Structural control of wind turbines with soil structure interaction included
•Soil–structure interaction (SSI) is considered in a structural control scheme for wind turbines.•SSI has a negligible effect on blade vibrations.•Active tuned mass dampers (ATMDs) are shown to respond well to changes in system frequencies due to presence of SSI.•Passive structural control technique...
Saved in:
Published in | Engineering structures Vol. 111; pp. 131 - 151 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.03.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Soil–structure interaction (SSI) is considered in a structural control scheme for wind turbines.•SSI has a negligible effect on blade vibrations.•Active tuned mass dampers (ATMDs) are shown to respond well to changes in system frequencies due to presence of SSI.•Passive structural control techniques can be rendered ineffective when SSI is considered.
The importance of considering soil structure interaction in structural control of wind turbines is investigated in this paper. An Euler–Lagrangian wind turbine mathematical model based on an energy formulation was developed for this purpose which considers the structural dynamics of the system and the interaction between in-plane and out-of-plane blade vibrations. Also, the interaction between the blades and the tower including a tuned mass damper (TMD) is considered. The turbine is subject to turbulent aerodynamic loading simulated using a modification to the classic Blade Element Momentum (BEM) theory with turbulence generated from rotationally sampled spectra. The turbine is also subject to gravity loading. The effect of centrifugal stiffening of the rotating blades has also been considered. The developed wind turbine model has been benchmarked against the NREL’s aeroelastic model FAST. Three-dimensional models of the wind turbine foundation are designed and analysed in the finite element geotechnical code Plaxis. Bi-axial rotations of the foundation obtained from dynamic finite element analyses are used to calculate rotational spring constants. These spring constants are used in the wind turbine model to describe the soil–structure interaction (SSI) between the wind turbine foundation and the underlying soil medium. This paper shows that where there are uncertainties regarding the stiffness of the soil, passive vibration control schemes may be rendered ineffective. Furthermore, it is demonstrated that vibration control of wind turbines using the proposed active control scheme has a promising prospect in situations where soil parameter values are uncertain. |
---|---|
AbstractList | •Soil–structure interaction (SSI) is considered in a structural control scheme for wind turbines.•SSI has a negligible effect on blade vibrations.•Active tuned mass dampers (ATMDs) are shown to respond well to changes in system frequencies due to presence of SSI.•Passive structural control techniques can be rendered ineffective when SSI is considered.
The importance of considering soil structure interaction in structural control of wind turbines is investigated in this paper. An Euler–Lagrangian wind turbine mathematical model based on an energy formulation was developed for this purpose which considers the structural dynamics of the system and the interaction between in-plane and out-of-plane blade vibrations. Also, the interaction between the blades and the tower including a tuned mass damper (TMD) is considered. The turbine is subject to turbulent aerodynamic loading simulated using a modification to the classic Blade Element Momentum (BEM) theory with turbulence generated from rotationally sampled spectra. The turbine is also subject to gravity loading. The effect of centrifugal stiffening of the rotating blades has also been considered. The developed wind turbine model has been benchmarked against the NREL’s aeroelastic model FAST. Three-dimensional models of the wind turbine foundation are designed and analysed in the finite element geotechnical code Plaxis. Bi-axial rotations of the foundation obtained from dynamic finite element analyses are used to calculate rotational spring constants. These spring constants are used in the wind turbine model to describe the soil–structure interaction (SSI) between the wind turbine foundation and the underlying soil medium. This paper shows that where there are uncertainties regarding the stiffness of the soil, passive vibration control schemes may be rendered ineffective. Furthermore, it is demonstrated that vibration control of wind turbines using the proposed active control scheme has a promising prospect in situations where soil parameter values are uncertain. |
Author | Fitzgerald, Breiffni Basu, Biswajit |
Author_xml | – sequence: 1 givenname: Breiffni surname: Fitzgerald fullname: Fitzgerald, Breiffni email: breiffni.fitzgerald@dit.ie organization: School of Civil & Structural Engineering, Dublin Institute of Technology, Ireland – sequence: 2 givenname: Biswajit surname: Basu fullname: Basu, Biswajit organization: Dept. of Civil, Structural & Environmental Engineering, Trinity College Dublin, Ireland |
BookMark | eNqNkMtOwzAQRS1UJNrCN5AfSBjbaeIsWFQVL6kSC2BtOfYEXAUb2S6Iv8elFQs2sJqH5lzduTMycd4hIecUKgq0udhU6J5jCludKgZ0UVFWAe2OyJSKlpctZ3xCpkBrWgLrmhMyi3EDAEwImJL1wze5DWostHcp-LHwQ_FhnSnytrcOY57SSxG9HYt4uMbCuoRB6WS9y70etwbNKTke1Bjx7FDn5On66nF1W67vb-5Wy3WpeVOnUsCg-1qbQYOiusEaRd7z_I1gfaM6la3VPYgaFgxpa4zqgPMWW9qKTrMFn5PLva4OPsaAg9Q2qZ2VFJQdJQW5i0Zu5E80cheNpEzmaDLf_uLfgn1V4fMf5HJPYn7v3WKQUVt0Go0NmG-Nt39qfAHanof5 |
CitedBy_id | crossref_primary_10_1007_s42417_024_01544_4 crossref_primary_10_1016_j_oceaneng_2022_112234 crossref_primary_10_1007_s11012_021_01323_5 crossref_primary_10_3390_en14206635 crossref_primary_10_1016_j_engstruct_2025_119954 crossref_primary_10_1080_19648189_2021_2013949 crossref_primary_10_1002_stc_2532 crossref_primary_10_1016_j_engstruct_2020_111744 crossref_primary_10_1007_s13344_024_0031_0 crossref_primary_10_1002_we_2063 crossref_primary_10_1002_stc_2261 crossref_primary_10_1016_j_oceaneng_2020_107289 crossref_primary_10_1142_S0219876224500610 crossref_primary_10_1002_we_2623 crossref_primary_10_1007_s40430_021_02837_5 crossref_primary_10_1080_15732479_2018_1550096 crossref_primary_10_1016_j_engstruct_2019_110087 crossref_primary_10_1142_S0219455422501942 crossref_primary_10_1016_j_oceaneng_2024_117912 crossref_primary_10_1016_j_marstruc_2020_102726 crossref_primary_10_1002_stc_2284 crossref_primary_10_3390_su152416878 crossref_primary_10_1007_s40996_023_01292_7 crossref_primary_10_1016_j_oceaneng_2024_118310 crossref_primary_10_1016_j_engstruct_2018_07_009 crossref_primary_10_1186_s43065_025_00118_2 crossref_primary_10_1142_S0219876222500050 crossref_primary_10_1016_j_oceaneng_2022_110637 crossref_primary_10_1016_j_soildyn_2019_03_008 crossref_primary_10_1002_stc_2117 crossref_primary_10_1007_s13296_018_0191_y crossref_primary_10_1142_S0219455423501018 crossref_primary_10_1007_s40996_019_00302_x crossref_primary_10_1016_j_marstruc_2021_102938 crossref_primary_10_1002_stc_2471 crossref_primary_10_1016_j_istruc_2021_01_018 crossref_primary_10_1016_j_engstruct_2022_114558 crossref_primary_10_3390_s20185348 crossref_primary_10_1007_s40430_018_1471_3 crossref_primary_10_1186_s43088_023_00444_y crossref_primary_10_1520_JTE20180025 crossref_primary_10_1002_stc_2083 crossref_primary_10_1002_tal_1785 crossref_primary_10_1016_j_engstruct_2020_110928 crossref_primary_10_1002_stc_2627 crossref_primary_10_1002_stc_2067 crossref_primary_10_1016_j_egyr_2024_03_014 crossref_primary_10_1016_j_jsv_2017_12_026 crossref_primary_10_1080_1064119X_2021_1972062 crossref_primary_10_1016_j_oceaneng_2023_115057 crossref_primary_10_1016_j_ymssp_2022_108975 crossref_primary_10_1007_s42417_022_00504_0 crossref_primary_10_1016_j_engstruct_2024_117529 crossref_primary_10_1016_j_rser_2024_115227 crossref_primary_10_1002_tal_2163 crossref_primary_10_1016_j_istruc_2018_10_009 crossref_primary_10_1016_j_engstruct_2017_12_001 crossref_primary_10_1016_j_ymssp_2017_06_016 crossref_primary_10_1088_1742_6596_2767_6_062023 crossref_primary_10_1080_24705314_2020_1729518 crossref_primary_10_1080_13632469_2022_2113000 |
Cites_doi | 10.1002/we.249 10.1002/stc.176 10.1016/S0141-0296(97)00078-3 10.1002/eqe.485 10.2172/947422 10.1016/j.soildyn.2009.11.001 10.1080/13632460009350372 10.1002/stc.404 10.1016/j.engstruct.2012.06.041 10.1109/TCST.2013.2260825 10.1016/0022-460X(72)90600-1 10.1155/2012/408493 10.1016/0038-092X(82)90072-X 10.1016/0267-7261(86)90020-5 10.1016/j.engstruct.2005.03.004 10.1002/stc.1524 10.1016/j.engstruct.2011.01.011 10.1002/eqe.4290020108 10.1007/s00466-010-0550-9 10.1016/0167-6105(83)90108-3 10.1016/j.apor.2006.03.004 10.4028/www.scientific.net/KEM.569-570.660 10.1016/0167-6105(88)90129-8 10.1002/we.426 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.engstruct.2015.12.019 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7323 |
EndPage | 151 |
ExternalDocumentID | 10_1016_j_engstruct_2015_12_019 S014102961500783X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIWK ACLVX ACRLP ACSBN ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSE SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW SSH VH1 WUQ ZY4 |
ID | FETCH-LOGICAL-c364t-80fcb4cdfc0a1c6e4e8364310182b6a9a2884b084052e17dda90337e71789c253 |
IEDL.DBID | .~1 |
ISSN | 0141-0296 |
IngestDate | Tue Jul 01 03:01:49 EDT 2025 Thu Apr 24 22:48:37 EDT 2025 Fri Feb 23 02:26:50 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | TMD Soil–structure interaction ATMD Wind turbine Structural control |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-80fcb4cdfc0a1c6e4e8364310182b6a9a2884b084052e17dda90337e71789c253 |
OpenAccessLink | https://arrow.tudublin.ie/context/engschcivart/article/1156/viewcontent/Structural_control_of_wind_turbines_with_soil_structure_interacti.pdf |
PageCount | 21 |
ParticipantIDs | crossref_citationtrail_10_1016_j_engstruct_2015_12_019 crossref_primary_10_1016_j_engstruct_2015_12_019 elsevier_sciencedirect_doi_10_1016_j_engstruct_2015_12_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-15 |
PublicationDateYYYYMMDD | 2016-03-15 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Engineering structures |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Novak, Hifnawy (b0025) 1988; 28 Rana, Soong (b0160) 1998; 20 Zaaijer M. Foundation models for the dynamic response of offshore wind turbines. In: Proceedings of MAREC; 2002. p. 1–1000. Bush, Manuel (b0065) 2009 Fitzgerald, Basu (b0095) 2013; 569 Jonkman JM, Buhl M. FAST user’s guide. NREL/EL-500-38230 (previously NREL/EL-500-29798), Golden, CO: National Renewable Energy Laboratory; 2005. Mylonakis, Gazetas (b0040) 2000; 4 Buhl M. Modes. NWTC design codes; May 2005. Lackner, Rotea (b0080) 2011; 14 Novak, Hifnawy (b0020) 1983; 11 Zhu (b0105) 2011; 47 Jonkman JM, Butterfield S, Musial W, Scott G. Definition of a 5-MW reference wind turbine for offshore system development. National Renewable Energy Laboratory. Technical report, NREL/TP-500-38060, Golden, Colorado; 2009. Shinozuka, Jan (b0145) 1972; 25 Moghaddasi, Cubrinovski, Chase, Pampanin, Carr (b0015) 2011; 33 Hansen (b0125) 2000 Luco (b0010) 1986; 5 Ghosh, Basu (b0035) 2005; 34 Arrigan, Pakrashi, Basu, Nagarajaiah (b0085) 2011; 18 Fitzgerald, Basu, Nielsen (b0100) 2013 Harte, Basu, Nielsen (b0075) 2012; 45 Manwell, McGowan, Rogers (b0150) 2002 Zaaijer (b0055) 2006; 28 Adhikari, Bhattacharya (b0070) 2012; 19 Connell (b0130) 1982; 29 Kausel (b0030) 2010; 30 Stewart, Lackner (b0090) 2013; 21 . Veletsos, Verbic (b0005) 1973; 2 Camp T, Morris M, Van Rooij R, Van Der Tempel J, Zaaijer M, Henderson A, et al. Design methods for offshore wind turbines at exposed sites. Final report of the OWTES project, Garrad Hassan and Partners Ltd, Bristol, UK; 2003. Kwakernaak, Sivan (b0165) 1972 Veers P. Three-dimensional wind simulation. SAND88-0152, UC-261, Sandia National Laboratories, Albuquerque, NM; 1988. Ghosh, Basu (b0120) 2007; 14 Murtagh, Ghosh, Basu, Broderick (b0135) 2008; 11 Murtagh, Basu, Broderick (b0060) 2005; 27 Stewart (10.1016/j.engstruct.2015.12.019_b0090) 2013; 21 Bush (10.1016/j.engstruct.2015.12.019_b0065) 2009 Zhu (10.1016/j.engstruct.2015.12.019_b0105) 2011; 47 Veletsos (10.1016/j.engstruct.2015.12.019_b0005) 1973; 2 Mylonakis (10.1016/j.engstruct.2015.12.019_b0040) 2000; 4 10.1016/j.engstruct.2015.12.019_b0110 10.1016/j.engstruct.2015.12.019_b0050 Hansen (10.1016/j.engstruct.2015.12.019_b0125) 2000 Rana (10.1016/j.engstruct.2015.12.019_b0160) 1998; 20 10.1016/j.engstruct.2015.12.019_b0045 Murtagh (10.1016/j.engstruct.2015.12.019_b0135) 2008; 11 Luco (10.1016/j.engstruct.2015.12.019_b0010) 1986; 5 Zaaijer (10.1016/j.engstruct.2015.12.019_b0055) 2006; 28 Lackner (10.1016/j.engstruct.2015.12.019_b0080) 2011; 14 Fitzgerald (10.1016/j.engstruct.2015.12.019_b0100) 2013 Novak (10.1016/j.engstruct.2015.12.019_b0020) 1983; 11 Ghosh (10.1016/j.engstruct.2015.12.019_b0120) 2007; 14 10.1016/j.engstruct.2015.12.019_b0140 Shinozuka (10.1016/j.engstruct.2015.12.019_b0145) 1972; 25 Adhikari (10.1016/j.engstruct.2015.12.019_b0070) 2012; 19 Manwell (10.1016/j.engstruct.2015.12.019_b0150) 2002 Harte (10.1016/j.engstruct.2015.12.019_b0075) 2012; 45 Kausel (10.1016/j.engstruct.2015.12.019_b0030) 2010; 30 10.1016/j.engstruct.2015.12.019_b0115 Moghaddasi (10.1016/j.engstruct.2015.12.019_b0015) 2011; 33 10.1016/j.engstruct.2015.12.019_b0155 Kwakernaak (10.1016/j.engstruct.2015.12.019_b0165) 1972 Ghosh (10.1016/j.engstruct.2015.12.019_b0035) 2005; 34 Novak (10.1016/j.engstruct.2015.12.019_b0025) 1988; 28 Arrigan (10.1016/j.engstruct.2015.12.019_b0085) 2011; 18 Fitzgerald (10.1016/j.engstruct.2015.12.019_b0095) 2013; 569 Connell (10.1016/j.engstruct.2015.12.019_b0130) 1982; 29 Murtagh (10.1016/j.engstruct.2015.12.019_b0060) 2005; 27 |
References_xml | – volume: 28 start-page: 45 year: 2006 end-page: 57 ident: b0055 article-title: Foundation modelling to assess dynamic behaviour of offshore wind turbines publication-title: Appl Ocean Res – volume: 45 start-page: 509 year: 2012 end-page: 518 ident: b0075 article-title: Dynamic analysis of wind turbines including soil–structure interaction publication-title: Eng Struct – volume: 14 start-page: 373 year: 2011 end-page: 388 ident: b0080 article-title: Passive structural control of offshore wind turbines publication-title: Wind Energy – volume: 19 start-page: 37 year: 2012 end-page: 56 ident: b0070 article-title: Dynamic analysis of wind turbine towers on flexible foundations publication-title: Shock Vib – volume: 27 start-page: 1209 year: 2005 end-page: 1219 ident: b0060 article-title: Along-wind response of a wind turbine tower with blade coupling subjected to rotationally sampled wind loading publication-title: Eng Struct – volume: 34 start-page: 1375 year: 2005 end-page: 1389 ident: b0035 article-title: Effect of soil interaction on the performance of liquid column dampers for seismic applications publication-title: Earthq Eng Struct Dyn – volume: 11 start-page: 305 year: 2008 end-page: 317 ident: b0135 article-title: Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence publication-title: Wind Energy – reference: Jonkman JM, Butterfield S, Musial W, Scott G. Definition of a 5-MW reference wind turbine for offshore system development. National Renewable Energy Laboratory. Technical report, NREL/TP-500-38060, Golden, Colorado; 2009. – volume: 30 start-page: 822 year: 2010 end-page: 832 ident: b0030 article-title: Early history of soil–structure interaction publication-title: Soil Dyn Earthq Eng – year: 2002 ident: b0150 article-title: Wind energy explained: theory, design and application – reference: Buhl M. Modes. NWTC design codes; May 2005. < – reference: Veers P. Three-dimensional wind simulation. SAND88-0152, UC-261, Sandia National Laboratories, Albuquerque, NM; 1988. – volume: 14 start-page: 681 year: 2007 end-page: 692 ident: b0120 article-title: A closed-form optimal tuning criterion for TMD in damped structures publication-title: Struct Control Health Monit – year: 2013 ident: b0100 article-title: Active tuned mass dampers for control of in-plane vibrations of wind turbine blades publication-title: Struct Control Health Monit – volume: 47 start-page: 395 year: 2011 end-page: 408 ident: b0105 article-title: The vibrations of pre-twisted rotating Timoshenko beams by the Rayleigh–Ritz method publication-title: Comput Mech – volume: 5 start-page: 170 year: 1986 end-page: 177 ident: b0010 article-title: Soil–structure interaction effects on the seismic response of tall chimneys publication-title: Soil Dyn Earthq Eng – volume: 2 start-page: 87 year: 1973 end-page: 102 ident: b0005 article-title: Vibration of viscoelastic foundations publication-title: Earthq Eng Struct Dyn – volume: 11 start-page: 295 year: 1983 end-page: 306 ident: b0020 article-title: Damping of structures due to soil–structure interaction publication-title: J Wind Eng Ind Aerodyn – reference: Jonkman JM, Buhl M. FAST user’s guide. NREL/EL-500-38230 (previously NREL/EL-500-29798), Golden, CO: National Renewable Energy Laboratory; 2005. – volume: 20 start-page: 193 year: 1998 end-page: 204 ident: b0160 article-title: Parametric study and simplified design of tuned mass dampers publication-title: Eng Struct – volume: 25 start-page: 111 year: 1972 end-page: 128 ident: b0145 article-title: Digital simulation of random processes and its applications publication-title: J Sound Vib – year: 1972 ident: b0165 article-title: Linear optimal control systems – volume: 33 start-page: 1338 year: 2011 end-page: 1347 ident: b0015 article-title: Effects of soil–foundation–structure interaction on seismic structural response via robust monte carlo simulation publication-title: Eng Struct – reference: >. – volume: 21 start-page: 1090 year: 2013 end-page: 1104 ident: b0090 article-title: Offshore wind turbine load reduction employing optimal passive tuned mass damping systems publication-title: IEEE Trans Control Syst Technol – reference: Camp T, Morris M, Van Rooij R, Van Der Tempel J, Zaaijer M, Henderson A, et al. Design methods for offshore wind turbines at exposed sites. Final report of the OWTES project, Garrad Hassan and Partners Ltd, Bristol, UK; 2003. – volume: 4 start-page: 277 year: 2000 end-page: 301 ident: b0040 article-title: Seismic soil–structure interaction: beneficial or detrimental? publication-title: J Earthquake Eng – year: 2000 ident: b0125 article-title: Aerodynamics of wind turbines – volume: 18 start-page: 840 year: 2011 end-page: 851 ident: b0085 article-title: Control of flapwise vibrations in wind turbine blades using semi-active tuned mass dampers publication-title: Struct Control Health Monit – reference: Zaaijer M. Foundation models for the dynamic response of offshore wind turbines. In: Proceedings of MAREC; 2002. p. 1–1000. – volume: 29 start-page: 363 year: 1982 end-page: 375 ident: b0130 article-title: The spectrum of wind speed fluctuations encountered by a rotating blade of a wind energy conversion system publication-title: Sol Energy – volume: 569 start-page: 660 year: 2013 end-page: 667 ident: b0095 article-title: Active tuned mass damper control of wind turbine nacelle/tower vibrations with damaged foundations publication-title: Key Eng Mater – volume: 28 start-page: 329 year: 1988 end-page: 338 ident: b0025 article-title: Structural response to wind with soil–structure interaction publication-title: J Wind Eng Ind Aerodyn – start-page: 1 year: 2009 end-page: 1000 ident: b0065 article-title: Foundation models for offshore wind turbines publication-title: ASME wind energy symposium – volume: 11 start-page: 305 issue: 4 year: 2008 ident: 10.1016/j.engstruct.2015.12.019_b0135 article-title: Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence publication-title: Wind Energy doi: 10.1002/we.249 – volume: 14 start-page: 681 issue: 4 year: 2007 ident: 10.1016/j.engstruct.2015.12.019_b0120 article-title: A closed-form optimal tuning criterion for TMD in damped structures publication-title: Struct Control Health Monit doi: 10.1002/stc.176 – year: 2000 ident: 10.1016/j.engstruct.2015.12.019_b0125 – volume: 20 start-page: 193 issue: 3 year: 1998 ident: 10.1016/j.engstruct.2015.12.019_b0160 article-title: Parametric study and simplified design of tuned mass dampers publication-title: Eng Struct doi: 10.1016/S0141-0296(97)00078-3 – volume: 34 start-page: 1375 issue: 11 year: 2005 ident: 10.1016/j.engstruct.2015.12.019_b0035 article-title: Effect of soil interaction on the performance of liquid column dampers for seismic applications publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.485 – ident: 10.1016/j.engstruct.2015.12.019_b0115 doi: 10.2172/947422 – volume: 30 start-page: 822 issue: 9 year: 2010 ident: 10.1016/j.engstruct.2015.12.019_b0030 article-title: Early history of soil–structure interaction publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2009.11.001 – volume: 4 start-page: 277 issue: 03 year: 2000 ident: 10.1016/j.engstruct.2015.12.019_b0040 article-title: Seismic soil–structure interaction: beneficial or detrimental? publication-title: J Earthquake Eng doi: 10.1080/13632460009350372 – volume: 18 start-page: 840 issue: 8 year: 2011 ident: 10.1016/j.engstruct.2015.12.019_b0085 article-title: Control of flapwise vibrations in wind turbine blades using semi-active tuned mass dampers publication-title: Struct Control Health Monit doi: 10.1002/stc.404 – ident: 10.1016/j.engstruct.2015.12.019_b0045 – volume: 45 start-page: 509 year: 2012 ident: 10.1016/j.engstruct.2015.12.019_b0075 article-title: Dynamic analysis of wind turbines including soil–structure interaction publication-title: Eng Struct doi: 10.1016/j.engstruct.2012.06.041 – volume: 21 start-page: 1090 issue: 4 year: 2013 ident: 10.1016/j.engstruct.2015.12.019_b0090 article-title: Offshore wind turbine load reduction employing optimal passive tuned mass damping systems publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2013.2260825 – volume: 25 start-page: 111 issue: 1 year: 1972 ident: 10.1016/j.engstruct.2015.12.019_b0145 article-title: Digital simulation of random processes and its applications publication-title: J Sound Vib doi: 10.1016/0022-460X(72)90600-1 – ident: 10.1016/j.engstruct.2015.12.019_b0140 – volume: 19 start-page: 37 issue: 1 year: 2012 ident: 10.1016/j.engstruct.2015.12.019_b0070 article-title: Dynamic analysis of wind turbine towers on flexible foundations publication-title: Shock Vib doi: 10.1155/2012/408493 – volume: 29 start-page: 363 issue: 5 year: 1982 ident: 10.1016/j.engstruct.2015.12.019_b0130 article-title: The spectrum of wind speed fluctuations encountered by a rotating blade of a wind energy conversion system publication-title: Sol Energy doi: 10.1016/0038-092X(82)90072-X – year: 1972 ident: 10.1016/j.engstruct.2015.12.019_b0165 – volume: 5 start-page: 170 issue: 3 year: 1986 ident: 10.1016/j.engstruct.2015.12.019_b0010 article-title: Soil–structure interaction effects on the seismic response of tall chimneys publication-title: Soil Dyn Earthq Eng doi: 10.1016/0267-7261(86)90020-5 – volume: 27 start-page: 1209 issue: 8 year: 2005 ident: 10.1016/j.engstruct.2015.12.019_b0060 article-title: Along-wind response of a wind turbine tower with blade coupling subjected to rotationally sampled wind loading publication-title: Eng Struct doi: 10.1016/j.engstruct.2005.03.004 – ident: 10.1016/j.engstruct.2015.12.019_b0050 – year: 2013 ident: 10.1016/j.engstruct.2015.12.019_b0100 article-title: Active tuned mass dampers for control of in-plane vibrations of wind turbine blades publication-title: Struct Control Health Monit doi: 10.1002/stc.1524 – volume: 33 start-page: 1338 issue: 4 year: 2011 ident: 10.1016/j.engstruct.2015.12.019_b0015 article-title: Effects of soil–foundation–structure interaction on seismic structural response via robust monte carlo simulation publication-title: Eng Struct doi: 10.1016/j.engstruct.2011.01.011 – start-page: 1 year: 2009 ident: 10.1016/j.engstruct.2015.12.019_b0065 article-title: Foundation models for offshore wind turbines – ident: 10.1016/j.engstruct.2015.12.019_b0155 – volume: 2 start-page: 87 issue: 1 year: 1973 ident: 10.1016/j.engstruct.2015.12.019_b0005 article-title: Vibration of viscoelastic foundations publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.4290020108 – volume: 47 start-page: 395 year: 2011 ident: 10.1016/j.engstruct.2015.12.019_b0105 article-title: The vibrations of pre-twisted rotating Timoshenko beams by the Rayleigh–Ritz method publication-title: Comput Mech doi: 10.1007/s00466-010-0550-9 – volume: 11 start-page: 295 issue: 1–3 year: 1983 ident: 10.1016/j.engstruct.2015.12.019_b0020 article-title: Damping of structures due to soil–structure interaction publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/0167-6105(83)90108-3 – volume: 28 start-page: 45 issue: 1 year: 2006 ident: 10.1016/j.engstruct.2015.12.019_b0055 article-title: Foundation modelling to assess dynamic behaviour of offshore wind turbines publication-title: Appl Ocean Res doi: 10.1016/j.apor.2006.03.004 – ident: 10.1016/j.engstruct.2015.12.019_b0110 – year: 2002 ident: 10.1016/j.engstruct.2015.12.019_b0150 – volume: 569 start-page: 660 year: 2013 ident: 10.1016/j.engstruct.2015.12.019_b0095 article-title: Active tuned mass damper control of wind turbine nacelle/tower vibrations with damaged foundations publication-title: Key Eng Mater doi: 10.4028/www.scientific.net/KEM.569-570.660 – volume: 28 start-page: 329 issue: 13 year: 1988 ident: 10.1016/j.engstruct.2015.12.019_b0025 article-title: Structural response to wind with soil–structure interaction publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/0167-6105(88)90129-8 – volume: 14 start-page: 373 issue: 3 year: 2011 ident: 10.1016/j.engstruct.2015.12.019_b0080 article-title: Passive structural control of offshore wind turbines publication-title: Wind Energy doi: 10.1002/we.426 |
SSID | ssj0002880 |
Score | 2.4256642 |
Snippet | •Soil–structure interaction (SSI) is considered in a structural control scheme for wind turbines.•SSI has a negligible effect on blade vibrations.•Active tuned... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 131 |
SubjectTerms | ATMD Soil–structure interaction Structural control TMD Wind turbine |
Title | Structural control of wind turbines with soil structure interaction included |
URI | https://dx.doi.org/10.1016/j.engstruct.2015.12.019 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIryqDywhjp-5MFWVVTl1aVU6mYlfqCiKq1oERu_HV_iFCohdWBLrLsouZzOPvu77xC6FjpLqUkjl-RYG_BEsSATygRWKaZpbOOwBI8_D6PBmD9MxKSBenUtDMAqfeyvYnoZrf1Ix1uzs5hOO6MSokhTYDSHs6gJVLDzGLz85usH5kGTsnsaCAcgvYHxMsVrRdMKGC9R7gsC5c5fM9SvWad_gPb9chF3qzc6RA1THKG9XySCx-hpVD4b6DOwB57jucWfLtnGbjQHXDuG7Va8nE9neOmlDQamiPeqrsFdq9mHNvoEjft3L71B4HskBIpFfOUmGKtyrrRVJAtVZLhJ3DgDHi6aR1maue_nOXFpnKAmjLX7NYSx2LgsLkkVFewUNYt5Yc4QThmz1uiEaMK41SSluU5snIVaUWo0aaGototUnkAc-ljMZI0Ue5Nrg0owqAypdAZtIbJWXFQcGttVbmvDyw13kC7Sb1M-_4_yBdp1dxHAzEJxiZpOwFy5dccqb5eO1UY73fvHwfAb_N3bfA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwED5RGNoOVZ8qfXroGuHYeXZDqCiUxwJIbFbiR0WFAipU_fu1EweBVImhW3S5i5KLdeezP38H8OKLNCYyDnSRo5TjRZw6qc-lozingoQqdAvw-HAUJFPvfebPatCpzsIYWKWN_WVML6K1lbSsN1ur-bw1LiCKJDaM5mYvanYEDcNO5deh0e71k9E2IJOoaKBm9B1jsAfzkvlHydRqYF5-sTRoWHf-SlI7iad7Dmd2xoja5UtdQE3ml3C6wyN4BYNx8WzDoIEs9hwtFfrR9TbS0sxA25FZcUXr5XyB1lZbIkMW8VUebdDXfPEtpLiGafdt0kkc2ybB4TTwNjrHKJ55XCiOU5cH0pORllNDxUWyII1T_f1ehnUl5xPphkL_HUxpKHUhF8Wc-PQG6vkyl7eAYkqVkiLCAlNPCRyTTEQqTF3BCZECNyGo_MK45RA3rSwWrAKLfbKtQ5lxKHMJ0w5tAt4arkoajcMmr5Xj2d6IYDrYHzK--4_xMxwnk-GADXqj_j2c6DuBQZ25_gPUtbJ81NOQTfZkh9kvhjveLQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+control+of+wind+turbines+with+soil+structure+interaction+included&rft.jtitle=Engineering+structures&rft.au=Fitzgerald%2C+Breiffni&rft.au=Basu%2C+Biswajit&rft.date=2016-03-15&rft.issn=0141-0296&rft.volume=111&rft.spage=131&rft.epage=151&rft_id=info:doi/10.1016%2Fj.engstruct.2015.12.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engstruct_2015_12_019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon |