) 2012; 86
L Brey (428_CR45) 2006; 73
S Y Hong (428_CR80) 2013; 3
M I Katsnelson (428_CR4) 2006; 2
F Xia (428_CR16) 2010; 10
D Sun (428_CR90) 2008; 101
P R Wallace (428_CR3) 1947; 71
J C Song (428_CR103) 2012; 109
A Chaves (428_CR36) 2010; 82
M Y Han (428_CR46) 2007; 98
A R Wright (428_CR8) 2009; 103
D Gunlycke (428_CR33) 2011; 106
P H Siegel (428_CR72) 2002; 50
J Liu (428_CR10) 2008; 103
Y S Ang (428_CR70) 2011; 98
H M Dong (428_CR89) 2010; 150
H Min (428_CR43) 2008; 77
R R Nair (428_CR29) 2008; 320
V P Gusynin (428_CR19) 2005; 95
C H Park (428_CR49) 2008; 101
J Martin (428_CR25) 2008; 4
M Ezawa (428_CR47) 2006; 73
E McCann (428_CR93) 2006; 96
D C Yu (428_CR11) 2008; 1
D Dragoman (428_CR54) 2007; 91
M Trushin (428_CR42) 2011; 107
C Zhang (428_CR27) 2008; 77
Z Q Li (428_CR30) 2008; 4
F Zhai (428_CR38) 2012; 85
E Hendry (428_CR73) 2010; 105
J L Garcia-Pomar (428_CR34) 2008; 100
K S Novoselov (428_CR2) 2004; 306
X L Wang (428_CR9) 2010; 2
A B Kuzmenko (428_CR31) 2008; 100
J Cserti (428_CR24) 2007; 99
L Majidi (428_CR40) 2011; 83
D Moldovan (428_CR37) 2012; 86
C Zhang (428_CR84) 2002; 66
D Weiss (428_CR107) 1989; 39
D V Khveschenko (428_CR53) 2006; 97
J M Pereira Jr (428_CR35) 2009; 21
J Park (428_CR99) 2011; 107
L A Falkovsky (428_CR26) 2007; 76
N Stander (428_CR7) 2009; 102
H Suzuura (428_CR52) 2002; 89
Y Xu (428_CR67) 2013; 111
S A Mikhailov (428_CR74) 2007; 79
C H Park (428_CR48) 2008; 4
Y Zhang (428_CR18) 2005; 438
W S Bao (428_CR92) 2010; 374
C Y Moon (428_CR98) 2011; 84
A C Betz (428_CR104) 2012; 9
C F Chen (428_CR86) 2011; 471
M Dragoman (428_CR76) 2010; 97
A A Balandin (428_CR56) 2008; 8
S D Sarma (428_CR59) 2011; 83
K Ziegler (428_CR21) 2007; 75
C L Kane (428_CR57) 2005; 95
M W Graham (428_CR105) 2012; 9
F Gao (428_CR87) 2008; 19
S Wu (428_CR81) 2012; 12
G K Lim (428_CR78) 2011; 5
C H Park (428_CR50) 2008; 8
C W J Beenakker (428_CR62) 2008; 80
G K Lim (428_CR101) 2011; 5
A H Castro Neto (428_CR61) 2009; 81
M Z Hasan (428_CR63) 2010; 82
S V Morozov (428_CR51) 2006; 97
A K Geim (428_CR15) 2007; 6
N M R Peres (428_CR23) 2006; 73
F Schwierz (428_CR17) 2010; 5
Y S Ang (428_CR69) 2010; 97
P Wei (428_CR55) 2009; 102
A Rycerz (428_CR32) 2007; 3
R P Feynman (428_CR83) 1939; 56
S Shareef (428_CR68) 2012; 29
W F Edwards (428_CR97) 1963; 31
A F Young (428_CR6) 2009; 5
P San-Jose (428_CR41) 2009; 102
A Fleurence (428_CR64) 2012; 108
K S Novoselov (428_CR20) 2007; 315
P Vogt (428_CR65) 2012; 108
K L Ishikawa (428_CR82) 2010; 82
F Bonaccorso (428_CR60) 2010; 4
K I Bolotin (428_CR13) 2008; 146
X G Xu (428_CR106) 2010; 24
C G Péterfalvi (428_CR39) 2012; 14
J Wang (428_CR79) 2009; 21
References_xml – volume: 97
  start-page: 026402
  issue: 2
  year: 2006
  ident: CR12
  article-title: Pressure-induced transition in magnetoresistance of singlewalled carbon nanotubes
  publication-title: Physical Review Letters
– volume: 150
  start-page: 1770
  issue: 37–38
  year: 2010
  end-page: 1773
  ident: CR89
  article-title: Temperature relaxation and energy loss of hot carriers in graphene
  publication-title: Solid State Communications
– volume: 84
  start-page: 195425
  issue: 19
  year: 2011
  ident: CR98
  article-title: Low-velocity anisotropic Dirac fermions on the side surface of topological insulators
  publication-title: Physical Review B: Condensed Matter and Materials Physics
– volume: 101
  start-page: 126804
  issue: 12
  year: 2008
  ident: CR49
  article-title: New generation of massless Dirac fermions in graphene under external periodic potentials
  publication-title: Physical Review Letters
– volume: 109
  start-page: 106602
  issue: 10
  year: 2012
  ident: CR103
  article-title: Disorder-assisted electronphonon scattering and cooling pathways in graphene
  publication-title: Physical Review Letters
– volume: 96
  start-page: 086805
  issue: 8
  year: 2006
  ident: CR93
  article-title: Landau-level degeneracy and quantum Hall effect in a graphite bilayer
  publication-title: Physical Review Letters
– volume: 95
  start-page: 226801
  issue: 22
  year: 2005
  ident: CR57
  article-title: Quantum spin Hall effect in graphene
  publication-title: Physical Review Letters
– volume: 31
  start-page: 482
  issue: 7
  year: 1963
  end-page: 489
  ident: CR97
  article-title: Special relativity in anisotropic space
  publication-title: American Journal of Physics
– volume: 315
  start-page: 1379
  issue: 5817
  year: 2007
  ident: CR20
  article-title: Roomtemperature quantum Hall effect in graphene
  publication-title: Science
– volume: 29
  start-page: 274
  issue: 3
  year: 2012
  end-page: 279
  ident: CR68
  article-title: Room-temperature strong terahertz photon mixing in grapheme
  publication-title: Journal of the Optical Society of America. B, Optical Physics
– volume: 8
  start-page: 2920
  issue: 9
  year: 2008
  end-page: 2924
  ident: CR50
  article-title: Electron beam supercollimation in graphene superlattices
  publication-title: Nano Letters
– volume: 471
  start-page: 617
  issue: 7340
  year: 2011
  end-page: 620
  ident: CR86
  article-title: Controlling inelastic light scattering quantum pathways in graphene
  publication-title: Nature
– volume: 438
  start-page: 197
  issue: 7065
  year: 2005
  end-page: 200
  ident: CR1
  article-title: Two-dimensional gas of massless Dirac fermions in graphene
  publication-title: Nature
– volume: 111
  start-page: 136804
  issue: 13
  year: 2013
  ident: CR67
  article-title: Large-gap quantum spin Hall insulators in tin films
  publication-title: Physical Review Letters
– volume: 8
  start-page: 158
  issue: 2
  year: 2012
  end-page: 163
  ident: CR58
  article-title: Chiral superconductivity from repulsive interactions in doped graphene
  publication-title: Nature Physics
– volume: 3
  start-page: 021014
  issue: 2
  year: 2013
  ident: CR80
  article-title: Optical third-harmonic generation in graphene
  publication-title: Physical Review X
– volume: 21
  start-page: 2430
  issue: 23
  year: 2009
  end-page: 2435
  ident: CR100
  article-title: Broadband nonlinear optical response of graphene dispersions
  publication-title: Advanced Materials
– volume: 73
  start-page: 245403
  issue: 24
  year: 2006
  ident: CR94
  article-title: Transport in bilayer graphene: calculations within a self-consistent Born approximation
  publication-title: Physical Review B: Condensed Matter and Materials Physics
– volume: 4
  start-page: 213
  issue: 3
  year: 2008
  end-page: 217
  ident: CR48
  article-title: Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials
  publication-title: Nature Physics
– volume: 100
  start-page: 117401
  issue: 11
  year: 2008
  ident: CR31
  article-title: Universal optical conductance of graphite
  publication-title: Physical Review Letters
– volume: 21
  start-page: 045301
  issue: 4
  year: 2009
  ident: CR35
  article-title: Valley polarization due to trigonal warping on tunneling electrons in graphene
  publication-title: Journal of Physics Condensed Matter
– volume: 66
  start-page: 081105
  issue: 8
  year: 2002
  ident: CR84
  article-title: Frequency-dependent electrical transport under intense terahertz radiation
  publication-title: Physical Review B: Condensed Matter and Materials Physics
– volume: 95
  start-page: 146801
  issue: 14
  year: 2005
  ident: CR19
  article-title: Unconventional integer quantum Hall effect in graphene
  publication-title: Physical Review Letters
– volume: 98
  start-page: 206805
  issue: 20
  year: 2007
  ident: CR46
  article-title: Energy band-gap engineering of graphene nanoribbons
  publication-title: Physical Review Letters
– volume: 100
  start-page: 236801
  issue: 23
  year: 2008
  ident: CR34
  article-title: Fully valleypolarized electron beams in graphene
  publication-title: Physical Review Letters
– volume: 89
  start-page: 266603
  issue: 26
  year: 2002
  ident: CR52
  article-title: Crossover from symplectic to orthogonal class in a two-dimensional honeycomb lattice
  publication-title: Physical Review Letters
– volume: 320
  start-page: 1308
  issue: 5881
  year: 2008
  ident: CR29
  article-title: Fine structure constant defines visual transparency of graphene
  publication-title: Science
– volume: 24
  start-page: 2243
  issue: 21
  year: 2010
  end-page: 2249
  ident: CR106
  article-title: Nonlinear response induced strong absorptance of graphene in the terahertz regime
  publication-title: Modern Physics Letters B
– volume: 73
  start-page: 235411
  issue: 23
  year: 2006
  ident: CR45
  article-title: Electronic states of graphene nanoribbons studied with the Dirac equation
  publication-title: Physical Review B: Condensed Matter and Materials Physics
– volume: 98
  start-page: 042107
  issue: 4
  year: 2011
  ident: CR70
  article-title: Subgap optical conductivity in semihydrogenated graphene
  publication-title: Applied Physics Letters
– volume: 103
  start-page: 103711
  issue: 10
  year: 2008
  ident: CR10
  article-title: Orbital magnetization of graphene and graphene nanoribbons
  publication-title: Journal of Applied Physics
– volume: 85
  start-page: 155415
  issue: 15
  year: 2012
  ident: CR38
  article-title: Valley filtering in graphene with a Dirac gap
  publication-title: Physical Review B: Condensed Matter and Materials Physics
– volume: 39
  start-page: 13020
  issue: 17
  year: 1989
  end-page: 13023
  ident: CR107
  article-title: Density of states in a two-dimensional electron gas in the presence of a one-dimensional superlattice potential
  publication-title: Physical Review B: Condensed Matter and Materials Physics
– volume: 56
  start-page: 340
  issue: 4
  year: 1939
  end-page: 343
  ident: CR83
  article-title: Forces in molecules
  publication-title: Physical Review
– volume: 77
  start-page: 041407
  issue: 4
  year: 2008
  ident: CR43
  article-title: Pseudospin magnetism in graphene
  publication-title: Physical Review B
– volume: 1
  start-page: 497
  issue: 6
  year: 2008
  end-page: 501
  ident: CR11
  article-title: A unified geometric rule for designing nanomagnetism in graphene
  publication-title: Nano Research
– volume: 102
  start-page: 026807
  issue: 2
  year: 2009
  ident: CR7
  article-title: Evidence for Klein tunneling in graphene p-n junctions
  publication-title: Physical Review Letters
– volume: 83
  start-page: 115422
  issue: 11
  year: 2011
  ident: CR40
  article-title: Pseudospin polarized quantum transport in monolayer graphene
  publication-title: Physical Review B: Condensed Matter and Materials Physics
– volume: 86
  start-page: 115431
  issue: 11
  year: 2012
  ident: CR37
  article-title: Resonant valley filtering of massive Dirac electrons
  publication-title: Physical Review B: Condensed Matter and Materials Physics
– volume: 107
  start-page: 126402
  issue: 12
  year: 2011
  ident: CR99
  article-title: Anisotropic Dirac fermions in a Bi square net of SrMnBi2
  publication-title: Physical Review Letters
– volume: 77
  start-page: 241402
  issue: 24
  year: 2008
  ident: CR27
  article-title: Orientation dependence of the optical spectra in graphene at high frequencies
  publication-title: Physical Review B
– volume: 2
  start-page: 620
  issue: 9
  year: 2006
  end-page: 625
  ident: CR4
  article-title: Chiral tunnelling and the Klein paradox in graphene
  publication-title: Nature Physics
– volume: 7
  start-page: 4414
  issue: 5
  year: 2013
  end-page: 4421
  ident: CR66
  article-title: Stability and exfoliation of germanane: a germanium graphane analogue
  publication-title: ACS Nano
– volume: 45
  start-page: 395303
  issue: 39
  year: 2012
  ident: CR71
  article-title: Enhanced optical conductance in graphene superlattice due to anisotropic band dispersion
  publication-title: Journal of Physics. D, Applied Physics
– volume: 14
  start-page: 063028
  issue: 6
  year: 2012
  ident: CR39
  article-title: Intraband electron focusing in bilayer graphene
  publication-title: New Journal of Physics
– volume: 108
  start-page: 245501
  issue: 24
  year: 2012
  ident: CR64
  article-title: Experimental evidence for epitaxial silicene on diboride thin films
  publication-title: Physical Review Letters
– volume: 100
  start-page: 046403
  issue: 4
  year: 2008
  ident: CR22
  article-title: Coulomb interaction, ripples, and the minimal conductivity of graphene
  publication-title: Physical Review Letters
– volume: 71
  start-page: 622
  issue: 9
  year: 1947
  end-page: 634
  ident: CR3
  article-title: The band theory of graphite
  publication-title: Physical Review
– volume: 4
  start-page: 611
  issue: 9
  year: 2010
  end-page: 622
  ident: CR60
  article-title: Graphene photonics and optoelectronics
  publication-title: Nature Photonics
– volume: 5
  start-page: 554
  issue: 9
  year: 2011
  end-page: 560
  ident: CR78
  article-title: Giant broadband nonlinear optical absorption response in dispersed graphene single sheets
  publication-title: Nature Photonics
– volume: 97
  start-page: 243110
  issue: 24
  year: 2010
  ident: CR69
  article-title: Nonlinear optical spectrum of bilayer graphene in the terahertz regime
  publication-title: Applied Physics Letters
– volume: 9
  start-page: 109
  issue: 2
  year: 2012
  end-page: 112
  ident: CR104
  article-title: Supercollision cooling in undoped graphene
  publication-title: Nature Physics
– volume: 106
  start-page: 136806
  issue: 13
  year: 2011
  ident: CR33
  article-title: Graphene valley filter using a line defect
  publication-title: Physical Review Letters
– volume: 80
  start-page: 1337
  issue: 4
  year: 2008
  end-page: 1354
  ident: CR62
  article-title: Colloquium: Andreev reflection and Klein tunneling in graphene
  publication-title: Reviews of Modern Physics
– volume: 105
  start-page: 097401
  issue: 9
  year: 2010
  ident: CR73
  article-title: Coherent nonlinear optical response of graphene
  publication-title: Physical Review Letters
– volume: 99
  start-page: 066802
  issue: 6
  year: 2007
  ident: CR24
  article-title: Role of the trigonal warping on the minimal conductivity of bilayer graphene
  publication-title: Physical Review Letters
– volume: 3
  start-page: 172
  issue: 3
  year: 2007
  end-page: 175
  ident: CR32
  article-title: Valley filter and valley valve in graphene
  publication-title: Nature Physics
– volume: 146
  start-page: 351
  issue: 9–10
  year: 2008
  end-page: 355
  ident: CR13
  article-title: Ultrahigh electron mobility in suspended graphene
  publication-title: Solid State Communications
– volume: 102
  start-page: 247204
  issue: 24
  year: 2009
  ident: CR41
  article-title: Pseudospin valve in bilayer graphene: towards graphene-based pseudospintronics
  publication-title: Physical Review Letters
– volume: 20
  start-page: 384204
  issue: 38
  year: 2008
  ident: CR75
  article-title: Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects
  publication-title: Journal of Physics Condensed Matter
– volume: 12
  start-page: 2032
  issue: 4
  year: 2012
  end-page: 2036
  ident: CR81
  article-title: Quantumenhanced tunable second-order optical nonlinearity in bilayer graphene
  publication-title: Nano Letters
– volume: 101
  start-page: 157402
  issue: 15
  year: 2008
  ident: CR90
  article-title: Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy
  publication-title: Physical Review Letters
– volume: 82
  start-page: 3045
  issue: 4
  year: 2010
  end-page: 3067
  ident: CR63
  article-title: Colloquium: topological insulators
  publication-title: Reviews of Modern Physics
– volume: 4
  start-page: 532
  issue: 7
  year: 2008
  end-page: 535
  ident: CR30
  article-title: Dirac charge dynamics in graphene by infrared spectroscopy
  publication-title: Nature Physics
– volume: 82
  start-page: 205430
  issue: 20
  year: 2010
  ident: CR36
  article-title: Wave-packet dynamics and valley filter in strained graphene
  publication-title: Physical Review B: Condensed Matter and Materials Physics
– volume: 19
  start-page: 465401
  issue: 46
  year: 2008
  ident: CR87
  article-title: Strong photon-mixing of terahertz waves in semiconductor quantum wells induced by Rashba spinorbit coupling
  publication-title: Nanotechnology
– volume: 96
  start-page: 256802
  issue: 25
  year: 2006
  ident: CR28
  article-title: Unusual microwave response of dirac quasiparticles in graphene
  publication-title: Physical Review Letters
– volume: 53
  start-page: 157
  issue: 3–4
  year: 1929
  end-page: 165
  ident: CR5
  article-title: Die reflexion von elektronen an einem potentialsprung nach der relativistischen dynamik von Dirac
  publication-title: Zeitschrift fur Physik
– volume: 73
  start-page: 125411
  issue: 12
  year: 2006
  ident: CR23
  article-title: Electronic properties of disordered two-dimensional carbon
  publication-title: Physical Review B: Condensed Matter and Materials Physics
– volume: 91
  start-page: 203103
  issue: 20
  year: 2007
  ident: CR91
  article-title: Hot electron relaxation and phonon dynamics in graphene
  publication-title: Applied Physics Letters
– volume: 82
  start-page: 201402
  issue: 20
  year: 2010
  ident: CR82
  article-title: Nonlinear optical response of graphene in time domain
  publication-title: Physical Review B
– volume: 79
  start-page: 27002
  issue: 2
  year: 2007
  ident: CR74
  article-title: Non-linear electromagnetic response of graphene
  publication-title: Europhysics Letters
– volume: 50
  start-page: 7526
  issue: 11
  year: 1994
  end-page: 7552
  ident: CR85
  article-title: Integer quantum Hall transition: an alternative approach and exact results
  publication-title: Physical Review B: Condensed Matter and Materials Physics
– volume: 5
  start-page: 222
  issue: 3
  year: 2009
  end-page: 226
  ident: CR6
  article-title: Quantum interference and Klein tunnelling in graphene heterojunctions
  publication-title: Nature Physics
– volume: 10
  start-page: 715
  issue: 2
  year: 2010
  end-page: 718
  ident: CR16
  article-title: Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature
  publication-title: Nano Letters
– volume: 108
  start-page: 155501
  issue: 15
  year: 2012
  ident: CR65
  article-title: Silicene: compelling experimental evidence for graphenelike two-dimensional silicon
  publication-title: Physical Review Letters
– volume: 97
  start-page: 093101
  issue: 9
  year: 2010
  ident: CR76
  article-title: Millimeter-wave generation via frequency multiplication in graphene
  publication-title: Applied Physics Letters
– volume: 75
  start-page: 233407
  issue: 23
  year: 2007
  ident: CR21
  article-title: Minimal conductivity of graphene: nonuniversal values from the Kubo formula
  publication-title: Physical Review B: Condensed Matter and Materials Physics
– volume: 9
  start-page: 103
  issue: 2
  year: 2012
  end-page: 108
  ident: CR105
  article-title: Photocurrent measurements of supercollision cooling in graphene
  publication-title: Nature Physics
– volume: 97
  start-page: 036802
  year: 2006
  ident: CR53
  article-title: Electron localization properties in graphene
  publication-title: Physical Review Letters
– volume: 86
  start-page: 075443
  issue: 7
  year: 2012
  ident: CR44
  article-title: Enhanced Andreev reflection in gapped graphene
  publication-title: Physical Review B: Condensed Matter and Materials Physics
– volume: 5
  start-page: 554
  issue: 9
  year: 2011
  end-page: 560
  ident: CR101
  article-title: Giant broadband nonlinear optical absorption response in dispersed graphene single sheets
  publication-title: Nature photonics
– volume: 2
  start-page: 31
  issue: 1
  year: 2010
  end-page: 38
  ident: CR9
  article-title: Zero-gap materials for future spintronics, electronics and optics
  publication-title: NPG Asia Materials
– volume: 83
  start-page: 407
  issue: 2
  year: 2011
  end-page: 439
  ident: CR59
  article-title: Electronic transport in twodimensional graphene
  publication-title: Reviews of Modern Physics
– volume: 143
  start-page: 110
  issue: -2
  year: 2007
  end-page: 115
  ident: CR95
  article-title: Electrons in bilayer graphene
  publication-title: Solid State Communications
– volume: 107
  start-page: 156801
  issue: 15
  year: 2011
  ident: CR42
  article-title: Pseudospin in optical and transport properties of graphene
  publication-title: Physical Review Letters
– volume: 374
  start-page: 1266
  issue: 10
  year: 2010
  end-page: 1269
  ident: CR92
  article-title: Hot-electron transport in graphene driven by intense terahertz fields. Physics Letters
  publication-title: [Part A]
– volume: 73
  start-page: 045432
  issue: 4
  year: 2006
  ident: CR47
  article-title: Peculiar width dependence of the electronic properties of carbon nanoribbons
  publication-title: Physical Review B: Condensed Matter and Materials Physics
– volume: 103
  start-page: 207401
  issue: 20
  year: 2009
  ident: CR8
  article-title: Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime
  publication-title: Physical Review Letters
– volume: 77
  start-page: 115449
  issue: 11
  year: 2008
  ident: CR102
  article-title: Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene
  publication-title: Physical Review B: Condensed Matter and Materials Physics
– volume: 8
  start-page: 902
  issue: 3
  year: 2008
  end-page: 907
  ident: CR56
  article-title: Superior thermal conductivity of single-layer graphene
  publication-title: Nano Letters
– volume: 96
  start-page: 023107
  issue: 2
  year: 2010
  ident: CR96
  article-title: Vertical absorption edge and temperature dependent resistivity in semihydrogenated graphene
  publication-title: Applied Physics Letters
– volume: 91
  start-page: 203116
  issue: 20
  year: 2007
  ident: CR54
  article-title: Giant thermoelectric effect in graphene
  publication-title: Applied Physics Letters
– volume: 6
  start-page: 183
  issue: 3
  year: 2007
  end-page: 191
  ident: CR15
  article-title: The rise of graphene
  publication-title: Nature Materials
– volume: 50
  start-page: 910
  issue: 3
  year: 2002
  end-page: 928
  ident: CR72
  article-title: Terahertz technology
  publication-title: IEEE Transactions on Microwave Theory and Techniques
– volume: 3
  start-page: 206
  issue: 4
  year: 2008
  end-page: 209
  ident: CR14
  article-title: Intrinsic and extrinsic performance limits of graphene devices on SiO
  publication-title: Nature Nanotechnology
– volume: 438
  start-page: 201
  issue: 7065
  year: 2005
  end-page: 204
  ident: CR18
  article-title: Experimental observation of the quantum Hall effect and Berry’s phase in graphene
  publication-title: Nature
– volume: 5
  start-page: 487
  issue: 7
  year: 2010
  end-page: 496
  ident: CR17
  article-title: Graphene transistors
  publication-title: Nature Nanotechnology
– volume: 76
  start-page: 153410
  issue: 15
  year: 2007
  ident: CR26
  article-title: Optical far-infrared properties of a graphene monolayer and multilayer
  publication-title: Physical Review B: Condensed Matter and Materials Physics
– volume: 95
  start-page: 072101
  issue: 7
  year: 2009
  ident: CR77
  article-title: Strong nonlinear optical response of graphene in the terahertz regime
  publication-title: Applied Physics Letters
– volume: 102
  start-page: 166808
  issue: 16
  year: 2009
  ident: CR55
  article-title: Anomalous thermoelectric transport of Dirac particles in graphene
  publication-title: Physical Review Letters
– volume: 17
  start-page: 1015
  issue: 19
  year: 1966
  end-page: 1017
  ident: CR88
  article-title: Theory of optical mixing by mobile carriers in semiconductors
  publication-title: Physical Review Letters
– volume: 4
  start-page: 144
  issue: 2
  year: 2008
  end-page: 148
  ident: CR25
  article-title: Observation of electron-hole puddles in graphene using a scanning single-electron transistor
  publication-title: Nature Physics
– volume: 21
  start-page: 2430
  issue: 23
  year: 2009
  end-page: 2435
  ident: CR79
  article-title: Broadband nonlinear optical response of graphene dispersions
  publication-title: Advanced Materials
– volume: 306
  start-page: 666
  issue: 5696
  year: 2004
  end-page: 669
  ident: CR2
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
– volume: 97
  start-page: 016801
  issue: 1
  year: 2006
  ident: CR51
  article-title: Strong suppression of weak localization in graphene
  publication-title: Physical Review Letters
– volume: 81
  start-page: 109
  year: 2009
  end-page: 162
  ident: CR61
  article-title: The electronic properties of graphene
  publication-title: Reviews of Modern Physics
– volume: 73
  start-page: 045432
  issue: 4
  year: 2006
  ident: 428_CR47
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.73.045432
– volume: 79
  start-page: 27002
  issue: 2
  year: 2007
  ident: 428_CR74
  publication-title: Europhysics Letters
  doi: 10.1209/0295-5075/79/27002
– volume: 471
  start-page: 617
  issue: 7340
  year: 2011
  ident: 428_CR86
  publication-title: Nature
  doi: 10.1038/nature09866
– volume: 108
  start-page: 245501
  issue: 24
  year: 2012
  ident: 428_CR64
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.108.245501
– volume: 107
  start-page: 126402
  issue: 12
  year: 2011
  ident: 428_CR99
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.107.126402
– volume: 39
  start-page: 13020
  issue: 17
  year: 1989
  ident: 428_CR107
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.39.13020
– volume: 5
  start-page: 554
  issue: 9
  year: 2011
  ident: 428_CR101
  publication-title: Nature photonics
  doi: 10.1038/nphoton.2011.177
– volume: 8
  start-page: 2920
  issue: 9
  year: 2008
  ident: 428_CR50
  publication-title: Nano Letters
  doi: 10.1021/nl801752r
– volume: 45
  start-page: 395303
  issue: 39
  year: 2012
  ident: 428_CR71
  publication-title: Journal of Physics. D, Applied Physics
  doi: 10.1088/0022-3727/45/39/395303
– volume: 107
  start-page: 156801
  issue: 15
  year: 2011
  ident: 428_CR42
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.107.156801
– volume: 86
  start-page: 075443
  issue: 7
  year: 2012
  ident: 428_CR44
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.86.075443
– volume: 320
  start-page: 1308
  issue: 5881
  year: 2008
  ident: 428_CR29
  publication-title: Science
  doi: 10.1126/science.1156965
– volume: 21
  start-page: 2430
  issue: 23
  year: 2009
  ident: 428_CR79
  publication-title: Advanced Materials
  doi: 10.1002/adma.200803616
– volume: 19
  start-page: 465401
  issue: 46
  year: 2008
  ident: 428_CR87
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/46/465401
– volume: 96
  start-page: 023107
  issue: 2
  year: 2010
  ident: 428_CR96
  publication-title: Applied Physics Letters
  doi: 10.1063/1.3292026
– volume: 53
  start-page: 157
  issue: 3–4
  year: 1929
  ident: 428_CR5
  publication-title: Zeitschrift fur Physik
  doi: 10.1007/BF01339716
– volume: 9
  start-page: 103
  issue: 2
  year: 2012
  ident: 428_CR105
  publication-title: Nature Physics
  doi: 10.1038/nphys2493
– volume: 97
  start-page: 036802
  year: 2006
  ident: 428_CR53
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.97.036802
– volume: 3
  start-page: 172
  issue: 3
  year: 2007
  ident: 428_CR32
  publication-title: Nature Physics
  doi: 10.1038/nphys547
– volume: 8
  start-page: 158
  issue: 2
  year: 2012
  ident: 428_CR58
  publication-title: Nature Physics
  doi: 10.1038/nphys2208
– volume: 438
  start-page: 201
  issue: 7065
  year: 2005
  ident: 428_CR18
  publication-title: Nature
  doi: 10.1038/nature04235
– volume: 82
  start-page: 205430
  issue: 20
  year: 2010
  ident: 428_CR36
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.82.205430
– volume: 143
  start-page: 110
  issue: -2
  year: 2007
  ident: 428_CR95
  publication-title: Solid State Communications
  doi: 10.1016/j.ssc.2007.03.054
– volume: 95
  start-page: 146801
  issue: 14
  year: 2005
  ident: 428_CR19
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.95.146801
– volume: 21
  start-page: 045301
  issue: 4
  year: 2009
  ident: 428_CR35
  publication-title: Journal of Physics Condensed Matter
  doi: 10.1088/0953-8984/21/4/045301
– volume: 12
  start-page: 2032
  issue: 4
  year: 2012
  ident: 428_CR81
  publication-title: Nano Letters
  doi: 10.1021/nl300084j
– volume: 7
  start-page: 4414
  issue: 5
  year: 2013
  ident: 428_CR66
  publication-title: ACS Nano
  doi: 10.1021/nn4009406
– volume: 77
  start-page: 241402
  issue: 24
  year: 2008
  ident: 428_CR27
  publication-title: Physical Review B
  doi: 10.1103/PhysRevB.77.241402
– volume: 91
  start-page: 203116
  issue: 20
  year: 2007
  ident: 428_CR54
  publication-title: Applied Physics Letters
  doi: 10.1063/1.2814080
– volume: 73
  start-page: 245403
  issue: 24
  year: 2006
  ident: 428_CR94
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.73.245403
– volume: 97
  start-page: 093101
  issue: 9
  year: 2010
  ident: 428_CR76
  publication-title: Applied Physics Letters
  doi: 10.1063/1.3483872
– volume: 29
  start-page: 274
  issue: 3
  year: 2012
  ident: 428_CR68
  publication-title: Journal of the Optical Society of America. B, Optical Physics
  doi: 10.1364/JOSAB.29.000274
– volume: 5
  start-page: 554
  issue: 9
  year: 2011
  ident: 428_CR78
  publication-title: Nature Photonics
  doi: 10.1038/nphoton.2011.177
– volume: 98
  start-page: 206805
  issue: 20
  year: 2007
  ident: 428_CR46
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.98.206805
– volume: 91
  start-page: 203103
  issue: 20
  year: 2007
  ident: 428_CR91
  publication-title: Applied Physics Letters
  doi: 10.1063/1.2809413
– volume: 73
  start-page: 235411
  issue: 23
  year: 2006
  ident: 428_CR45
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.73.235411
– volume: 96
  start-page: 086805
  issue: 8
  year: 2006
  ident: 428_CR93
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.96.086805
– volume: 17
  start-page: 1015
  issue: 19
  year: 1966
  ident: 428_CR88
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.17.1015
– volume: 66
  start-page: 081105
  issue: 8
  year: 2002
  ident: 428_CR84
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.66.081105
– volume: 31
  start-page: 482
  issue: 7
  year: 1963
  ident: 428_CR97
  publication-title: American Journal of Physics
  doi: 10.1119/1.1969607
– volume: 84
  start-page: 195425
  issue: 19
  year: 2011
  ident: 428_CR98
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.84.195425
– volume: 83
  start-page: 407
  issue: 2
  year: 2011
  ident: 428_CR59
  publication-title: Reviews of Modern Physics
  doi: 10.1103/RevModPhys.83.407
– volume: 83
  start-page: 115422
  issue: 11
  year: 2011
  ident: 428_CR40
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.83.115422
– volume: 6
  start-page: 183
  issue: 3
  year: 2007
  ident: 428_CR15
  publication-title: Nature Materials
  doi: 10.1038/nmat1849
– volume: 97
  start-page: 243110
  issue: 24
  year: 2010
  ident: 428_CR69
  publication-title: Applied Physics Letters
  doi: 10.1063/1.3527934
– volume: 2
  start-page: 31
  issue: 1
  year: 2010
  ident: 428_CR9
  publication-title: NPG Asia Materials
  doi: 10.1038/asiamat.2010.7
– volume: 96
  start-page: 256802
  issue: 25
  year: 2006
  ident: 428_CR28
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.96.256802
– volume: 102
  start-page: 247204
  issue: 24
  year: 2009
  ident: 428_CR41
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.102.247204
– volume: 4
  start-page: 144
  issue: 2
  year: 2008
  ident: 428_CR25
  publication-title: Nature Physics
  doi: 10.1038/nphys781
– volume: 106
  start-page: 136806
  issue: 13
  year: 2011
  ident: 428_CR33
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.106.136806
– volume: 150
  start-page: 1770
  issue: 37–38
  year: 2010
  ident: 428_CR89
  publication-title: Solid State Communications
  doi: 10.1016/j.ssc.2010.07.016
– volume: 3
  start-page: 021014
  issue: 2
  year: 2013
  ident: 428_CR80
  publication-title: Physical Review X
  doi: 10.1103/PhysRevX.3.021014
– volume: 75
  start-page: 233407
  issue: 23
  year: 2007
  ident: 428_CR21
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.75.233407
– volume: 100
  start-page: 236801
  issue: 23
  year: 2008
  ident: 428_CR34
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.100.236801
– volume: 85
  start-page: 155415
  issue: 15
  year: 2012
  ident: 428_CR38
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.85.155415
– volume: 95
  start-page: 226801
  issue: 22
  year: 2005
  ident: 428_CR57
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.95.226801
– volume: 97
  start-page: 026402
  issue: 2
  year: 2006
  ident: 428_CR12
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.97.026402
– volume: 80
  start-page: 1337
  issue: 4
  year: 2008
  ident: 428_CR62
  publication-title: Reviews of Modern Physics
  doi: 10.1103/RevModPhys.80.1337
– volume: 102
  start-page: 026807
  issue: 2
  year: 2009
  ident: 428_CR7
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.102.026807
– volume: 81
  start-page: 109
  year: 2009
  ident: 428_CR61
  publication-title: Reviews of Modern Physics
  doi: 10.1103/RevModPhys.81.109
– volume: 108
  start-page: 155501
  issue: 15
  year: 2012
  ident: 428_CR65
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.108.155501
– volume: 97
  start-page: 016801
  issue: 1
  year: 2006
  ident: 428_CR51
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.97.016801
– volume: 99
  start-page: 066802
  issue: 6
  year: 2007
  ident: 428_CR24
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.99.066802
– volume: 438
  start-page: 197
  issue: 7065
  year: 2005
  ident: 428_CR1
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 109
  start-page: 106602
  issue: 10
  year: 2012
  ident: 428_CR103
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.109.106602
– volume: 2
  start-page: 620
  issue: 9
  year: 2006
  ident: 428_CR4
  publication-title: Nature Physics
  doi: 10.1038/nphys384
– volume: 111
  start-page: 136804
  issue: 13
  year: 2013
  ident: 428_CR67
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.111.136804
– volume: 9
  start-page: 109
  issue: 2
  year: 2012
  ident: 428_CR104
  publication-title: Nature Physics
  doi: 10.1038/nphys2494
– volume: 4
  start-page: 611
  issue: 9
  year: 2010
  ident: 428_CR60
  publication-title: Nature Photonics
  doi: 10.1038/nphoton.2010.186
– volume: 77
  start-page: 041407
  issue: 4
  year: 2008
  ident: 428_CR43
  publication-title: Physical Review B
  doi: 10.1103/PhysRevB.77.041407
– volume: 98
  start-page: 042107
  issue: 4
  year: 2011
  ident: 428_CR70
  publication-title: Applied Physics Letters
  doi: 10.1063/1.3549201
– volume: 146
  start-page: 351
  issue: 9–10
  year: 2008
  ident: 428_CR13
  publication-title: Solid State Communications
  doi: 10.1016/j.ssc.2008.02.024
– volume: 21
  start-page: 2430
  issue: 23
  year: 2009
  ident: 428_CR100
  publication-title: Advanced Materials
  doi: 10.1002/adma.200803616
– volume: 3
  start-page: 206
  issue: 4
  year: 2008
  ident: 428_CR14
  publication-title: Nature Nanotechnology
  doi: 10.1038/nnano.2008.58
– volume: 103
  start-page: 103711
  issue: 10
  year: 2008
  ident: 428_CR10
  publication-title: Journal of Applied Physics
  doi: 10.1063/1.2930875
– volume: 20
  start-page: 384204
  issue: 38
  year: 2008
  ident: 428_CR75
  publication-title: Journal of Physics Condensed Matter
  doi: 10.1088/0953-8984/20/38/384204
– volume: 105
  start-page: 097401
  issue: 9
  year: 2010
  ident: 428_CR73
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.105.097401
– volume: 73
  start-page: 125411
  issue: 12
  year: 2006
  ident: 428_CR23
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.73.125411
– volume: 50
  start-page: 7526
  issue: 11
  year: 1994
  ident: 428_CR85
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.50.7526
– volume: 100
  start-page: 046403
  issue: 4
  year: 2008
  ident: 428_CR22
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.100.046403
– volume: 24
  start-page: 2243
  issue: 21
  year: 2010
  ident: 428_CR106
  publication-title: Modern Physics Letters B
  doi: 10.1142/S0217984910024626
– volume: 1
  start-page: 497
  issue: 6
  year: 2008
  ident: 428_CR11
  publication-title: Nano Research
  doi: 10.1007/s12274-008-8053-0
– volume: 5
  start-page: 487
  issue: 7
  year: 2010
  ident: 428_CR17
  publication-title: Nature Nanotechnology
  doi: 10.1038/nnano.2010.89
– volume: 101
  start-page: 157402
  issue: 15
  year: 2008
  ident: 428_CR90
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.101.157402
– volume: 71
  start-page: 622
  issue: 9
  year: 1947
  ident: 428_CR3
  publication-title: Physical Review
  doi: 10.1103/PhysRev.71.622
– volume: 86
  start-page: 115431
  issue: 11
  year: 2012
  ident: 428_CR37
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.86.115431
– volume: 5
  start-page: 222
  issue: 3
  year: 2009
  ident: 428_CR6
  publication-title: Nature Physics
  doi: 10.1038/nphys1198
– volume: 102
  start-page: 166808
  issue: 16
  year: 2009
  ident: 428_CR55
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.102.166808
– volume: 50
  start-page: 910
  issue: 3
  year: 2002
  ident: 428_CR72
  publication-title: IEEE Transactions on Microwave Theory and Techniques
  doi: 10.1109/22.989974
– volume: 4
  start-page: 532
  issue: 7
  year: 2008
  ident: 428_CR30
  publication-title: Nature Physics
  doi: 10.1038/nphys989
– volume: 82
  start-page: 201402
  issue: 20
  year: 2010
  ident: 428_CR82
  publication-title: Physical Review B
  doi: 10.1103/PhysRevB.82.201402
– volume: 77
  start-page: 115449
  issue: 11
  year: 2008
  ident: 428_CR102
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.77.115449
– volume: 89
  start-page: 266603
  issue: 26
  year: 2002
  ident: 428_CR52
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.89.266603
– volume: 374
  start-page: 1266
  issue: 10
  year: 2010
  ident: 428_CR92
  publication-title: [Part A]
– volume: 14
  start-page: 063028
  issue: 6
  year: 2012
  ident: 428_CR39
  publication-title: New Journal of Physics
  doi: 10.1088/1367-2630/14/6/063028
– volume: 315
  start-page: 1379
  issue: 5817
  year: 2007
  ident: 428_CR20
  publication-title: Science
  doi: 10.1126/science.1137201
– volume: 4
  start-page: 213
  issue: 3
  year: 2008
  ident: 428_CR48
  publication-title: Nature Physics
  doi: 10.1038/nphys890
– volume: 103
  start-page: 207401
  issue: 20
  year: 2009
  ident: 428_CR8
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.103.207401
– volume: 10
  start-page: 715
  issue: 2
  year: 2010
  ident: 428_CR16
  publication-title: Nano Letters
  doi: 10.1021/nl9039636
– volume: 100
  start-page: 117401
  issue: 11
  year: 2008
  ident: 428_CR31
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.100.117401
– volume: 82
  start-page: 3045
  issue: 4
  year: 2010
  ident: 428_CR63
  publication-title: Reviews of Modern Physics
  doi: 10.1103/RevModPhys.82.3045
– volume: 101
  start-page: 126804
  issue: 12
  year: 2008
  ident: 428_CR49
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.101.126804
– volume: 8
  start-page: 902
  issue: 3
  year: 2008
  ident: 428_CR56
  publication-title: Nano Letters
  doi: 10.1021/nl0731872
– volume: 56
  start-page: 340
  issue: 4
  year: 1939
  ident: 428_CR83
  publication-title: Physical Review
  doi: 10.1103/PhysRev.56.340
– volume: 95
  start-page: 072101
  issue: 7
  year: 2009
  ident: 428_CR77
  publication-title: Applied Physics Letters
  doi: 10.1063/1.3205115
– volume: 76
  start-page: 153410
  issue: 15
  year: 2007
  ident: 428_CR26
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.76.153410
– volume: 306
  start-page: 666
  issue: 5696
  year: 2004
  ident: 428_CR2
  publication-title: Science
  doi: 10.1126/science.1102896
SSID ssib031263387
ssib044084465
ssib013581866
ssib051630257
ssj0002710203
ssib020093027
ssib058688231
Score 2.185756
SecondaryResourceType review_article
Snippet In this review, we discuss our recent theoretical work on the nonlinear optical response of graphene and its sister structure in terahertz (THz) and...
In this review, we discuss our recent theoretical work on the nonlinear optical response of graphene and its sister structure in terahertz (THz) and...
SourceID crossref
springer
higheredpress
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 3
SubjectTerms Biomedical Engineering and Bioengineering
Electrical Engineering
Engineering
graphene
nonlinear effect
photomixing
Physics
Review Article
terahertz (THz) response
三阶非线性
低频率
光学非线性
太赫兹
石墨
超晶格结构
近红外
非线性光学响应
Title Nonlinear optical response of graphene in terahertz and near-infrared frequency regime
URI http://lib.cqvip.com/qk/71244X/201501/664275921.html
https://journal.hep.com.cn/foe/EN/10.1007/s12200-014-0428-0
https://link.springer.com/article/10.1007/s12200-014-0428-0
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD54YUERL6Oy44087JMSaNP0Mo_D4AVFn1Tcp9CkiQra0c7sw-6Dv91z0nZGWRnwJZCSlDYnly_Jd74D8EsaYcJeXHCcCQsujY55HuiEW6u11UGhtfevuLxKzm7k-V181_hxj1q2e3sl6WfqqbObEOQFHRJxgmSV52Exxq07devBVHI8JEGvbIpR6PSf7ubafBSKBLdlkzxFXCbRsDYfI0BBHJBODmoErcE-wrJAOMJFGvfa29Gvvoo0Gh6G5f0r_sGntW7lwRM3bOEJrv9dvPr17GQdVhsgyvp1z9mAOVt2YK0BpawZ8qMOLH9QLOzAD88YNaNNuL2qRTbyig1f_IE4q2q-rWVDx7wQNs6j7LFk5OSM3zT-x_KyYFSFY7-uiPrOXFVzuf8yChHxbLfg-uT4enDGmyAN3ESJHPPMBRoxFHZI3JzIQqLhrTRRlPesc1FKSshFkBqnpTaJczIPjYtkqnWGULIw0TYslMPS_gTmEF2mIkdAkzmJsCoPpM2yyLkw1bG0tgu7k5ZVL7UWh0pw_4QWEWEXgratlWnkzSnKxpOaCjOTqRSaSpGpVNCFw0mV9n0zCoefDKgcCUxQuPJZdY5aI6tmaphReudbpXdhCbFbXNPh9mBhXP2x-4iPxvoAFvunvy-OD_y4oDQZYHr5Rk9uRP8dLicAww
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0VqgpQ1Y-FqltK8YETldXYcT72WK2KtgX2tCBuVuzYBQmyNLsc6K9nxkmWUtBKHC3ZkZWxPc-eN28A9pSVVgySkuNJWHJlTcKLyKTcOWOciUpjQn7F8TgdnahfZ8lZKxZNuTD_xe-_zYSUlPssiC5BYsor8FLhRZnYe8N02C0dQTJe-T0yoTd_ish17VjIFC9jizbVWSapsK6dICxB758tnmcked5QV1kiCOEySwZdTPSpWZEyw_m0-v0H_c0DD_f6PNA1XBlorY_CrcGLHbyDNy38ZN-b9fIeXriqB29bKMrajT7rwcY_OoU9eBV4ona2CafjRlqjqNn0OjyDs7ph2To29SzIX-PpyS4qRqnNOKf5X1ZUJaMhHFdzTYR35uuGwX3LqDDElduCycGPyXDE29IM3MapmvPcRwaREy5DvJKoEi2SOGXjuBg47-OM9I_LKLPeKGNT71UhrI9VZkyOALK08QdYraaV-wjMI6bMZIEwJvcKwVQRKZfnsfciM4lyrg_biz-rrxsFDp3irQktIkUfou5fa9uKmlNtjUt9L8dMptJoKk2m0lEf9hdDuu8t6SweGFB7kpWgIuXLxnztjKzbA2FJ70_P6r0La6PJ8ZE--jk-3IZ1RG9JQ4j7DKvz-sbtIEKamy9hb9wBnyD7Og
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BEYgK8VioupSHD5xAVhPHeewRLazKa8WhoN6s-EUrleySTQ_tr2fGiXepQCtxtGRHiWdif_Z88w3AK2mESSe55bgSWi6Nznmd6II7p7XTidU65Fd8mRdH3-THk_xkqHO6imz3GJLscxpIpanpDpfWH24S34SgjOiUSBQksXwTbuFBJcRpp8U0OlRK4l7VBq9QJIDidLGdpaLAI9q6TdWXSUAstnMEK4gJyvWljaD9OFRbFghNuCjzSYyU_uutSK_hdNH8-IVfc23fu3caSBzOBrLrX0HYsLfNHsL9AZSyt70XPYIbrhnBgwGgsuH3X41g9w_1whHcDuxRs3oM3-e94EbdssUyXI6ztufeOrbwLIhi45rKzhpGCc_4Tt0VqxvLaAhHH2-JBs982_O6LxmVi_jpnsDx7P3x9IgPBRu4yQrZ8conGvEUOiceVKSV6AROmiyrJ877rCRVZJuUxmupTeG9rFPjM1lqXSGstCbbg51m0bh9YB6RZilqBDeVlwix6kS6qsq8T0udS-fGcLCeWbXsdTlUgWcptIhIx5DEuVZmkDqnihvnaiPSTKZSaCpFplLJGF6vh8TnbemcXjOg8iQ2QaXLt415E42shmViS--n_9X7Jdz5-m6mPn-YfzqAuwjp8p4l9wx2uvbCPUfY1OkX4df4DdURA5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+optical+response+of+graphene+in+terahertz+and+near-infrared+frequency+regime&rft.jtitle=Frontiers+of+Optoelectronics+%28Online%29&rft.au=Ang%2C+Yee+Sin&rft.au=Chen%2C+Qinjun&rft.au=Zhang%2C+Chao&rft.date=2015-03-01&rft.issn=2095-2759&rft.eissn=2095-2767&rft.volume=8&rft.issue=1&rft.spage=3&rft.epage=26&rft_id=info:doi/10.1007%2Fs12200-014-0428-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12200_014_0428_0
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71244X%2F71244X.jpg