Initialisation Approaches for Population-Based Metaheuristic Algorithms: A Comprehensive Review

A situation where the set of initial solutions lies near the position of the true optimality (most favourable or desirable solution) by chance can increase the probability of finding the true optimality and significantly reduce the search efforts. In optimisation problems, the location of the global...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 12; no. 2; p. 896
Main Authors Agushaka, Jeffrey O., Ezugwu, Absalom E.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A situation where the set of initial solutions lies near the position of the true optimality (most favourable or desirable solution) by chance can increase the probability of finding the true optimality and significantly reduce the search efforts. In optimisation problems, the location of the global optimum solution is unknown a priori, and initialisation is a stochastic process. In addition, the population size is equally important; if there are problems with high dimensions, a small population size may lie sparsely in unpromising regions, and may return suboptimal solutions with bias. In addition, the different distributions used as position vectors for the initial population may have different sampling emphasis; hence, different degrees of diversity. The initialisation control parameters of population-based metaheuristic algorithms play a significant role in improving the performance of the algorithms. Researchers have identified this significance, and they have put much effort into finding various distribution schemes that will enhance the diversity of the initial populations of the algorithms, and obtain the correct balance of the population size and number of iterations which will guarantee optimal solutions for a given problem set. Despite the affirmation of the role initialisation plays, to our knowledge few studies or surveys have been conducted on this subject area. Therefore, this paper presents a comprehensive survey of different initialisation schemes to improve the quality of solutions obtained by most metaheuristic optimisers for a given problem set. Popular schemes used to improve the diversity of the population can be categorised into random numbers, quasirandom sequences, chaos theory, probability distributions, hybrids of other heuristic or metaheuristic algorithms, Lévy, and others. We discuss the different levels of success of these schemes and identify their limitations. Similarly, we identify gaps and present useful insights for future research directions. Finally, we present a comparison of the effect of population size, the maximum number of iterations, and ten (10) different initialisation methods on the performance of three (3) population-based metaheuristic optimizers: bat algorithm (BA), Grey Wolf Optimizer (GWO), and butterfly optimization algorithm (BOA).
AbstractList A situation where the set of initial solutions lies near the position of the true optimality (most favourable or desirable solution) by chance can increase the probability of finding the true optimality and significantly reduce the search efforts. In optimisation problems, the location of the global optimum solution is unknown a priori, and initialisation is a stochastic process. In addition, the population size is equally important; if there are problems with high dimensions, a small population size may lie sparsely in unpromising regions, and may return suboptimal solutions with bias. In addition, the different distributions used as position vectors for the initial population may have different sampling emphasis; hence, different degrees of diversity. The initialisation control parameters of population-based metaheuristic algorithms play a significant role in improving the performance of the algorithms. Researchers have identified this significance, and they have put much effort into finding various distribution schemes that will enhance the diversity of the initial populations of the algorithms, and obtain the correct balance of the population size and number of iterations which will guarantee optimal solutions for a given problem set. Despite the affirmation of the role initialisation plays, to our knowledge few studies or surveys have been conducted on this subject area. Therefore, this paper presents a comprehensive survey of different initialisation schemes to improve the quality of solutions obtained by most metaheuristic optimisers for a given problem set. Popular schemes used to improve the diversity of the population can be categorised into random numbers, quasirandom sequences, chaos theory, probability distributions, hybrids of other heuristic or metaheuristic algorithms, Lévy, and others. We discuss the different levels of success of these schemes and identify their limitations. Similarly, we identify gaps and present useful insights for future research directions. Finally, we present a comparison of the effect of population size, the maximum number of iterations, and ten (10) different initialisation methods on the performance of three (3) population-based metaheuristic optimizers: bat algorithm (BA), Grey Wolf Optimizer (GWO), and butterfly optimization algorithm (BOA).
Author Ezugwu, Absalom E.
Agushaka, Jeffrey O.
Author_xml – sequence: 1
  givenname: Jeffrey O.
  surname: Agushaka
  fullname: Agushaka, Jeffrey O.
– sequence: 2
  givenname: Absalom E.
  orcidid: 0000-0002-3721-3400
  surname: Ezugwu
  fullname: Ezugwu, Absalom E.
BookMark eNptUctKLDEQDaLgc-UPNLiU9ubRnYe7cdB7BxRFdB2q04mToafTJpkR_96-Mwoi1qaKqnMOh1OHaLcPvUXolOALxhT-A8NAKKZYKr6DDigWvGQVEbvf5n10ktICj6UIkwQfID3rffbQ-QTZh76YDEMMYOY2FS7E4iEMq25zKa8g2ba4sxnmdhV9yt4Uk-4lRJ_ny3RZTIppWA7Rzm2f_NoWj3bt7dsx2nPQJXvy2Y_Q88310_RfeXv_dzad3JaG8SqXsqoxaYzhDRinOEjSQCNr2QonGlbJlhknORYUsKlVS6qmJQ01ggpZ144TdoRmW902wEIP0S8hvusAXm8WIb5oiKPlzmrFlDGOcABnq0YKBdQ57GhbsYop245aZ1utMYrXlU1ZL8Iq9qN9TTklVFBF-IgiW5SJIaVonTY-b6LKEXynCdb_36K_vWXknP_gfDn9Df0Br42Q9A
CitedBy_id crossref_primary_10_1007_s00521_024_10610_7
crossref_primary_10_1093_jcde_qwae050
crossref_primary_10_3390_a16050225
crossref_primary_10_1016_j_matcom_2024_05_010
crossref_primary_10_14483_23448393_19815
crossref_primary_10_1145_3550484
crossref_primary_10_3390_act13010013
crossref_primary_10_1007_s11831_022_09778_9
crossref_primary_10_1109_ACCESS_2024_3365700
crossref_primary_10_3390_pr12020406
crossref_primary_10_3390_app14125349
crossref_primary_10_3390_jmse13010167
crossref_primary_10_1007_s11071_024_09656_y
crossref_primary_10_1371_journal_pone_0287744
crossref_primary_10_3390_w15142593
crossref_primary_10_1016_j_mex_2024_102747
crossref_primary_10_1016_j_jenvman_2024_123068
crossref_primary_10_3390_make7010024
crossref_primary_10_32604_cmc_2024_057431
crossref_primary_10_1038_s41598_025_89124_8
crossref_primary_10_1109_ACCESS_2024_3466170
crossref_primary_10_1007_s00521_022_07530_9
crossref_primary_10_1016_j_eswa_2024_125029
crossref_primary_10_1016_j_aei_2024_103088
crossref_primary_10_1016_j_aej_2023_12_050
crossref_primary_10_3390_electronics12153263
crossref_primary_10_3934_era_2024093
crossref_primary_10_1007_s00521_022_07705_4
crossref_primary_10_1016_j_engappai_2023_106959
crossref_primary_10_3390_math11040862
crossref_primary_10_1016_j_asoc_2025_112693
crossref_primary_10_1007_s12530_023_09514_z
crossref_primary_10_1007_s10723_024_09787_x
crossref_primary_10_3390_math11122695
crossref_primary_10_3390_math11102340
crossref_primary_10_1007_s11227_023_05264_6
crossref_primary_10_32604_cmes_2025_060481
crossref_primary_10_1038_s41598_024_71828_y
crossref_primary_10_1016_j_knosys_2024_111880
crossref_primary_10_1007_s00170_023_11953_6
Cites_doi 10.23919/JSEE.2020.000056
10.1016/j.asoc.2019.105865
10.1016/j.cie.2019.106030
10.3844/jcssp.2011.533.542
10.1016/j.cie.2019.106040
10.1016/j.energy.2020.117635
10.1109/ACCESS.2020.2971787
10.1016/j.ins.2014.02.123
10.1061/(ASCE)CP.1943-5487.0000606
10.1109/ACCESS.2019.2937021
10.1016/j.asoc.2018.09.019
10.1007/978-3-642-02319-4_37
10.1371/journal.pone.0255703
10.1109/WHISPERS.2019.8920950
10.4018/IJAMC.2021010109
10.1016/j.knosys.2013.08.026
10.1016/j.compstruc.2016.12.008
10.1109/ACCESS.2020.2964759
10.1016/j.asoc.2017.10.014
10.1016/j.advengsoft.2013.12.007
10.1016/j.eswa.2020.113716
10.1007/s00521-015-2037-2
10.1109/CITSM.2014.7042178
10.1016/j.ejor.2015.06.044
10.1016/j.cnsns.2012.06.009
10.1016/j.proeng.2013.02.063
10.1109/IPDPSW.2012.79
10.3390/math7121229
10.1016/j.dsp.2013.07.005
10.1016/j.jhydrol.2016.06.027
10.4018/IJSIR.2018010103
10.1109/TCYB.2016.2630722
10.1016/j.jngse.2016.06.060
10.1109/TEVC.2017.2785346
10.1109/JSTARS.2017.2699200
10.1137/1.9781611970081
10.1007/s10462-020-09893-8
10.1109/ACCESS.2020.3039602
10.1016/j.engappai.2014.07.001
10.3390/su12031185
10.1007/s00500-019-03988-3
10.1007/s10462-020-09952-0
10.1109/3ICT.2018.8855743
10.1007/s10040-019-02017-9
10.3390/en11051060
10.1007/s00521-019-04132-w
10.1155/2015/285730
10.1016/j.neucom.2017.04.060
10.1016/j.neucom.2019.06.112
10.1016/j.advengsoft.2015.10.013
10.1007/s00366-020-00994-0
10.3390/en10070883
10.1109/EAIS.2014.6867465
10.1007/s13042-020-01073-y
10.1016/j.engappai.2015.01.020
10.1016/j.eswa.2014.03.016
10.1016/j.advengsoft.2013.09.006
10.1016/j.asoc.2020.106582
10.1016/j.epsr.2017.03.002
10.1007/978-3-319-61824-1_12
10.1016/j.asoc.2017.06.044
10.1145/1068009.1068225
10.1109/IranianCIS.2014.6802527
10.3390/app10113667
10.1016/S0895-7177(00)00178-3
10.1155/2019/1730868
10.1137/0915077
10.1007/978-3-642-22694-6_8
10.1007/s00521-015-2140-4
10.1007/s00500-018-3102-4
10.1109/ACCESS.2020.2981196
10.1016/j.ins.2011.12.037
10.1016/j.ijleo.2011.09.052
10.1016/j.asoc.2016.02.018
10.1007/978-3-642-12538-6
10.1007/s00521-017-2952-5
10.1007/s10589-005-4615-1
10.1007/s10479-015-2034-y
10.1007/978-3-642-40567-9_4
10.1109/CEC.2008.4631204
10.1016/j.swevo.2017.05.001
10.3103/S8756699017040100
10.1007/s00521-014-1597-x
10.1016/j.ins.2014.11.036
10.1007/s10489-018-1158-6
10.1016/j.asoc.2020.106193
10.1109/ACCESS.2018.2876996
10.1177/1729881420920031
10.1155/2015/396582
10.1007/s12065-020-00511-8
10.1016/j.swevo.2020.100677
10.1007/s12065-019-00325-3
10.1109/MWSCAS.2016.7869996
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app12020896
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_939ccf16aafe4b879a2ff0f2d43439ed
10_3390_app12020896
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c364t-84501bcc6bacf96a81bab858d7f7b348d3cf86072a0c59d14bd1b2c727855f613
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:32:17 EDT 2025
Mon Jun 30 11:18:23 EDT 2025
Thu Apr 24 23:02:32 EDT 2025
Tue Jul 01 00:51:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-84501bcc6bacf96a81bab858d7f7b348d3cf86072a0c59d14bd1b2c727855f613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3721-3400
OpenAccessLink https://doaj.org/article/939ccf16aafe4b879a2ff0f2d43439ed
PQID 2621272916
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_939ccf16aafe4b879a2ff0f2d43439ed
proquest_journals_2621272916
crossref_citationtrail_10_3390_app12020896
crossref_primary_10_3390_app12020896
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_93
ref_90
Gallardo (ref_53) 2015; 41
ref_14
ref_12
Ezugwu (ref_2) 2021; 54
ref_10
Hodashinsky (ref_41) 2017; 53
Tzanetos (ref_7) 2021; 54
ref_19
Zainuddin (ref_62) 2017; 28
Mandal (ref_51) 2014; 35
Talbi (ref_107) 2016; 240
ref_17
Covic (ref_24) 2020; 8
Zhang (ref_72) 2018; 6
Parsopoulos (ref_102) 2002; 216
Giuliani (ref_60) 2018; 9
Shanmugam (ref_34) 2011; 7
Yao (ref_88) 2020; 31
Anter (ref_83) 2020; 24
ref_23
ref_21
Saka (ref_96) 2016; 92
Li (ref_13) 2020; 91
Aqil (ref_68) 2020; 162
ref_28
Tavazoei (ref_69) 2007; 187
ref_26
Li (ref_63) 2017; 23
Li (ref_73) 2019; 2019
Suresh (ref_70) 2017; 10
Liu (ref_85) 2012; 123
Heidari (ref_80) 2017; 28
Jiang (ref_42) 2015; 2015
Eltamaly (ref_87) 2020; 8
ref_71
Imran (ref_11) 2013; 53
ref_77
Wang (ref_79) 2014; 274
(ref_44) 2019; 137
ref_74
Sun (ref_58) 2020; 2020
Lin (ref_95) 2012; 2
Saremi (ref_78) 2014; 25
Sayed (ref_82) 2018; 48
Mosbah (ref_32) 2017; 147
Xiang (ref_48) 2015; 2015
Abdulwahab (ref_100) 2019; 7
Kohler (ref_54) 2019; 85
ref_86
Amirsadri (ref_97) 2018; 30
Kohli (ref_81) 2018; 5
Kaveh (ref_84) 2014; 67
Ahmed (ref_106) 2010; 3
ref_50
Jauro (ref_15) 2020; 96
Wang (ref_104) 2020; 407
Gandomi (ref_76) 2013; 18
ref_57
ref_56
Correia (ref_89) 2020; 8
Heidari (ref_94) 2017; 60
Arora (ref_110) 2019; 23
Abbas (ref_91) 2020; 13
Bangyal (ref_25) 2018; 9
Bangyal (ref_29) 2021; 12
(ref_59) 2017; 37
ref_64
Benaichouche (ref_52) 2013; 23
Delbem (ref_35) 2012; 193
Morokoff (ref_20) 1994; 15
Eshtay (ref_55) 2020; 11
(ref_16) 2002; 2002
Zeineldin (ref_92) 2020; 201
Georgioudakis (ref_31) 2017; 182
Wang (ref_18) 2000; 32
ref_36
Shen (ref_65) 2015; 298
Myszkowski (ref_67) 2018; 62
ref_30
Agushaka (ref_22) 2020; 8
Bui (ref_37) 2016; 540
Termeh (ref_38) 2019; 27
Elsayed (ref_6) 2016; 47
Xiang (ref_66) 2014; 41
Chegini (ref_99) 2018; 73
Wood (ref_33) 2016; 34
ref_108
Ezugwu (ref_3) 2020; 32
ref_46
Lozano (ref_39) 2013; 54
Dorn (ref_105) 2020; 55
ref_43
ref_40
Richards (ref_103) 2004; 3
ref_1
Barshandeh (ref_98) 2020; 37
Ivorra (ref_61) 2015; 247
Han (ref_47) 2020; 17
Kucherenko (ref_27) 2005; 30
Wang (ref_75) 2017; 267
Jensi (ref_101) 2016; 43
Mirjalili (ref_109) 2014; 69
ref_49
Aminbakhsh (ref_45) 2017; 31
ref_9
ref_8
ref_5
Dokeroglu (ref_4) 2019; 137
References_xml – ident: ref_9
– volume: 31
  start-page: 826
  year: 2020
  ident: ref_88
  article-title: Control allocation for a class of morphing aircraft with integer constraints based on Lévy flight
  publication-title: J. Syst. Eng. Electron.
  doi: 10.23919/JSEE.2020.000056
– volume: 85
  start-page: 105865
  year: 2019
  ident: ref_54
  article-title: PSO+: A new particle swarm optimization algorithm for constrained problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105865
– volume: 137
  start-page: 106030
  year: 2019
  ident: ref_44
  article-title: Improving genetic algorithm performance by population initialization with dispatching rules
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2019.106030
– volume: 7
  start-page: 533
  year: 2011
  ident: ref_34
  article-title: Meta heuristic algorithms for vehicle routing problem with stochastic demands
  publication-title: J. Comput. Sci.
  doi: 10.3844/jcssp.2011.533.542
– volume: 137
  start-page: 106040
  year: 2019
  ident: ref_4
  article-title: A survey on new generation metaheuristic algorithms
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2019.106040
– volume: 201
  start-page: 117635
  year: 2020
  ident: ref_92
  article-title: Fast initialization methods for the nonconvex economic dispatch problem
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117635
– volume: 8
  start-page: 28548
  year: 2020
  ident: ref_89
  article-title: Energy-Based Acoustic Localization by Improved Elephant Herding Optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2971787
– volume: 216
  start-page: 1
  year: 2002
  ident: ref_102
  article-title: Initializing the particle swarm optimizer using the nonlinear simplex method
  publication-title: Adv. Intell. Syst. Fuzzy Syst. Evol. Comput.
– volume: 274
  start-page: 17
  year: 2014
  ident: ref_79
  article-title: Chaotic krill herd algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.02.123
– volume: 31
  start-page: 04016040
  year: 2017
  ident: ref_45
  article-title: Pareto front particle swarm optimizer for discrete time-cost trade-off problem
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000606
– volume: 7
  start-page: 142085
  year: 2019
  ident: ref_100
  article-title: An enhanced version of black hole algorithm via levy flight for optimization and data clustering problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2937021
– volume: 73
  start-page: 697
  year: 2018
  ident: ref_99
  article-title: PSOSCALF: A new hybrid PSO based on Sine Cosine Algorithm and Levy flight for solving optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.09.019
– ident: ref_1
– ident: ref_28
  doi: 10.1007/978-3-642-02319-4_37
– ident: ref_10
  doi: 10.1371/journal.pone.0255703
– ident: ref_56
  doi: 10.1109/WHISPERS.2019.8920950
– volume: 12
  start-page: 157
  year: 2021
  ident: ref_29
  article-title: Comparison of Different Bat Initialization Techniques for Global Optimization Problems
  publication-title: Int. J. Appl. Metaheuristic Comput.
  doi: 10.4018/IJAMC.2021010109
– volume: 54
  start-page: 103
  year: 2013
  ident: ref_39
  article-title: A hybrid metaheuristic for the cyclic antibandwidth problem
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2013.08.026
– volume: 182
  start-page: 252
  year: 2017
  ident: ref_31
  article-title: Probabilistic shape design optimization of structural components under fatigue
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2016.12.008
– volume: 8
  start-page: 10048
  year: 2020
  ident: ref_87
  article-title: A Novel Bat Algorithm Strategy for Maximum Power Point Tracker of Photovoltaic Energy Systems under Dynamic Partial Shading
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2964759
– volume: 62
  start-page: 1
  year: 2018
  ident: ref_67
  article-title: Hybrid differential evolution and greedy algorithm (DEGR) for solving multi-skill resource-constrained project scheduling problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.10.014
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_109
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 162
  start-page: 113716
  year: 2020
  ident: ref_68
  article-title: Local search metaheuristic for solving hybrid flow shop problem in slabs and beams manufacturing
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113716
– volume: 28
  start-page: 57
  year: 2017
  ident: ref_80
  article-title: An efficient chaotic water cycle algorithm for optimization tasks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-2037-2
– ident: ref_46
  doi: 10.1109/CITSM.2014.7042178
– volume: 247
  start-page: 711
  year: 2015
  ident: ref_61
  article-title: A multi-layer line search method to improve the initialization of optimization algorithms
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2015.06.044
– volume: 18
  start-page: 89
  year: 2013
  ident: ref_76
  article-title: Firefly algorithm with chaos
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2012.06.009
– volume: 53
  start-page: 491
  year: 2013
  ident: ref_11
  article-title: An overview of particle swarm optimization variants
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2013.02.063
– volume: 3
  start-page: 96
  year: 2010
  ident: ref_106
  article-title: Genetic algorithm for the traveling salesman problem using sequential constructive crossover operator
  publication-title: Int. J. Biom. Bioinform.
– volume: 2020
  start-page: 8811391
  year: 2020
  ident: ref_58
  article-title: A DE-LS Metaheuristic Algorithm for Hybrid Flow-Shop Scheduling Problem considering Multiple Requirements of Customers
  publication-title: Sci. Program.
– ident: ref_30
  doi: 10.1109/IPDPSW.2012.79
– ident: ref_49
  doi: 10.3390/math7121229
– volume: 23
  start-page: 1390
  year: 2013
  ident: ref_52
  article-title: Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2013.07.005
– volume: 540
  start-page: 317
  year: 2016
  ident: ref_37
  article-title: Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.06.027
– volume: 9
  start-page: 39
  year: 2018
  ident: ref_60
  article-title: A Grayscale Segmentation Approach Using the Firefly Algorithm and the Gaussian Mixture Model
  publication-title: Int. J. Swarm Intell. Res.
  doi: 10.4018/IJSIR.2018010103
– volume: 47
  start-page: 2911
  year: 2016
  ident: ref_6
  article-title: Sequence-based deterministic initialization for evolutionary algorithms
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2630722
– ident: ref_14
– volume: 34
  start-page: 236
  year: 2016
  ident: ref_33
  article-title: Hybrid cuckoo search optimization algorithms applied to complex wellbore trajectories aided by dynamic, chaos-enhanced, fat-tailed distribution sampling and metaheuristic profiling
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2016.06.060
– volume: 23
  start-page: 59
  year: 2017
  ident: ref_63
  article-title: A learning automata-based multiobjective hyper-heuristic
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2785346
– volume: 10
  start-page: 3665
  year: 2017
  ident: ref_70
  article-title: A novel adaptive cuckoo search algorithm for contrast enhancement of satellite images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2699200
– ident: ref_19
  doi: 10.1137/1.9781611970081
– ident: ref_50
– volume: 54
  start-page: 1841
  year: 2021
  ident: ref_7
  article-title: Nature inspired optimization algorithms or simply variations of metaheuristics
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09893-8
– volume: 8
  start-page: 210886
  year: 2020
  ident: ref_22
  article-title: Influence of Initializing Krill Herd Algorithm with Low-Discrepancy Sequences
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3039602
– volume: 35
  start-page: 199
  year: 2014
  ident: ref_51
  article-title: Robust medical image segmentation using particle swarm optimization aided level set based global fitting energy active contour approach
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2014.07.001
– ident: ref_90
  doi: 10.3390/su12031185
– volume: 24
  start-page: 1565
  year: 2020
  ident: ref_83
  article-title: Feature selection strategy based on hybrid crow search optimization algorithm integrated with chaos theory and fuzzy c-means algorithm for medical diagnosis problems
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-03988-3
– volume: 54
  start-page: 4237
  year: 2021
  ident: ref_2
  article-title: Metaheuristics: A comprehensive overview and classification along with bibliometric analysis
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09952-0
– ident: ref_36
  doi: 10.1109/3ICT.2018.8855743
– volume: 27
  start-page: 2511
  year: 2019
  ident: ref_38
  article-title: Optimization of an adaptive neuro-fuzzy inference system for groundwater potential mapping
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-019-02017-9
– ident: ref_43
  doi: 10.3390/en11051060
– volume: 32
  start-page: 6207
  year: 2020
  ident: ref_3
  article-title: A conceptual comparison of several metaheuristic algorithms on continuous optimization problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04132-w
– volume: 2015
  start-page: 285730
  year: 2015
  ident: ref_48
  article-title: An enhanced differential evolution algorithm based on multiple mutation strategies
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2015/285730
– volume: 267
  start-page: 69
  year: 2017
  ident: ref_75
  article-title: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.060
– volume: 407
  start-page: 313
  year: 2020
  ident: ref_104
  article-title: Complex-valued encoding metaheuristic optimization algorithm: A comprehensive survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.06.112
– volume: 92
  start-page: 1
  year: 2016
  ident: ref_96
  article-title: Design optimization of real world steel space frames using artificial bee colony algorithm with Levy flight distribution
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.10.013
– volume: 37
  start-page: 3079
  year: 2020
  ident: ref_98
  article-title: A new hybrid chaotic atom search optimization based on tree-seed algorithm and Levy flight for solving optimization problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-020-00994-0
– ident: ref_86
  doi: 10.3390/en10070883
– ident: ref_12
  doi: 10.1109/EAIS.2014.6867465
– volume: 187
  start-page: 1076
  year: 2007
  ident: ref_69
  article-title: Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms
  publication-title: Appl. Math. Comput.
– volume: 11
  start-page: 1801
  year: 2020
  ident: ref_55
  article-title: A competitive swarm optimizer with hybrid encoding for simultaneously optimizing the weights and structure of Extreme Learning Machines for classification problems
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-020-01073-y
– volume: 41
  start-page: 183
  year: 2015
  ident: ref_53
  article-title: A GRASP-based memetic algorithm with path relinking for the far from most string problem
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2015.01.020
– volume: 2002
  start-page: 203
  year: 2002
  ident: ref_16
  article-title: On random numbers and the performance of genetic algorithms
  publication-title: Comput. Sci. Prepr. Arch.
– volume: 41
  start-page: 5788
  year: 2014
  ident: ref_66
  article-title: An improved global-best harmony search algorithm for faster optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.03.016
– ident: ref_23
– volume: 67
  start-page: 136
  year: 2014
  ident: ref_84
  article-title: Chaotic swarming of particles: A new method for size optimization of truss structures
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.09.006
– volume: 96
  start-page: 106582
  year: 2020
  ident: ref_15
  article-title: Deep learning architectures in emerging cloud computing architectures: Recent development, challenges and next research trend
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106582
– volume: 147
  start-page: 288
  year: 2017
  ident: ref_32
  article-title: Optimization of neural network parameters by Stochastic Fractal Search for dynamic state estimation under communication failure
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2017.03.002
– ident: ref_40
  doi: 10.1007/978-3-319-61824-1_12
– volume: 60
  start-page: 115
  year: 2017
  ident: ref_94
  article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.06.044
– ident: ref_26
  doi: 10.1145/1068009.1068225
– ident: ref_71
  doi: 10.1109/IranianCIS.2014.6802527
– ident: ref_74
  doi: 10.3390/app10113667
– volume: 32
  start-page: 887
  year: 2000
  ident: ref_18
  article-title: Randomized halton sequences
  publication-title: Math. Comput. Model.
  doi: 10.1016/S0895-7177(00)00178-3
– volume: 2019
  start-page: 1730868
  year: 2019
  ident: ref_73
  article-title: Chaotic adaptive butterfly mating optimization and its applications in synthesis and structure optimization of antenna arrays
  publication-title: Int. J. Antennas Propag.
  doi: 10.1155/2019/1730868
– volume: 15
  start-page: 1251
  year: 1994
  ident: ref_20
  article-title: Quasirandom sequences and their discrepancies
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0915077
– ident: ref_77
  doi: 10.1007/978-3-642-22694-6_8
– ident: ref_17
– volume: 28
  start-page: 1715
  year: 2017
  ident: ref_62
  article-title: Optimization of wavelet neural networks with the firefly algorithm for approximation problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-2140-4
– volume: 23
  start-page: 715
  year: 2019
  ident: ref_110
  article-title: Butterfly optimization algorithm: A novel approach for global optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3102-4
– volume: 8
  start-page: 53883
  year: 2020
  ident: ref_24
  article-title: Wingsuit flying search—A novel global optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981196
– volume: 193
  start-page: 36
  year: 2012
  ident: ref_35
  article-title: Investigating smart sampling as a population initialization method for differential evolution in continuous problems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.12.037
– volume: 123
  start-page: 1955
  year: 2012
  ident: ref_85
  article-title: A chaotic quantum-behaved particle swarm optimization based on lateral inhibition for image matching
  publication-title: Optik
  doi: 10.1016/j.ijleo.2011.09.052
– volume: 43
  start-page: 248
  year: 2016
  ident: ref_101
  article-title: An enhanced particle swarm optimization with levy flight for global optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.02.018
– volume: 3
  start-page: 2309
  year: 2004
  ident: ref_103
  article-title: Choosing a starting configuration for particle swarm optimization
  publication-title: Neural Netw.
– ident: ref_108
  doi: 10.1007/978-3-642-12538-6
– volume: 30
  start-page: 3707
  year: 2018
  ident: ref_97
  article-title: A Levy flight-based grey wolf optimizer combined with back-propagation algorithm for neural network training
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-2952-5
– volume: 30
  start-page: 297
  year: 2005
  ident: ref_27
  article-title: Application of deterministic low-discrepancy sequences in global optimization
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-005-4615-1
– volume: 240
  start-page: 171
  year: 2016
  ident: ref_107
  article-title: Combining metaheuristics with mathematical programming, constraint programming and machine learning
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-015-2034-y
– ident: ref_93
  doi: 10.1007/978-3-642-40567-9_4
– ident: ref_8
  doi: 10.1109/CEC.2008.4631204
– volume: 37
  start-page: 27
  year: 2017
  ident: ref_59
  article-title: Global-best brain storm optimization algorithm
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2017.05.001
– ident: ref_21
– volume: 53
  start-page: 379
  year: 2017
  ident: ref_41
  article-title: Krill herd and piecewise-linear initialization algorithms for designing Takagi–Sugeno systems
  publication-title: Optoelectron. Instrum. Data Process.
  doi: 10.3103/S8756699017040100
– volume: 25
  start-page: 1077
  year: 2014
  ident: ref_78
  article-title: Biogeography-based optimization with chaos
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-014-1597-x
– volume: 5
  start-page: 458
  year: 2018
  ident: ref_81
  article-title: Chaotic grey wolf optimization algorithm for constrained optimization problems
  publication-title: J. Comput. Des. Eng.
– volume: 298
  start-page: 198
  year: 2015
  ident: ref_65
  article-title: Mathematical modeling and multiobjective evolutionary algorithms applied to dynamic flexible job shop scheduling problems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.11.036
– volume: 48
  start-page: 3462
  year: 2018
  ident: ref_82
  article-title: A novel chaotic salp swarm algorithm for global optimization and feature selection
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1158-6
– volume: 2
  start-page: 56
  year: 2012
  ident: ref_95
  article-title: A chaotic Levy flight bat algorithm for parameter estimation in nonlinear dynamic biological systems
  publication-title: Comput. Inf. Technol.
– volume: 91
  start-page: 106193
  year: 2020
  ident: ref_13
  article-title: Influence of initialization on the performance of metaheuristic optimizers
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106193
– volume: 6
  start-page: 64905
  year: 2018
  ident: ref_72
  article-title: Chaos enhanced bacterial foraging optimization for global optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2876996
– volume: 17
  start-page: 1729881420920031
  year: 2020
  ident: ref_47
  article-title: Metaheuristic algorithm for solving the multiobjective vehicle routing problem with time window and drones
  publication-title: Int. J. Adv. Robot. Syst.
  doi: 10.1177/1729881420920031
– volume: 2015
  start-page: 396582
  year: 2015
  ident: ref_42
  article-title: Drscro: A metaheuristic algorithm for task scheduling on heterogeneous systems
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2015/396582
– volume: 9
  start-page: 158
  year: 2018
  ident: ref_25
  article-title: An improved bat algorithm based on novel initialization technique for global optimization problem
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: ref_64
  doi: 10.1007/s12065-020-00511-8
– volume: 55
  start-page: 100677
  year: 2020
  ident: ref_105
  article-title: A multi-population memetic algorithm for the 3-D protein structure prediction problem
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100677
– ident: ref_57
– volume: 13
  start-page: 463
  year: 2020
  ident: ref_91
  article-title: Imaging the search space: A nature-inspired metaheuristic extension
  publication-title: Evol. Intell.
  doi: 10.1007/s12065-019-00325-3
– ident: ref_5
  doi: 10.1109/MWSCAS.2016.7869996
SSID ssj0000913810
Score 2.4239628
SecondaryResourceType review_article
Snippet A situation where the set of initial solutions lies near the position of the true optimality (most favourable or desirable solution) by chance can increase the...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 896
SubjectTerms Algorithms
Artificial intelligence
initialisation
Keywords
Linear programming
metaheuristics
metaheuristics optimisers
Methods
Optimization
Population
population size
Probability distribution
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB614dIeENBWDS_5wKFFWnXtfdjmgpIKBJVAqAKJ28pPcqAJTZb_z8yuEyJR9WrPxWN75pux5xuAowrHa6XzzClXYYASZWYC91ksPfpvpTj3lIe8uq4v7spf99V9Srgt0rfKpU3sDLWfOcqR_xA1cZELRDOnT38z6hpFr6uphcZ72MBZpQawMT67vvm9yrIQ66XieV-YV2B8T-_CXFBnSqLpX3NFHWP_G4PceZnzLdhM8JCN-v3chndhugMf10gDd2A7XccF-5Y4o79_guaSPgERmWGnaTZKVOEohaiU3azadGVjdFueXYXWTMJzT9PMRo8PuNR28mdxwkaMTMQ8TPqf7ax_PPgMd-dntz8vstQ7IXNFXbaZKqucW-dqa1zUtUF0aqyqlJdR2qJUvnBR1bkUJneV9ry0nlvhEM2oqoro47_AYDqbhq_APAY9IRqF4EWVNggdYpE767U0svBSDuF4qcbGJWJx6m_x2GCAQTpv1nQ-hKOV8FPPp_FvsTHtx0qESLC7gdn8oUl3qtGFdi7y2pgYSqukNiLGPApP1bI6-CHsL3ezSTdz0byeo93_T-_BB0GlDl26ZR8G7fw5HCAAae1hOmUvBC_dEQ
  priority: 102
  providerName: ProQuest
Title Initialisation Approaches for Population-Based Metaheuristic Algorithms: A Comprehensive Review
URI https://www.proquest.com/docview/2621272916
https://doaj.org/article/939ccf16aafe4b879a2ff0f2d43439ed
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEC7i5hIP4iPBNbr0wYMGBqd7Ht2d225wYwKKSARvQz9dQVfZHf-_VTOzy4CBXHJtCmaorq76qrvqK4DjAtdLpdPEKVdgghJlYgL3Scw9xm-lOPd0D3l5VV7c5r_virveqC-qCWvpgVvFnelMOxd5aUwMuVVSGxFjGoWnlkgdPHlfjHm9ZKrxwZoTdVXbkJdhXk_vwVzQREqi5--FoIap_50jbqLLdBu2OljIxu3v7MCHMN-FzR5Z4C7sdMdwyU46rujTPah-UfEPkRg2GmbjjiIcpRCNsuv1eK5kguHKs8tQm1l4bemZ2fjx_nnxUM-elt_ZmJFrWIRZW9HO2keDz3A7Pf_z4yLpZiYkLivzOlF5kXLrXGmNi7o0iEqNVYXyMkqb5cpnLqoylcKkrtCe59ZzKxyiGFUUEWP7FxjMn-dhH5jHZCdEoxC0qNwGoUPMUme9lkZmXsohfFupsXIdoTjNtXisMLEgnVc9nQ_heC380vJo_F1sQvuxFiHy62YBTaLqTKL6l0kM4XC1m1V3IpeVKInLXiAaPvgf3_gKnwQ1QjSXMYcwqBev4QjhSW1HsKGmP0fwcXJ-dX0zauzyDZts6AM
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiBYQoQX2UCRAsrDXa3u3EkIpEBLaVBxaqTd3n82hJG3iCvVP9Td2xo8QCcStV-_Kh5nZee3O9wHsZPg9lyqOrLQZFiihiLRPXBSEw_gtZZI46kOOD_Phsfhxkp2swU03C0PPKjufWDtqN7PUI__Ic8Ii55jNfL64jIg1im5XOwqNxiz2_fVvLNkWn0ZfUb9vOR98O_oyjFpWgcimuagiKbI4MdbmRtugco15mzYyk64IhUmFdKkNMo8LrmObKZcI4xLDLcZ5mWUBox_-9x7cFylGcppMH3xf9nQIY1MmcTMGiOsx3UInnHgwiRRgJfDV_AB_uf86pg2ewOM2GWX9xno2YM1PN-HRCkThJmy0h3_B3rUI1e-fQjmiJ0cEnVjrlfVbYHLchTkw-7kkBYv2MEg6NvaVnvirBhSa9c_PULDV5Ndil_UZOaS5nzTv6FlzVfEMju9Eps9hfTqb-hfAHJZYPmiJqZIUxnPlQxpb41Shi9QVRQ8-dGIsbQtjTmwa5yWWMyTzckXmPdhZbr5o0Dv-vW2P9LHcQpDb9YfZ_KxsT3CpUmVtSHKtgxdGFkrzEOLAHc3mKu96sN1ps2z9wKL8Y7Uv_7_8Bh4Mj8YH5cHocH8LHnIasqgbPduwXs2v_CtMfSrzurY3Bqd3beC3b04YzA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxNBEB9qCqIPYqtitOo-VFDh6O3ex-4KIoltaKwNQSz07dzP5qEmNbki_mv-de7c7cWA4ltf75Z7mJmbr535_QD2i_C8FDJNjDBFKFA8T5SjNvG5DfFbCEot9iFPJ-XxWf7xvDjfgl_dLgyOVXY-sXHUdmGwR37ASsQiZyGbOfBxLGJ6OHp_9T1BBim8ae3oNFoTOXE_f4TybfVufBh0_ZKx0dGXD8dJZBhITFbmdSLyIqXamFIr42WpQg6ntCiE5Z7rLBc2M16UKWcqNYW0NNeWamZCzBdF4UMkDN-9Bdscq6IebA-PJtPP6w4PIm4KmrZLgVkmU7yTpgxZMZEiYCMMNmwBfwWDJsKN7sO9mJqSQWtLO7Dl5rtwdwOwcBd2oitYkVcRr_r1A6jGOICEQIqNlskgwpSHUyEjJtM1RVgyDCHTklNXq5m7biGiyeDyIoi2nn1bvSUDgu5p6WbtVD1pLy4ewtmNSPUR9OaLuXsMxIaCy3klQuIkcu2YdD5LjbaSK55ZzvvwphNjZSKoOXJrXFahuEGZVxsy78P--vBVi-Xx72ND1Mf6CAJwNw8Wy4sq_s-VzKQxnpZKeZdrwaVi3qeeWdzUlc72Ya_TZhW9wqr6Y8NP_v_6BdwOxl19Gk9OnsIdhhsXTddnD3r18to9C3lQrZ9HgyPw9aZt_DfqAB5e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Initialisation+Approaches+for+Population-Based+Metaheuristic+Algorithms%3A+A+Comprehensive+Review&rft.jtitle=Applied+sciences&rft.au=Jeffrey+O.+Agushaka&rft.au=Absalom+E.+Ezugwu&rft.date=2022-01-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=2&rft.spage=896&rft_id=info:doi/10.3390%2Fapp12020896&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_939ccf16aafe4b879a2ff0f2d43439ed
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon