Initialisation Approaches for Population-Based Metaheuristic Algorithms: A Comprehensive Review
A situation where the set of initial solutions lies near the position of the true optimality (most favourable or desirable solution) by chance can increase the probability of finding the true optimality and significantly reduce the search efforts. In optimisation problems, the location of the global...
Saved in:
Published in | Applied sciences Vol. 12; no. 2; p. 896 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A situation where the set of initial solutions lies near the position of the true optimality (most favourable or desirable solution) by chance can increase the probability of finding the true optimality and significantly reduce the search efforts. In optimisation problems, the location of the global optimum solution is unknown a priori, and initialisation is a stochastic process. In addition, the population size is equally important; if there are problems with high dimensions, a small population size may lie sparsely in unpromising regions, and may return suboptimal solutions with bias. In addition, the different distributions used as position vectors for the initial population may have different sampling emphasis; hence, different degrees of diversity. The initialisation control parameters of population-based metaheuristic algorithms play a significant role in improving the performance of the algorithms. Researchers have identified this significance, and they have put much effort into finding various distribution schemes that will enhance the diversity of the initial populations of the algorithms, and obtain the correct balance of the population size and number of iterations which will guarantee optimal solutions for a given problem set. Despite the affirmation of the role initialisation plays, to our knowledge few studies or surveys have been conducted on this subject area. Therefore, this paper presents a comprehensive survey of different initialisation schemes to improve the quality of solutions obtained by most metaheuristic optimisers for a given problem set. Popular schemes used to improve the diversity of the population can be categorised into random numbers, quasirandom sequences, chaos theory, probability distributions, hybrids of other heuristic or metaheuristic algorithms, Lévy, and others. We discuss the different levels of success of these schemes and identify their limitations. Similarly, we identify gaps and present useful insights for future research directions. Finally, we present a comparison of the effect of population size, the maximum number of iterations, and ten (10) different initialisation methods on the performance of three (3) population-based metaheuristic optimizers: bat algorithm (BA), Grey Wolf Optimizer (GWO), and butterfly optimization algorithm (BOA). |
---|---|
AbstractList | A situation where the set of initial solutions lies near the position of the true optimality (most favourable or desirable solution) by chance can increase the probability of finding the true optimality and significantly reduce the search efforts. In optimisation problems, the location of the global optimum solution is unknown a priori, and initialisation is a stochastic process. In addition, the population size is equally important; if there are problems with high dimensions, a small population size may lie sparsely in unpromising regions, and may return suboptimal solutions with bias. In addition, the different distributions used as position vectors for the initial population may have different sampling emphasis; hence, different degrees of diversity. The initialisation control parameters of population-based metaheuristic algorithms play a significant role in improving the performance of the algorithms. Researchers have identified this significance, and they have put much effort into finding various distribution schemes that will enhance the diversity of the initial populations of the algorithms, and obtain the correct balance of the population size and number of iterations which will guarantee optimal solutions for a given problem set. Despite the affirmation of the role initialisation plays, to our knowledge few studies or surveys have been conducted on this subject area. Therefore, this paper presents a comprehensive survey of different initialisation schemes to improve the quality of solutions obtained by most metaheuristic optimisers for a given problem set. Popular schemes used to improve the diversity of the population can be categorised into random numbers, quasirandom sequences, chaos theory, probability distributions, hybrids of other heuristic or metaheuristic algorithms, Lévy, and others. We discuss the different levels of success of these schemes and identify their limitations. Similarly, we identify gaps and present useful insights for future research directions. Finally, we present a comparison of the effect of population size, the maximum number of iterations, and ten (10) different initialisation methods on the performance of three (3) population-based metaheuristic optimizers: bat algorithm (BA), Grey Wolf Optimizer (GWO), and butterfly optimization algorithm (BOA). |
Author | Ezugwu, Absalom E. Agushaka, Jeffrey O. |
Author_xml | – sequence: 1 givenname: Jeffrey O. surname: Agushaka fullname: Agushaka, Jeffrey O. – sequence: 2 givenname: Absalom E. orcidid: 0000-0002-3721-3400 surname: Ezugwu fullname: Ezugwu, Absalom E. |
BookMark | eNptUctKLDEQDaLgc-UPNLiU9ubRnYe7cdB7BxRFdB2q04mToafTJpkR_96-Mwoi1qaKqnMOh1OHaLcPvUXolOALxhT-A8NAKKZYKr6DDigWvGQVEbvf5n10ktICj6UIkwQfID3rffbQ-QTZh76YDEMMYOY2FS7E4iEMq25zKa8g2ba4sxnmdhV9yt4Uk-4lRJ_ny3RZTIppWA7Rzm2f_NoWj3bt7dsx2nPQJXvy2Y_Q88310_RfeXv_dzad3JaG8SqXsqoxaYzhDRinOEjSQCNr2QonGlbJlhknORYUsKlVS6qmJQ01ggpZ144TdoRmW902wEIP0S8hvusAXm8WIb5oiKPlzmrFlDGOcABnq0YKBdQ57GhbsYop245aZ1utMYrXlU1ZL8Iq9qN9TTklVFBF-IgiW5SJIaVonTY-b6LKEXynCdb_36K_vWXknP_gfDn9Df0Br42Q9A |
CitedBy_id | crossref_primary_10_1007_s00521_024_10610_7 crossref_primary_10_1093_jcde_qwae050 crossref_primary_10_3390_a16050225 crossref_primary_10_1016_j_matcom_2024_05_010 crossref_primary_10_14483_23448393_19815 crossref_primary_10_1145_3550484 crossref_primary_10_3390_act13010013 crossref_primary_10_1007_s11831_022_09778_9 crossref_primary_10_1109_ACCESS_2024_3365700 crossref_primary_10_3390_pr12020406 crossref_primary_10_3390_app14125349 crossref_primary_10_3390_jmse13010167 crossref_primary_10_1007_s11071_024_09656_y crossref_primary_10_1371_journal_pone_0287744 crossref_primary_10_3390_w15142593 crossref_primary_10_1016_j_mex_2024_102747 crossref_primary_10_1016_j_jenvman_2024_123068 crossref_primary_10_3390_make7010024 crossref_primary_10_32604_cmc_2024_057431 crossref_primary_10_1038_s41598_025_89124_8 crossref_primary_10_1109_ACCESS_2024_3466170 crossref_primary_10_1007_s00521_022_07530_9 crossref_primary_10_1016_j_eswa_2024_125029 crossref_primary_10_1016_j_aei_2024_103088 crossref_primary_10_1016_j_aej_2023_12_050 crossref_primary_10_3390_electronics12153263 crossref_primary_10_3934_era_2024093 crossref_primary_10_1007_s00521_022_07705_4 crossref_primary_10_1016_j_engappai_2023_106959 crossref_primary_10_3390_math11040862 crossref_primary_10_1016_j_asoc_2025_112693 crossref_primary_10_1007_s12530_023_09514_z crossref_primary_10_1007_s10723_024_09787_x crossref_primary_10_3390_math11122695 crossref_primary_10_3390_math11102340 crossref_primary_10_1007_s11227_023_05264_6 crossref_primary_10_32604_cmes_2025_060481 crossref_primary_10_1038_s41598_024_71828_y crossref_primary_10_1016_j_knosys_2024_111880 crossref_primary_10_1007_s00170_023_11953_6 |
Cites_doi | 10.23919/JSEE.2020.000056 10.1016/j.asoc.2019.105865 10.1016/j.cie.2019.106030 10.3844/jcssp.2011.533.542 10.1016/j.cie.2019.106040 10.1016/j.energy.2020.117635 10.1109/ACCESS.2020.2971787 10.1016/j.ins.2014.02.123 10.1061/(ASCE)CP.1943-5487.0000606 10.1109/ACCESS.2019.2937021 10.1016/j.asoc.2018.09.019 10.1007/978-3-642-02319-4_37 10.1371/journal.pone.0255703 10.1109/WHISPERS.2019.8920950 10.4018/IJAMC.2021010109 10.1016/j.knosys.2013.08.026 10.1016/j.compstruc.2016.12.008 10.1109/ACCESS.2020.2964759 10.1016/j.asoc.2017.10.014 10.1016/j.advengsoft.2013.12.007 10.1016/j.eswa.2020.113716 10.1007/s00521-015-2037-2 10.1109/CITSM.2014.7042178 10.1016/j.ejor.2015.06.044 10.1016/j.cnsns.2012.06.009 10.1016/j.proeng.2013.02.063 10.1109/IPDPSW.2012.79 10.3390/math7121229 10.1016/j.dsp.2013.07.005 10.1016/j.jhydrol.2016.06.027 10.4018/IJSIR.2018010103 10.1109/TCYB.2016.2630722 10.1016/j.jngse.2016.06.060 10.1109/TEVC.2017.2785346 10.1109/JSTARS.2017.2699200 10.1137/1.9781611970081 10.1007/s10462-020-09893-8 10.1109/ACCESS.2020.3039602 10.1016/j.engappai.2014.07.001 10.3390/su12031185 10.1007/s00500-019-03988-3 10.1007/s10462-020-09952-0 10.1109/3ICT.2018.8855743 10.1007/s10040-019-02017-9 10.3390/en11051060 10.1007/s00521-019-04132-w 10.1155/2015/285730 10.1016/j.neucom.2017.04.060 10.1016/j.neucom.2019.06.112 10.1016/j.advengsoft.2015.10.013 10.1007/s00366-020-00994-0 10.3390/en10070883 10.1109/EAIS.2014.6867465 10.1007/s13042-020-01073-y 10.1016/j.engappai.2015.01.020 10.1016/j.eswa.2014.03.016 10.1016/j.advengsoft.2013.09.006 10.1016/j.asoc.2020.106582 10.1016/j.epsr.2017.03.002 10.1007/978-3-319-61824-1_12 10.1016/j.asoc.2017.06.044 10.1145/1068009.1068225 10.1109/IranianCIS.2014.6802527 10.3390/app10113667 10.1016/S0895-7177(00)00178-3 10.1155/2019/1730868 10.1137/0915077 10.1007/978-3-642-22694-6_8 10.1007/s00521-015-2140-4 10.1007/s00500-018-3102-4 10.1109/ACCESS.2020.2981196 10.1016/j.ins.2011.12.037 10.1016/j.ijleo.2011.09.052 10.1016/j.asoc.2016.02.018 10.1007/978-3-642-12538-6 10.1007/s00521-017-2952-5 10.1007/s10589-005-4615-1 10.1007/s10479-015-2034-y 10.1007/978-3-642-40567-9_4 10.1109/CEC.2008.4631204 10.1016/j.swevo.2017.05.001 10.3103/S8756699017040100 10.1007/s00521-014-1597-x 10.1016/j.ins.2014.11.036 10.1007/s10489-018-1158-6 10.1016/j.asoc.2020.106193 10.1109/ACCESS.2018.2876996 10.1177/1729881420920031 10.1155/2015/396582 10.1007/s12065-020-00511-8 10.1016/j.swevo.2020.100677 10.1007/s12065-019-00325-3 10.1109/MWSCAS.2016.7869996 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app12020896 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_939ccf16aafe4b879a2ff0f2d43439ed 10_3390_app12020896 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c364t-84501bcc6bacf96a81bab858d7f7b348d3cf86072a0c59d14bd1b2c727855f613 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:32:17 EDT 2025 Mon Jun 30 11:18:23 EDT 2025 Thu Apr 24 23:02:32 EDT 2025 Tue Jul 01 00:51:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-84501bcc6bacf96a81bab858d7f7b348d3cf86072a0c59d14bd1b2c727855f613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3721-3400 |
OpenAccessLink | https://doaj.org/article/939ccf16aafe4b879a2ff0f2d43439ed |
PQID | 2621272916 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_939ccf16aafe4b879a2ff0f2d43439ed proquest_journals_2621272916 crossref_citationtrail_10_3390_app12020896 crossref_primary_10_3390_app12020896 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_93 ref_90 Gallardo (ref_53) 2015; 41 ref_14 ref_12 Ezugwu (ref_2) 2021; 54 ref_10 Hodashinsky (ref_41) 2017; 53 Tzanetos (ref_7) 2021; 54 ref_19 Zainuddin (ref_62) 2017; 28 Mandal (ref_51) 2014; 35 Talbi (ref_107) 2016; 240 ref_17 Covic (ref_24) 2020; 8 Zhang (ref_72) 2018; 6 Parsopoulos (ref_102) 2002; 216 Giuliani (ref_60) 2018; 9 Shanmugam (ref_34) 2011; 7 Yao (ref_88) 2020; 31 Anter (ref_83) 2020; 24 ref_23 ref_21 Saka (ref_96) 2016; 92 Li (ref_13) 2020; 91 Aqil (ref_68) 2020; 162 ref_28 Tavazoei (ref_69) 2007; 187 ref_26 Li (ref_63) 2017; 23 Li (ref_73) 2019; 2019 Suresh (ref_70) 2017; 10 Liu (ref_85) 2012; 123 Heidari (ref_80) 2017; 28 Jiang (ref_42) 2015; 2015 Eltamaly (ref_87) 2020; 8 ref_71 Imran (ref_11) 2013; 53 ref_77 Wang (ref_79) 2014; 274 (ref_44) 2019; 137 ref_74 Sun (ref_58) 2020; 2020 Lin (ref_95) 2012; 2 Saremi (ref_78) 2014; 25 Sayed (ref_82) 2018; 48 Mosbah (ref_32) 2017; 147 Xiang (ref_48) 2015; 2015 Abdulwahab (ref_100) 2019; 7 Kohler (ref_54) 2019; 85 ref_86 Amirsadri (ref_97) 2018; 30 Kohli (ref_81) 2018; 5 Kaveh (ref_84) 2014; 67 Ahmed (ref_106) 2010; 3 ref_50 Jauro (ref_15) 2020; 96 Wang (ref_104) 2020; 407 Gandomi (ref_76) 2013; 18 ref_57 ref_56 Correia (ref_89) 2020; 8 Heidari (ref_94) 2017; 60 Arora (ref_110) 2019; 23 Abbas (ref_91) 2020; 13 Bangyal (ref_25) 2018; 9 Bangyal (ref_29) 2021; 12 (ref_59) 2017; 37 ref_64 Benaichouche (ref_52) 2013; 23 Delbem (ref_35) 2012; 193 Morokoff (ref_20) 1994; 15 Eshtay (ref_55) 2020; 11 (ref_16) 2002; 2002 Zeineldin (ref_92) 2020; 201 Georgioudakis (ref_31) 2017; 182 Wang (ref_18) 2000; 32 ref_36 Shen (ref_65) 2015; 298 Myszkowski (ref_67) 2018; 62 ref_30 Agushaka (ref_22) 2020; 8 Bui (ref_37) 2016; 540 Termeh (ref_38) 2019; 27 Elsayed (ref_6) 2016; 47 Xiang (ref_66) 2014; 41 Chegini (ref_99) 2018; 73 Wood (ref_33) 2016; 34 ref_108 Ezugwu (ref_3) 2020; 32 ref_46 Lozano (ref_39) 2013; 54 Dorn (ref_105) 2020; 55 ref_43 ref_40 Richards (ref_103) 2004; 3 ref_1 Barshandeh (ref_98) 2020; 37 Ivorra (ref_61) 2015; 247 Han (ref_47) 2020; 17 Kucherenko (ref_27) 2005; 30 Wang (ref_75) 2017; 267 Jensi (ref_101) 2016; 43 Mirjalili (ref_109) 2014; 69 ref_49 Aminbakhsh (ref_45) 2017; 31 ref_9 ref_8 ref_5 Dokeroglu (ref_4) 2019; 137 |
References_xml | – ident: ref_9 – volume: 31 start-page: 826 year: 2020 ident: ref_88 article-title: Control allocation for a class of morphing aircraft with integer constraints based on Lévy flight publication-title: J. Syst. Eng. Electron. doi: 10.23919/JSEE.2020.000056 – volume: 85 start-page: 105865 year: 2019 ident: ref_54 article-title: PSO+: A new particle swarm optimization algorithm for constrained problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105865 – volume: 137 start-page: 106030 year: 2019 ident: ref_44 article-title: Improving genetic algorithm performance by population initialization with dispatching rules publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2019.106030 – volume: 7 start-page: 533 year: 2011 ident: ref_34 article-title: Meta heuristic algorithms for vehicle routing problem with stochastic demands publication-title: J. Comput. Sci. doi: 10.3844/jcssp.2011.533.542 – volume: 137 start-page: 106040 year: 2019 ident: ref_4 article-title: A survey on new generation metaheuristic algorithms publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2019.106040 – volume: 201 start-page: 117635 year: 2020 ident: ref_92 article-title: Fast initialization methods for the nonconvex economic dispatch problem publication-title: Energy doi: 10.1016/j.energy.2020.117635 – volume: 8 start-page: 28548 year: 2020 ident: ref_89 article-title: Energy-Based Acoustic Localization by Improved Elephant Herding Optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2971787 – volume: 216 start-page: 1 year: 2002 ident: ref_102 article-title: Initializing the particle swarm optimizer using the nonlinear simplex method publication-title: Adv. Intell. Syst. Fuzzy Syst. Evol. Comput. – volume: 274 start-page: 17 year: 2014 ident: ref_79 article-title: Chaotic krill herd algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.02.123 – volume: 31 start-page: 04016040 year: 2017 ident: ref_45 article-title: Pareto front particle swarm optimizer for discrete time-cost trade-off problem publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000606 – volume: 7 start-page: 142085 year: 2019 ident: ref_100 article-title: An enhanced version of black hole algorithm via levy flight for optimization and data clustering problems publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2937021 – volume: 73 start-page: 697 year: 2018 ident: ref_99 article-title: PSOSCALF: A new hybrid PSO based on Sine Cosine Algorithm and Levy flight for solving optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.09.019 – ident: ref_1 – ident: ref_28 doi: 10.1007/978-3-642-02319-4_37 – ident: ref_10 doi: 10.1371/journal.pone.0255703 – ident: ref_56 doi: 10.1109/WHISPERS.2019.8920950 – volume: 12 start-page: 157 year: 2021 ident: ref_29 article-title: Comparison of Different Bat Initialization Techniques for Global Optimization Problems publication-title: Int. J. Appl. Metaheuristic Comput. doi: 10.4018/IJAMC.2021010109 – volume: 54 start-page: 103 year: 2013 ident: ref_39 article-title: A hybrid metaheuristic for the cyclic antibandwidth problem publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2013.08.026 – volume: 182 start-page: 252 year: 2017 ident: ref_31 article-title: Probabilistic shape design optimization of structural components under fatigue publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2016.12.008 – volume: 8 start-page: 10048 year: 2020 ident: ref_87 article-title: A Novel Bat Algorithm Strategy for Maximum Power Point Tracker of Photovoltaic Energy Systems under Dynamic Partial Shading publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2964759 – volume: 62 start-page: 1 year: 2018 ident: ref_67 article-title: Hybrid differential evolution and greedy algorithm (DEGR) for solving multi-skill resource-constrained project scheduling problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.10.014 – volume: 69 start-page: 46 year: 2014 ident: ref_109 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 162 start-page: 113716 year: 2020 ident: ref_68 article-title: Local search metaheuristic for solving hybrid flow shop problem in slabs and beams manufacturing publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113716 – volume: 28 start-page: 57 year: 2017 ident: ref_80 article-title: An efficient chaotic water cycle algorithm for optimization tasks publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-2037-2 – ident: ref_46 doi: 10.1109/CITSM.2014.7042178 – volume: 247 start-page: 711 year: 2015 ident: ref_61 article-title: A multi-layer line search method to improve the initialization of optimization algorithms publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2015.06.044 – volume: 18 start-page: 89 year: 2013 ident: ref_76 article-title: Firefly algorithm with chaos publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2012.06.009 – volume: 53 start-page: 491 year: 2013 ident: ref_11 article-title: An overview of particle swarm optimization variants publication-title: Procedia Eng. doi: 10.1016/j.proeng.2013.02.063 – volume: 3 start-page: 96 year: 2010 ident: ref_106 article-title: Genetic algorithm for the traveling salesman problem using sequential constructive crossover operator publication-title: Int. J. Biom. Bioinform. – volume: 2020 start-page: 8811391 year: 2020 ident: ref_58 article-title: A DE-LS Metaheuristic Algorithm for Hybrid Flow-Shop Scheduling Problem considering Multiple Requirements of Customers publication-title: Sci. Program. – ident: ref_30 doi: 10.1109/IPDPSW.2012.79 – ident: ref_49 doi: 10.3390/math7121229 – volume: 23 start-page: 1390 year: 2013 ident: ref_52 article-title: Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2013.07.005 – volume: 540 start-page: 317 year: 2016 ident: ref_37 article-title: Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.06.027 – volume: 9 start-page: 39 year: 2018 ident: ref_60 article-title: A Grayscale Segmentation Approach Using the Firefly Algorithm and the Gaussian Mixture Model publication-title: Int. J. Swarm Intell. Res. doi: 10.4018/IJSIR.2018010103 – volume: 47 start-page: 2911 year: 2016 ident: ref_6 article-title: Sequence-based deterministic initialization for evolutionary algorithms publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2630722 – ident: ref_14 – volume: 34 start-page: 236 year: 2016 ident: ref_33 article-title: Hybrid cuckoo search optimization algorithms applied to complex wellbore trajectories aided by dynamic, chaos-enhanced, fat-tailed distribution sampling and metaheuristic profiling publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2016.06.060 – volume: 23 start-page: 59 year: 2017 ident: ref_63 article-title: A learning automata-based multiobjective hyper-heuristic publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2785346 – volume: 10 start-page: 3665 year: 2017 ident: ref_70 article-title: A novel adaptive cuckoo search algorithm for contrast enhancement of satellite images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2017.2699200 – ident: ref_19 doi: 10.1137/1.9781611970081 – ident: ref_50 – volume: 54 start-page: 1841 year: 2021 ident: ref_7 article-title: Nature inspired optimization algorithms or simply variations of metaheuristics publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09893-8 – volume: 8 start-page: 210886 year: 2020 ident: ref_22 article-title: Influence of Initializing Krill Herd Algorithm with Low-Discrepancy Sequences publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3039602 – volume: 35 start-page: 199 year: 2014 ident: ref_51 article-title: Robust medical image segmentation using particle swarm optimization aided level set based global fitting energy active contour approach publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2014.07.001 – ident: ref_90 doi: 10.3390/su12031185 – volume: 24 start-page: 1565 year: 2020 ident: ref_83 article-title: Feature selection strategy based on hybrid crow search optimization algorithm integrated with chaos theory and fuzzy c-means algorithm for medical diagnosis problems publication-title: Soft Comput. doi: 10.1007/s00500-019-03988-3 – volume: 54 start-page: 4237 year: 2021 ident: ref_2 article-title: Metaheuristics: A comprehensive overview and classification along with bibliometric analysis publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09952-0 – ident: ref_36 doi: 10.1109/3ICT.2018.8855743 – volume: 27 start-page: 2511 year: 2019 ident: ref_38 article-title: Optimization of an adaptive neuro-fuzzy inference system for groundwater potential mapping publication-title: Hydrogeol. J. doi: 10.1007/s10040-019-02017-9 – ident: ref_43 doi: 10.3390/en11051060 – volume: 32 start-page: 6207 year: 2020 ident: ref_3 article-title: A conceptual comparison of several metaheuristic algorithms on continuous optimization problems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04132-w – volume: 2015 start-page: 285730 year: 2015 ident: ref_48 article-title: An enhanced differential evolution algorithm based on multiple mutation strategies publication-title: Comput. Intell. Neurosci. doi: 10.1155/2015/285730 – volume: 267 start-page: 69 year: 2017 ident: ref_75 article-title: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.060 – volume: 407 start-page: 313 year: 2020 ident: ref_104 article-title: Complex-valued encoding metaheuristic optimization algorithm: A comprehensive survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.06.112 – volume: 92 start-page: 1 year: 2016 ident: ref_96 article-title: Design optimization of real world steel space frames using artificial bee colony algorithm with Levy flight distribution publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.10.013 – volume: 37 start-page: 3079 year: 2020 ident: ref_98 article-title: A new hybrid chaotic atom search optimization based on tree-seed algorithm and Levy flight for solving optimization problems publication-title: Eng. Comput. doi: 10.1007/s00366-020-00994-0 – ident: ref_86 doi: 10.3390/en10070883 – ident: ref_12 doi: 10.1109/EAIS.2014.6867465 – volume: 187 start-page: 1076 year: 2007 ident: ref_69 article-title: Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms publication-title: Appl. Math. Comput. – volume: 11 start-page: 1801 year: 2020 ident: ref_55 article-title: A competitive swarm optimizer with hybrid encoding for simultaneously optimizing the weights and structure of Extreme Learning Machines for classification problems publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-020-01073-y – volume: 41 start-page: 183 year: 2015 ident: ref_53 article-title: A GRASP-based memetic algorithm with path relinking for the far from most string problem publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2015.01.020 – volume: 2002 start-page: 203 year: 2002 ident: ref_16 article-title: On random numbers and the performance of genetic algorithms publication-title: Comput. Sci. Prepr. Arch. – volume: 41 start-page: 5788 year: 2014 ident: ref_66 article-title: An improved global-best harmony search algorithm for faster optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.03.016 – ident: ref_23 – volume: 67 start-page: 136 year: 2014 ident: ref_84 article-title: Chaotic swarming of particles: A new method for size optimization of truss structures publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.09.006 – volume: 96 start-page: 106582 year: 2020 ident: ref_15 article-title: Deep learning architectures in emerging cloud computing architectures: Recent development, challenges and next research trend publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106582 – volume: 147 start-page: 288 year: 2017 ident: ref_32 article-title: Optimization of neural network parameters by Stochastic Fractal Search for dynamic state estimation under communication failure publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2017.03.002 – ident: ref_40 doi: 10.1007/978-3-319-61824-1_12 – volume: 60 start-page: 115 year: 2017 ident: ref_94 article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.06.044 – ident: ref_26 doi: 10.1145/1068009.1068225 – ident: ref_71 doi: 10.1109/IranianCIS.2014.6802527 – ident: ref_74 doi: 10.3390/app10113667 – volume: 32 start-page: 887 year: 2000 ident: ref_18 article-title: Randomized halton sequences publication-title: Math. Comput. Model. doi: 10.1016/S0895-7177(00)00178-3 – volume: 2019 start-page: 1730868 year: 2019 ident: ref_73 article-title: Chaotic adaptive butterfly mating optimization and its applications in synthesis and structure optimization of antenna arrays publication-title: Int. J. Antennas Propag. doi: 10.1155/2019/1730868 – volume: 15 start-page: 1251 year: 1994 ident: ref_20 article-title: Quasirandom sequences and their discrepancies publication-title: SIAM J. Sci. Comput. doi: 10.1137/0915077 – ident: ref_77 doi: 10.1007/978-3-642-22694-6_8 – ident: ref_17 – volume: 28 start-page: 1715 year: 2017 ident: ref_62 article-title: Optimization of wavelet neural networks with the firefly algorithm for approximation problems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-2140-4 – volume: 23 start-page: 715 year: 2019 ident: ref_110 article-title: Butterfly optimization algorithm: A novel approach for global optimization publication-title: Soft Comput. doi: 10.1007/s00500-018-3102-4 – volume: 8 start-page: 53883 year: 2020 ident: ref_24 article-title: Wingsuit flying search—A novel global optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981196 – volume: 193 start-page: 36 year: 2012 ident: ref_35 article-title: Investigating smart sampling as a population initialization method for differential evolution in continuous problems publication-title: Inf. Sci. doi: 10.1016/j.ins.2011.12.037 – volume: 123 start-page: 1955 year: 2012 ident: ref_85 article-title: A chaotic quantum-behaved particle swarm optimization based on lateral inhibition for image matching publication-title: Optik doi: 10.1016/j.ijleo.2011.09.052 – volume: 43 start-page: 248 year: 2016 ident: ref_101 article-title: An enhanced particle swarm optimization with levy flight for global optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.02.018 – volume: 3 start-page: 2309 year: 2004 ident: ref_103 article-title: Choosing a starting configuration for particle swarm optimization publication-title: Neural Netw. – ident: ref_108 doi: 10.1007/978-3-642-12538-6 – volume: 30 start-page: 3707 year: 2018 ident: ref_97 article-title: A Levy flight-based grey wolf optimizer combined with back-propagation algorithm for neural network training publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-2952-5 – volume: 30 start-page: 297 year: 2005 ident: ref_27 article-title: Application of deterministic low-discrepancy sequences in global optimization publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-005-4615-1 – volume: 240 start-page: 171 year: 2016 ident: ref_107 article-title: Combining metaheuristics with mathematical programming, constraint programming and machine learning publication-title: Ann. Oper. Res. doi: 10.1007/s10479-015-2034-y – ident: ref_93 doi: 10.1007/978-3-642-40567-9_4 – ident: ref_8 doi: 10.1109/CEC.2008.4631204 – volume: 37 start-page: 27 year: 2017 ident: ref_59 article-title: Global-best brain storm optimization algorithm publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2017.05.001 – ident: ref_21 – volume: 53 start-page: 379 year: 2017 ident: ref_41 article-title: Krill herd and piecewise-linear initialization algorithms for designing Takagi–Sugeno systems publication-title: Optoelectron. Instrum. Data Process. doi: 10.3103/S8756699017040100 – volume: 25 start-page: 1077 year: 2014 ident: ref_78 article-title: Biogeography-based optimization with chaos publication-title: Neural Comput. Appl. doi: 10.1007/s00521-014-1597-x – volume: 5 start-page: 458 year: 2018 ident: ref_81 article-title: Chaotic grey wolf optimization algorithm for constrained optimization problems publication-title: J. Comput. Des. Eng. – volume: 298 start-page: 198 year: 2015 ident: ref_65 article-title: Mathematical modeling and multiobjective evolutionary algorithms applied to dynamic flexible job shop scheduling problems publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.11.036 – volume: 48 start-page: 3462 year: 2018 ident: ref_82 article-title: A novel chaotic salp swarm algorithm for global optimization and feature selection publication-title: Appl. Intell. doi: 10.1007/s10489-018-1158-6 – volume: 2 start-page: 56 year: 2012 ident: ref_95 article-title: A chaotic Levy flight bat algorithm for parameter estimation in nonlinear dynamic biological systems publication-title: Comput. Inf. Technol. – volume: 91 start-page: 106193 year: 2020 ident: ref_13 article-title: Influence of initialization on the performance of metaheuristic optimizers publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106193 – volume: 6 start-page: 64905 year: 2018 ident: ref_72 article-title: Chaos enhanced bacterial foraging optimization for global optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2876996 – volume: 17 start-page: 1729881420920031 year: 2020 ident: ref_47 article-title: Metaheuristic algorithm for solving the multiobjective vehicle routing problem with time window and drones publication-title: Int. J. Adv. Robot. Syst. doi: 10.1177/1729881420920031 – volume: 2015 start-page: 396582 year: 2015 ident: ref_42 article-title: Drscro: A metaheuristic algorithm for task scheduling on heterogeneous systems publication-title: Math. Probl. Eng. doi: 10.1155/2015/396582 – volume: 9 start-page: 158 year: 2018 ident: ref_25 article-title: An improved bat algorithm based on novel initialization technique for global optimization problem publication-title: Int. J. Adv. Comput. Sci. Appl. – ident: ref_64 doi: 10.1007/s12065-020-00511-8 – volume: 55 start-page: 100677 year: 2020 ident: ref_105 article-title: A multi-population memetic algorithm for the 3-D protein structure prediction problem publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100677 – ident: ref_57 – volume: 13 start-page: 463 year: 2020 ident: ref_91 article-title: Imaging the search space: A nature-inspired metaheuristic extension publication-title: Evol. Intell. doi: 10.1007/s12065-019-00325-3 – ident: ref_5 doi: 10.1109/MWSCAS.2016.7869996 |
SSID | ssj0000913810 |
Score | 2.4239628 |
SecondaryResourceType | review_article |
Snippet | A situation where the set of initial solutions lies near the position of the true optimality (most favourable or desirable solution) by chance can increase the... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 896 |
SubjectTerms | Algorithms Artificial intelligence initialisation Keywords Linear programming metaheuristics metaheuristics optimisers Methods Optimization Population population size Probability distribution |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB614dIeENBWDS_5wKFFWnXtfdjmgpIKBJVAqAKJ28pPcqAJTZb_z8yuEyJR9WrPxWN75pux5xuAowrHa6XzzClXYYASZWYC91ksPfpvpTj3lIe8uq4v7spf99V9Srgt0rfKpU3sDLWfOcqR_xA1cZELRDOnT38z6hpFr6uphcZ72MBZpQawMT67vvm9yrIQ66XieV-YV2B8T-_CXFBnSqLpX3NFHWP_G4PceZnzLdhM8JCN-v3chndhugMf10gDd2A7XccF-5Y4o79_guaSPgERmWGnaTZKVOEohaiU3azadGVjdFueXYXWTMJzT9PMRo8PuNR28mdxwkaMTMQ8TPqf7ax_PPgMd-dntz8vstQ7IXNFXbaZKqucW-dqa1zUtUF0aqyqlJdR2qJUvnBR1bkUJneV9ry0nlvhEM2oqoro47_AYDqbhq_APAY9IRqF4EWVNggdYpE767U0svBSDuF4qcbGJWJx6m_x2GCAQTpv1nQ-hKOV8FPPp_FvsTHtx0qESLC7gdn8oUl3qtGFdi7y2pgYSqukNiLGPApP1bI6-CHsL3ezSTdz0byeo93_T-_BB0GlDl26ZR8G7fw5HCAAae1hOmUvBC_dEQ priority: 102 providerName: ProQuest |
Title | Initialisation Approaches for Population-Based Metaheuristic Algorithms: A Comprehensive Review |
URI | https://www.proquest.com/docview/2621272916 https://doaj.org/article/939ccf16aafe4b879a2ff0f2d43439ed |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEC7i5hIP4iPBNbr0wYMGBqd7Ht2d225wYwKKSARvQz9dQVfZHf-_VTOzy4CBXHJtCmaorq76qrvqK4DjAtdLpdPEKVdgghJlYgL3Scw9xm-lOPd0D3l5VV7c5r_virveqC-qCWvpgVvFnelMOxd5aUwMuVVSGxFjGoWnlkgdPHlfjHm9ZKrxwZoTdVXbkJdhXk_vwVzQREqi5--FoIap_50jbqLLdBu2OljIxu3v7MCHMN-FzR5Z4C7sdMdwyU46rujTPah-UfEPkRg2GmbjjiIcpRCNsuv1eK5kguHKs8tQm1l4bemZ2fjx_nnxUM-elt_ZmJFrWIRZW9HO2keDz3A7Pf_z4yLpZiYkLivzOlF5kXLrXGmNi7o0iEqNVYXyMkqb5cpnLqoylcKkrtCe59ZzKxyiGFUUEWP7FxjMn-dhH5jHZCdEoxC0qNwGoUPMUme9lkZmXsohfFupsXIdoTjNtXisMLEgnVc9nQ_heC380vJo_F1sQvuxFiHy62YBTaLqTKL6l0kM4XC1m1V3IpeVKInLXiAaPvgf3_gKnwQ1QjSXMYcwqBev4QjhSW1HsKGmP0fwcXJ-dX0zauzyDZts6AM |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiBYQoQX2UCRAsrDXa3u3EkIpEBLaVBxaqTd3n82hJG3iCvVP9Td2xo8QCcStV-_Kh5nZee3O9wHsZPg9lyqOrLQZFiihiLRPXBSEw_gtZZI46kOOD_Phsfhxkp2swU03C0PPKjufWDtqN7PUI__Ic8Ii55jNfL64jIg1im5XOwqNxiz2_fVvLNkWn0ZfUb9vOR98O_oyjFpWgcimuagiKbI4MdbmRtugco15mzYyk64IhUmFdKkNMo8LrmObKZcI4xLDLcZ5mWUBox_-9x7cFylGcppMH3xf9nQIY1MmcTMGiOsx3UInnHgwiRRgJfDV_AB_uf86pg2ewOM2GWX9xno2YM1PN-HRCkThJmy0h3_B3rUI1e-fQjmiJ0cEnVjrlfVbYHLchTkw-7kkBYv2MEg6NvaVnvirBhSa9c_PULDV5Ndil_UZOaS5nzTv6FlzVfEMju9Eps9hfTqb-hfAHJZYPmiJqZIUxnPlQxpb41Shi9QVRQ8-dGIsbQtjTmwa5yWWMyTzckXmPdhZbr5o0Dv-vW2P9LHcQpDb9YfZ_KxsT3CpUmVtSHKtgxdGFkrzEOLAHc3mKu96sN1ps2z9wKL8Y7Uv_7_8Bh4Mj8YH5cHocH8LHnIasqgbPduwXs2v_CtMfSrzurY3Bqd3beC3b04YzA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxNBEB9qCqIPYqtitOo-VFDh6O3ex-4KIoltaKwNQSz07dzP5qEmNbki_mv-de7c7cWA4ltf75Z7mJmbr535_QD2i_C8FDJNjDBFKFA8T5SjNvG5DfFbCEot9iFPJ-XxWf7xvDjfgl_dLgyOVXY-sXHUdmGwR37ASsQiZyGbOfBxLGJ6OHp_9T1BBim8ae3oNFoTOXE_f4TybfVufBh0_ZKx0dGXD8dJZBhITFbmdSLyIqXamFIr42WpQg6ntCiE5Z7rLBc2M16UKWcqNYW0NNeWamZCzBdF4UMkDN-9Bdscq6IebA-PJtPP6w4PIm4KmrZLgVkmU7yTpgxZMZEiYCMMNmwBfwWDJsKN7sO9mJqSQWtLO7Dl5rtwdwOwcBd2oitYkVcRr_r1A6jGOICEQIqNlskgwpSHUyEjJtM1RVgyDCHTklNXq5m7biGiyeDyIoi2nn1bvSUDgu5p6WbtVD1pLy4ewtmNSPUR9OaLuXsMxIaCy3klQuIkcu2YdD5LjbaSK55ZzvvwphNjZSKoOXJrXFahuEGZVxsy78P--vBVi-Xx72ND1Mf6CAJwNw8Wy4sq_s-VzKQxnpZKeZdrwaVi3qeeWdzUlc72Ya_TZhW9wqr6Y8NP_v_6BdwOxl19Gk9OnsIdhhsXTddnD3r18to9C3lQrZ9HgyPw9aZt_DfqAB5e |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Initialisation+Approaches+for+Population-Based+Metaheuristic+Algorithms%3A+A+Comprehensive+Review&rft.jtitle=Applied+sciences&rft.au=Jeffrey+O.+Agushaka&rft.au=Absalom+E.+Ezugwu&rft.date=2022-01-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=2&rft.spage=896&rft_id=info:doi/10.3390%2Fapp12020896&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_939ccf16aafe4b879a2ff0f2d43439ed |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |