Review on Computer Aided Weld Defect Detection from Radiography Images

The weld defects inspection from radiography films is critical for assuring the serviceability and safety of weld joints. The various limitations of human interpretation made the development of innovative computer-aided techniques for automatic detection from radiography images an interest point of...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 10; no. 5; p. 1878
Main Authors Hou, Wenhui, Zhang, Dashan, Wei, Ye, Guo, Jie, Zhang, Xiaolong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The weld defects inspection from radiography films is critical for assuring the serviceability and safety of weld joints. The various limitations of human interpretation made the development of innovative computer-aided techniques for automatic detection from radiography images an interest point of recent studies. The studies of automatic defect inspection are synthetically concluded from three aspects: pre-processing, defect segmentation and defect classification. The achievement and limitations of traditional defect classification method based on the feature extraction, selection and classifier are summarized. Then the applications of novel models based on learning(especially deep learning) were introduced. Finally, the achievement of automation methods were discussed and the challenges of current technology are presented for future research for both weld quality management and computer science researchers.
AbstractList The weld defects inspection from radiography films is critical for assuring the serviceability and safety of weld joints. The various limitations of human interpretation made the development of innovative computer-aided techniques for automatic detection from radiography images an interest point of recent studies. The studies of automatic defect inspection are synthetically concluded from three aspects: pre-processing, defect segmentation and defect classification. The achievement and limitations of traditional defect classification method based on the feature extraction, selection and classifier are summarized. Then the applications of novel models based on learning(especially deep learning) were introduced. Finally, the achievement of automation methods were discussed and the challenges of current technology are presented for future research for both weld quality management and computer science researchers.
Author Wei, Ye
Zhang, Xiaolong
Hou, Wenhui
Guo, Jie
Zhang, Dashan
Author_xml – sequence: 1
  givenname: Wenhui
  surname: Hou
  fullname: Hou, Wenhui
– sequence: 2
  givenname: Dashan
  orcidid: 0000-0002-2416-1058
  surname: Zhang
  fullname: Zhang, Dashan
– sequence: 3
  givenname: Ye
  surname: Wei
  fullname: Wei, Ye
– sequence: 4
  givenname: Jie
  orcidid: 0000-0003-2554-4998
  surname: Guo
  fullname: Guo, Jie
– sequence: 5
  givenname: Xiaolong
  surname: Zhang
  fullname: Zhang, Xiaolong
BookMark eNptkE9LAzEQxYNUsNae_AILHmV18mc32WOpVgsFoSgeQ3aT1JTdZs1ulX57UytSxLm8YfjNm-Gdo8HGbwxClxhuKC3gVrUtBsiw4OIEDQnwPKUM88FRf4bGXbeGWAWmAsMQzZbmw5nPxG-SqW_abW9CMnHa6OTV1Dq5M9ZUfZQ-iouQDb5Jlko7vwqqfdsl80atTHeBTq2qOzP-0RF6md0_Tx_TxdPDfDpZpBXNWZ-KisZXmSAGeAEaY000lEwwqoBoTJSilFOLM05IKUSFrS5BZ0VpWc7AKDpC84Ov9mot2-AaFXbSKye_Bz6spAq9q2ojywzyjOmcsCz6F7aAeNgISkTGijwvo9fVwasN_n1rul6u_TZs4vuSUM4xZwRwpK4PVBV81wVjf69ikPvc5VHukcZ_6Mr1ap9cH5Sr_935AuL0g8U
CitedBy_id crossref_primary_10_1016_j_ndteint_2020_102342
crossref_primary_10_1016_j_ndteint_2022_102784
crossref_primary_10_1016_j_matpr_2023_04_355
crossref_primary_10_1109_JSEN_2021_3059860
crossref_primary_10_1155_2022_4637939
crossref_primary_10_3390_ndt2040023
crossref_primary_10_1016_j_promfg_2021_07_041
crossref_primary_10_1109_ACCESS_2025_3526728
crossref_primary_10_29137_umagd_837180
crossref_primary_10_3390_s20164582
crossref_primary_10_1088_1757_899X_1275_1_012017
crossref_primary_10_1016_j_measurement_2023_112969
crossref_primary_10_1016_j_ijmecsci_2021_106834
crossref_primary_10_54287_gujsa_1284239
crossref_primary_10_1080_10589759_2024_2405062
crossref_primary_10_1038_s41598_024_52451_3
crossref_primary_10_1007_s10921_024_01047_y
crossref_primary_10_1016_j_jobe_2021_103954
crossref_primary_10_3390_app12010123
crossref_primary_10_3390_electronics13183728
crossref_primary_10_3390_app10113911
crossref_primary_10_1007_s10921_023_01032_x
crossref_primary_10_1016_j_heliyon_2024_e34738
crossref_primary_10_1007_s40194_024_01759_9
crossref_primary_10_1016_j_measurement_2021_110569
crossref_primary_10_1016_j_oceaneng_2023_116281
crossref_primary_10_1088_2631_8695_acdf3f
crossref_primary_10_1016_j_jmapro_2021_10_046
crossref_primary_10_1088_1757_899X_1259_1_012029
crossref_primary_10_1007_s40194_022_01281_w
crossref_primary_10_1016_j_aej_2021_02_052
crossref_primary_10_3390_healthcare10122382
crossref_primary_10_1002_rob_22233
crossref_primary_10_1016_j_jmsy_2023_05_026
crossref_primary_10_3390_s23125679
crossref_primary_10_1016_j_matpr_2020_12_1149
crossref_primary_10_1016_j_measurement_2023_112821
crossref_primary_10_3390_s21113862
crossref_primary_10_1016_j_apradiso_2023_111142
crossref_primary_10_1016_j_aei_2023_101963
crossref_primary_10_3390_app11031148
crossref_primary_10_1016_j_ijpvp_2022_104655
crossref_primary_10_3390_jmse12040610
crossref_primary_10_1016_j_engstruct_2023_116580
crossref_primary_10_1016_j_ndteint_2024_103306
crossref_primary_10_3390_pr12020263
crossref_primary_10_1016_j_ndteint_2025_103327
crossref_primary_10_1016_j_heliyon_2024_e30590
crossref_primary_10_1016_j_ndteint_2024_103305
crossref_primary_10_1016_j_procir_2021_11_021
crossref_primary_10_1121_10_0005656
crossref_primary_10_1016_j_ymssp_2022_109398
crossref_primary_10_1109_ACCESS_2023_3234187
crossref_primary_10_1016_j_jmapro_2025_02_039
crossref_primary_10_1080_16168658_2021_1908819
crossref_primary_10_3390_app14125298
crossref_primary_10_1016_j_tafmec_2024_104461
crossref_primary_10_3390_photonics9060393
crossref_primary_10_3390_agriculture12122038
crossref_primary_10_1007_s10921_023_01019_8
crossref_primary_10_3390_s22218554
crossref_primary_10_3390_s24206553
crossref_primary_10_1007_s40194_021_01229_6
crossref_primary_10_3390_act11030087
Cites_doi 10.1016/S0963-8695(02)00025-7
10.1088/1742-6596/1314/1/012064
10.3390/app9235064
10.1016/j.jmatprotec.2017.03.031
10.1016/j.eswa.2011.01.092
10.1016/j.jsv.2014.04.062
10.1038/nature14539
10.1016/j.ndteint.2008.07.004
10.1109/TIE.2019.2896165
10.1016/j.jmsy.2019.02.004
10.1016/S0963-8695(97)00042-X
10.1016/j.ndteint.2003.10.003
10.1109/34.574797
10.1016/j.ndteint.2012.11.005
10.1784/insi.2010.52.3.134
10.1016/j.ymssp.2018.05.050
10.1016/j.ndteint.2003.10.004
10.1007/s10921-015-0305-9
10.1063/1.5048766
10.1109/TPAMI.1986.4767851
10.1016/j.ndteint.2010.10.005
10.1137/1031128
10.1023/B:JIMS.0000010076.56537.07
10.1016/j.autcon.2018.07.008
10.1109/ICAEE.2014.6838443
10.1016/j.ndteint.2004.10.007
10.1080/09507119009447695
10.1016/S0020-0255(00)00016-5
10.1016/S0165-1684(02)00158-5
10.1109/TMI.2004.824224
10.1784/insi.45.7.475.54452
10.1038/381607a0
10.1023/B:VISI.0000022288.19776.77
10.1109/MSP.2010.939537
10.1016/j.ndteint.2005.05.005
10.1109/ICInfA.2014.6932710
10.1111/mice.12263
10.1016/j.ndteint.2017.11.006
10.1016/j.ndteint.2016.11.003
10.1016/j.ndteint.2003.12.004
10.1111/str.12336
10.1016/S0957-4174(03)00010-1
10.1016/j.eswa.2010.04.082
10.1016/j.ndteint.2009.02.004
10.1016/j.measurement.2018.09.011
10.1109/SPIN.2014.6776938
10.1016/j.jmapro.2019.06.023
10.1016/j.eswa.2007.08.044
10.1784/insi.45.10.676.52952
10.1016/S0167-8655(00)00098-2
10.2355/isijinternational.39.1081
10.1088/1742-6596/1237/3/032005
10.1002/9781118646106
10.1007/978-981-13-8331-1_11
10.1016/S0165-0114(97)00307-2
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app10051878
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_b50654d62458439f90948e832854966b
10_3390_app10051878
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c364t-8c3339482e0790d11d2d0b4843a02d12aa3373f15722b88c1fdb0d59bf4640ea3
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:30:12 EDT 2025
Mon Jun 30 11:14:06 EDT 2025
Tue Jul 01 03:01:14 EDT 2025
Thu Apr 24 23:00:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-8c3339482e0790d11d2d0b4843a02d12aa3373f15722b88c1fdb0d59bf4640ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2554-4998
0000-0002-2416-1058
OpenAccessLink https://doaj.org/article/b50654d62458439f90948e832854966b
PQID 2377174201
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_b50654d62458439f90948e832854966b
proquest_journals_2377174201
crossref_primary_10_3390_app10051878
crossref_citationtrail_10_3390_app10051878
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Nguyen (ref_55) 2018; 94
Mirapeix (ref_47) 2009; 42
Li (ref_13) 2017; 246
Zhang (ref_59) 2019; 45
ref_14
ref_57
ref_12
ref_54
Zahran (ref_11) 2013; 57
Valavanis (ref_29) 2010; 37
Civera (ref_65) 2020; 56
Liao (ref_19) 1998; 31
Mery (ref_48) 2003; Volume 45
ref_15
Jain (ref_46) 1997; 19
Shafeek (ref_2) 2004; 37
ref_61
Aoki (ref_10) 1999; 39
Balsamo (ref_43) 2014; 333
Ye (ref_16) 2019; 1314
Felzenszwalb (ref_28) 2004; 59
Kasban (ref_45) 2011; 44
ref_25
Civera (ref_42) 2019; 9
ref_67
Cha (ref_56) 2017; 32
ref_20
Murakami (ref_23) 1990; 4
ref_64
Hyatt (ref_17) 1996; 54
Mery (ref_41) 2003; Volume 45
LeCun (ref_51) 2015; 521
Liao (ref_66) 2008; 35
Zhang (ref_58) 2019; 51
Carrasco (ref_21) 2004; 62
Siqueira (ref_36) 2004; 37
Anand (ref_27) 2006; 39
Liao (ref_31) 2000; 126
Zhao (ref_50) 2019; 115
Zapata (ref_6) 2011; 38
Perner (ref_33) 2001; 22
Boaretto (ref_34) 2017; 86
Vilar (ref_49) 2009; 42
Chen (ref_60) 2018; 94
ref_44
Yaping (ref_62) 2019; 1237
Canny (ref_26) 1986; 8
ref_40
ref_1
ref_3
Liao (ref_35) 2003; 25
Kazantsev (ref_22) 2002; 82
Liao (ref_32) 2004; 15
Daum (ref_18) 1987; 29
Shafeek (ref_39) 2004; 37
Olshausen (ref_53) 1996; 381
Hou (ref_63) 2019; 131
Liao (ref_30) 1999; 108
Tosic (ref_52) 2011; 28
Grau (ref_24) 2004; 23
Strang (ref_8) 1989; 31
Wang (ref_9) 2002; 35
Shen (ref_38) 2010; Volume 52
ref_5
ref_4
ref_7
Siqueira (ref_37) 2005; 38
References_xml – volume: 35
  start-page: 519
  year: 2002
  ident: ref_9
  article-title: Automatic identification of different types of welding defects in radiographic images
  publication-title: NDT E Int.
  doi: 10.1016/S0963-8695(02)00025-7
– volume: 1314
  start-page: 012064
  year: 2019
  ident: ref_16
  article-title: Detection and recognition of defects in X-ray images of welding seams under compressed sensing
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1314/1/012064
– volume: 9
  start-page: 5064
  year: 2019
  ident: ref_42
  article-title: The Teager-Kaiser Energy Cepstral Coefficients as an Effective Structural Health Monitoring Tool
  publication-title: Appl. Sci.
  doi: 10.3390/app9235064
– volume: 246
  start-page: 285
  year: 2017
  ident: ref_13
  article-title: Welding quality monitoring of high frequency straight seam pipe based on image feature
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2017.03.031
– ident: ref_5
– volume: 38
  start-page: 8812
  year: 2011
  ident: ref_6
  article-title: Performance evaluation of an automatic inspection system of weld defects in radiographic images based on neuro-classifiers
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.01.092
– volume: 333
  start-page: 4526
  year: 2014
  ident: ref_43
  article-title: A structural health monitoring strategy using cepstral features
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2014.04.062
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_51
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 42
  start-page: 56
  year: 2009
  ident: ref_47
  article-title: Spectral processing technique based on feature selection and artificial neural networks for arc-welding quality monitoring
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2008.07.004
– ident: ref_57
  doi: 10.1109/TIE.2019.2896165
– volume: 51
  start-page: 87
  year: 2019
  ident: ref_58
  article-title: Welding defects detection based on deep learning with multiple optical sensors during disk laser welding of thick plates
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2019.02.004
– volume: 31
  start-page: 183
  year: 1998
  ident: ref_19
  article-title: An automated radiographic NDT system for weld inspection: Part II—Flaw detection
  publication-title: NDT E Int.
  doi: 10.1016/S0963-8695(97)00042-X
– ident: ref_1
– volume: 37
  start-page: 291
  year: 2004
  ident: ref_2
  article-title: Assessment of welding defects for gas pipeline radiographs using computer vision
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2003.10.003
– volume: 19
  start-page: 153
  year: 1997
  ident: ref_46
  article-title: Feature selection: Evaluation, application, and small sample performance
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.574797
– volume: 57
  start-page: 26
  year: 2013
  ident: ref_11
  article-title: Automatic weld defect identification from radiographic images
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2012.11.005
– volume: Volume 52
  start-page: 134
  year: 2010
  ident: ref_38
  article-title: Automatic classification of weld defects in radiographic images
  publication-title: Insight—Non-Destructive Testing and Condition Monitoring
  doi: 10.1784/insi.2010.52.3.134
– volume: 115
  start-page: 213
  year: 2019
  ident: ref_50
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.05.050
– volume: 37
  start-page: 301
  year: 2004
  ident: ref_39
  article-title: Automatic inspection of gas pipeline welding defects using an expert vision system
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2003.10.004
– ident: ref_14
  doi: 10.1007/s10921-015-0305-9
– ident: ref_61
  doi: 10.1063/1.5048766
– volume: 8
  start-page: 679
  year: 1986
  ident: ref_26
  article-title: A computational approach to edge detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1986.4767851
– ident: ref_4
– volume: 44
  start-page: 226
  year: 2011
  ident: ref_45
  article-title: Welding defect detection from radiography images with a cepstral approach
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2010.10.005
– volume: 31
  start-page: 614
  year: 1989
  ident: ref_8
  article-title: Wavelets and dilation equations: A brief introduction
  publication-title: SIAM Rev.
  doi: 10.1137/1031128
– volume: 15
  start-page: 69
  year: 2004
  ident: ref_32
  article-title: Fuzzy reasoning based automatic inspection of radiographic welds: weld recognition
  publication-title: J. Intell. Manuf.
  doi: 10.1023/B:JIMS.0000010076.56537.07
– volume: 94
  start-page: 203
  year: 2018
  ident: ref_55
  article-title: Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.07.008
– ident: ref_15
  doi: 10.1109/ICAEE.2014.6838443
– volume: 38
  start-page: 335
  year: 2005
  ident: ref_37
  article-title: Estimated accuracy of classification of defects detected in welded joints by radiographic tests
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2004.10.007
– volume: 4
  start-page: 144
  year: 1990
  ident: ref_23
  article-title: Image processing for non-destructive testing
  publication-title: Weld. Int.
  doi: 10.1080/09507119009447695
– volume: 126
  start-page: 21
  year: 2000
  ident: ref_31
  article-title: Extraction of welds from radiographic images using fuzzy classifiers
  publication-title: Inf. Sci.
  doi: 10.1016/S0020-0255(00)00016-5
– volume: 82
  start-page: 791
  year: 2002
  ident: ref_22
  article-title: Statistical detection of defects in radiographic images in nondestructive testing
  publication-title: Signal Process.
  doi: 10.1016/S0165-1684(02)00158-5
– ident: ref_20
– volume: 23
  start-page: 447
  year: 2004
  ident: ref_24
  article-title: Improved watershed transform for medical image segmentation using prior information
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.824224
– volume: Volume 45
  start-page: 475
  year: 2003
  ident: ref_48
  article-title: Pattern recognition in the automatic inspection of aluminium castings
  publication-title: Insight—Non-Destructive Testing and Condition Monitoring
  doi: 10.1784/insi.45.7.475.54452
– volume: 381
  start-page: 607
  year: 1996
  ident: ref_53
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
  doi: 10.1038/381607a0
– volume: 59
  start-page: 167
  year: 2004
  ident: ref_28
  article-title: Efficient graph-based image segmentation
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000022288.19776.77
– ident: ref_7
– volume: 28
  start-page: 27
  year: 2011
  ident: ref_52
  article-title: Dictionary learning: What is the right representation for my signal?
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2010.939537
– ident: ref_3
– volume: 62
  start-page: 1142
  year: 2004
  ident: ref_21
  article-title: Segmentation of welding defects using a robust algorithm
  publication-title: Mater. Eval.
– volume: 39
  start-page: 29
  year: 2006
  ident: ref_27
  article-title: Flaw detection in radiographic weld images using morphological approach
  publication-title: Ndt E Int.
  doi: 10.1016/j.ndteint.2005.05.005
– ident: ref_54
  doi: 10.1109/ICInfA.2014.6932710
– volume: 32
  start-page: 361
  year: 2017
  ident: ref_56
  article-title: Deep learning-based crack damage detection using convolutional neural networks
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12263
– volume: 94
  start-page: 62
  year: 2018
  ident: ref_60
  article-title: Accurate defect detection via sparsity reconstruction for weld radiographs
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2017.11.006
– volume: 86
  start-page: 7
  year: 2017
  ident: ref_34
  article-title: Automated detection of welding defects in pipelines from radiographic images DWDI
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2016.11.003
– volume: 37
  start-page: 461
  year: 2004
  ident: ref_36
  article-title: Pattern recognition of weld defects detected by radiographic test
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2003.12.004
– volume: 54
  start-page: 379793
  year: 1996
  ident: ref_17
  article-title: A method for defect segmentation in digital radiographs of pipeline girth welds
  publication-title: Mater. Eval.
– ident: ref_40
– volume: 29
  start-page: 79
  year: 1987
  ident: ref_18
  article-title: Automatic recognition of weld defects in x-ray inspection
  publication-title: Br. J. Nondestruct. Test.
– volume: 56
  start-page: e12336
  year: 2020
  ident: ref_65
  article-title: An experimental study of the feasibility of phase-based video magnification for damage detection and localisation in operational deflection shapes
  publication-title: Strain
  doi: 10.1111/str.12336
– volume: 25
  start-page: 101
  year: 2003
  ident: ref_35
  article-title: Classification of welding flaw types with fuzzy expert systems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/S0957-4174(03)00010-1
– volume: 37
  start-page: 7606
  year: 2010
  ident: ref_29
  article-title: Multiclass defect detection and classification in weld radiographic images using geometric and texture features
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.04.082
– volume: 42
  start-page: 467
  year: 2009
  ident: ref_49
  article-title: An automatic system of classification of weld defects in radiographic images
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2009.02.004
– volume: 131
  start-page: 482
  year: 2019
  ident: ref_63
  article-title: Deep Features Based A DCNN Model Classifying Imbalanced Weld Flaw Types
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.09.011
– ident: ref_25
– ident: ref_12
  doi: 10.1109/SPIN.2014.6776938
– volume: 45
  start-page: 208
  year: 2019
  ident: ref_59
  article-title: Weld image deep learning-based on-line defects detection using convolutional neural networks for Al alloy in robotic arc welding
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2019.06.023
– volume: 35
  start-page: 1041
  year: 2008
  ident: ref_66
  article-title: Classification of weld flaws with imbalanced class data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.08.044
– volume: Volume 45
  start-page: 676
  year: 2003
  ident: ref_41
  article-title: Automatic detection of welding defects using texture features
  publication-title: Insight—Non-Destructive Testing and Condition Monitoring
  doi: 10.1784/insi.45.10.676.52952
– volume: 22
  start-page: 47
  year: 2001
  ident: ref_33
  article-title: A comparison between neural networks and decision trees based on data from industrial radiographic testing
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(00)00098-2
– volume: 39
  start-page: 1081
  year: 1999
  ident: ref_10
  article-title: Application of artificial neural network to discrimination of defect type in automatic radiographic testing of welds
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.39.1081
– volume: 1237
  start-page: 032005
  year: 2019
  ident: ref_62
  article-title: Research on X-ray welding image defect detection based on convolution neural network
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1237/3/032005
– ident: ref_64
– ident: ref_67
  doi: 10.1002/9781118646106
– ident: ref_44
  doi: 10.1007/978-981-13-8331-1_11
– volume: 108
  start-page: 145
  year: 1999
  ident: ref_30
  article-title: Detection of welding flaws from radiographic images with fuzzy clustering methods
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(97)00307-2
SSID ssj0000913810
Score 2.439284
SecondaryResourceType review_article
Snippet The weld defects inspection from radiography films is critical for assuring the serviceability and safety of weld joints. The various limitations of human...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1878
SubjectTerms Automation
Classification
classifier
Deep learning
defect detection
Digitization
feature extraction
Fuzzy sets
image processing
Methods
Noise
Quality
radiographic image
Radiography
Researchers
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60vehBrA-sL3LwoMLi5rG7yUlabVFBEVHsbUk2WSnoVm39_2a2aS0onhayuWQyM5nnNwBH3OhSc2-5cSdLBNV2kVQFj7JECRpbz0QUm5Nv79KrJ3EzSAYh4DYOZZUznVgrajsqMEZ-xnjmPQ_h36vz948Ip0ZhdjWM0FiGplfBUjag2e3d3T_MoyyIeilpPG3M496_x7wwRU6UOFht4SmqEft_KeT6lemvw1owD0lnep8tWHLVBqwugAZuQCuI45gcB8zok03oT2P8ZFSR2ZwG0hlaZ8mze7Xk0mHVhv9M6sqrimBXCXnQdhgQq8n1m1cs4y146vceL66iMCIhKngqJpEsuD-VkMzFmfKkpZbZ2AgpuI6ZpUxrzjNe0iRjzEhZ0NKa2CbKlCIVsdN8GxrVqHI7QJRO_SIXmeWZUFZKQ01pBcU-c1WUug2nM2rlRcAPxzEWr7n3I5C0-QJp23A03_w-hc34e1sXyT7fgljX9cLo8yUPopObBBtgbcowpctVqbxHKp3XRNL7tmlq2rA_u7Q8COA4_2GX3f9_78EKQxe6Livbh8bk88sdeDtjYg4DM30DkgfPJQ
  priority: 102
  providerName: ProQuest
Title Review on Computer Aided Weld Defect Detection from Radiography Images
URI https://www.proquest.com/docview/2377174201
https://doaj.org/article/b50654d62458439f90948e832854966b
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58XPQgPnF1XXLwoEKxebRNjq66PkARUfRWkiaFBa3irv_fmbYrBQUvngohkPabyWSmmfkGYF86W1qJnpsMuiRS7RBpU8goS4zisUcl4lScfHObXj6q6-fkudPqi3LCGnrgBrhjl1D5o08FXehJUxqMR3RAPdQY2aSpI-uLZ14nmKptsOFEXdUU5EmM6-k-mJMGamqo1jmCaqb-H4a4Pl1Gq7DSuoXspHmdNZgL1Tosd8gC12Gt3YYTdtByRR9uwKj5t8_eKjbrz8BOxj549hRePDsLlK2Bj2mdcVUxqiZh99aPW6ZqdvWKBmWyCY-j84fTy6htjRAVMlXTSBcSv0ppEeLMIKTcCx87hQjZWHgurJUykyVPMiGc1gUvvYt9YlypUhUHK7dgoXqrwjYwY1MclCrzMlPGa-24K73iVF9uitL24GiGVl60vOHUvuIlx_iBoM070PZg_3vye0OX8fu0IcH-PYU4rusBlHzeSj7_S_I96M-Elrcbb5ILmWGAqtCt2fmPNXZhSVCAXSed9WFh-vEZ9tALmboBzOvRxQAWh-e3d_eDWv2-AMsw1oU
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiBYQCwV8KBIgRcQeJ7EPCBXKsksfB9SK3lI7dlClki3dRYg_xW9kJo9lJRC3niLZlhWNx2OPZ-b7ALbRu9oh3dwwmppBtWNibIVJkVkt00BKJLk4-eAwnxzrjyfZyRr8GmphOK1ysImtoQ6zit_IXyksyPPQdF69ufiWMGsUR1cHCo1OLfbizx_kss1fT3dpfZ8pNX5_9G6S9KwCSYW5XiSmQkSrjYppYelvZFAh9dpodKkKUjmHWGAts0Ipb0wl6-DTkFlf61yn0SHNew2ua5qEnT0z_rB802GMTSPTrgyQ-lOOQkvWe8M0bisHX8sP8Jf5b8-08R243V9GxU6nPRuwFptNuLUCUbgJG_3mn4vnPUL1i7sw7iIKYtaIgRVC7JyFGMTneB7EbuQcEfos2jyvRnANi_jkwlmPjy2mX8mMze_B8ZWI7j6sN7MmPgBhXU6NqIuAhbbBGC99HbTkqnZb1W4ELwdplVWPVs6kGecleS0s2nJFtCPYXg6-6EA6_j3sLYt9OYSRtduG2eWXst-opc-43DbkigPIaGtL_q-JZPcMedJ57kewNSxa2W_3eflHOR_-v_sp3JgcHeyX-9PDvUdwU7Hz3ia0bcH64vJ7fEw3nIV_0qqVgNOr1uPf4U4JIg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEB7qFUQfxFbFq1X3oYIKodkfSXYfRFqvR8_qUYrFvsVsdlcKba72TsR_zb_OmWRzHii-9SmQLEmYnZ3Zb2fmG4AdaatQSdy5Sa8DkWr7RJtaJkVmFE8dKhGn4uSP0_zwVL0_y87W4FdfC0Nplb1NbA21m9V0Rr4rZIHIQ6G_2g0xLeJ4NH579S2hDlIUae3baXQqcuR__kD4Nn8zGeFcvxBifPDp3WESOwwktczVItG1lNIoLXxaGPwz7oRLrdJKVqlwXFSVlIUMPCuEsFrXPDibuszYoHKV-krie2_BekGoaADr-wfT45PlCQ8xbmqedkWB-JmUYtKcVoGmpm4rbrDtFvCXM2g93Pg-3ItbU7bX6dIGrPlmE-6uEBZuwkY0BXP2MvJVv3oA4y6-wGYN63tEsL1z5x377C8cG3nKGMHLos36ahhVtLCTyp1Htmw2uUSjNn8IpzcivEcwaGaNfwzMVDnelKpwslDGaW25DU5xqnE3daiG8LqXVllH7nJqoXFRIoYh0ZYroh3CznLwVUfZ8e9h-yT25RDi2W5vzK6_lnHZljaj4luXCwonSxMMomHt0QpqxNV5boew3U9aGRf_vPyjqlv_f_wcbqMOlx8m06MncEcQkm-z27ZhsLj-7p_idmdhn0W9YvDlplX5N8N_DrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+Computer+Aided+Weld+Defect+Detection+from+Radiography+Images&rft.jtitle=Applied+sciences&rft.au=Wenhui+Hou&rft.au=Dashan+Zhang&rft.au=Ye+Wei&rft.au=Jie+Guo&rft.date=2020-03-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=10&rft.issue=5&rft.spage=1878&rft_id=info:doi/10.3390%2Fapp10051878&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b50654d62458439f90948e832854966b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon