Structural control of wind turbines with soil structure interaction included

•Soil–structure interaction (SSI) is considered in a structural control scheme for wind turbines.•SSI has a negligible effect on blade vibrations.•Active tuned mass dampers (ATMDs) are shown to respond well to changes in system frequencies due to presence of SSI.•Passive structural control technique...

Full description

Saved in:
Bibliographic Details
Published inEngineering structures Vol. 111; pp. 131 - 151
Main Authors Fitzgerald, Breiffni, Basu, Biswajit
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.03.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Soil–structure interaction (SSI) is considered in a structural control scheme for wind turbines.•SSI has a negligible effect on blade vibrations.•Active tuned mass dampers (ATMDs) are shown to respond well to changes in system frequencies due to presence of SSI.•Passive structural control techniques can be rendered ineffective when SSI is considered. The importance of considering soil structure interaction in structural control of wind turbines is investigated in this paper. An Euler–Lagrangian wind turbine mathematical model based on an energy formulation was developed for this purpose which considers the structural dynamics of the system and the interaction between in-plane and out-of-plane blade vibrations. Also, the interaction between the blades and the tower including a tuned mass damper (TMD) is considered. The turbine is subject to turbulent aerodynamic loading simulated using a modification to the classic Blade Element Momentum (BEM) theory with turbulence generated from rotationally sampled spectra. The turbine is also subject to gravity loading. The effect of centrifugal stiffening of the rotating blades has also been considered. The developed wind turbine model has been benchmarked against the NREL’s aeroelastic model FAST. Three-dimensional models of the wind turbine foundation are designed and analysed in the finite element geotechnical code Plaxis. Bi-axial rotations of the foundation obtained from dynamic finite element analyses are used to calculate rotational spring constants. These spring constants are used in the wind turbine model to describe the soil–structure interaction (SSI) between the wind turbine foundation and the underlying soil medium. This paper shows that where there are uncertainties regarding the stiffness of the soil, passive vibration control schemes may be rendered ineffective. Furthermore, it is demonstrated that vibration control of wind turbines using the proposed active control scheme has a promising prospect in situations where soil parameter values are uncertain.
AbstractList •Soil–structure interaction (SSI) is considered in a structural control scheme for wind turbines.•SSI has a negligible effect on blade vibrations.•Active tuned mass dampers (ATMDs) are shown to respond well to changes in system frequencies due to presence of SSI.•Passive structural control techniques can be rendered ineffective when SSI is considered. The importance of considering soil structure interaction in structural control of wind turbines is investigated in this paper. An Euler–Lagrangian wind turbine mathematical model based on an energy formulation was developed for this purpose which considers the structural dynamics of the system and the interaction between in-plane and out-of-plane blade vibrations. Also, the interaction between the blades and the tower including a tuned mass damper (TMD) is considered. The turbine is subject to turbulent aerodynamic loading simulated using a modification to the classic Blade Element Momentum (BEM) theory with turbulence generated from rotationally sampled spectra. The turbine is also subject to gravity loading. The effect of centrifugal stiffening of the rotating blades has also been considered. The developed wind turbine model has been benchmarked against the NREL’s aeroelastic model FAST. Three-dimensional models of the wind turbine foundation are designed and analysed in the finite element geotechnical code Plaxis. Bi-axial rotations of the foundation obtained from dynamic finite element analyses are used to calculate rotational spring constants. These spring constants are used in the wind turbine model to describe the soil–structure interaction (SSI) between the wind turbine foundation and the underlying soil medium. This paper shows that where there are uncertainties regarding the stiffness of the soil, passive vibration control schemes may be rendered ineffective. Furthermore, it is demonstrated that vibration control of wind turbines using the proposed active control scheme has a promising prospect in situations where soil parameter values are uncertain.
Author Fitzgerald, Breiffni
Basu, Biswajit
Author_xml – sequence: 1
  givenname: Breiffni
  surname: Fitzgerald
  fullname: Fitzgerald, Breiffni
  email: breiffni.fitzgerald@dit.ie
  organization: School of Civil & Structural Engineering, Dublin Institute of Technology, Ireland
– sequence: 2
  givenname: Biswajit
  surname: Basu
  fullname: Basu, Biswajit
  organization: Dept. of Civil, Structural & Environmental Engineering, Trinity College Dublin, Ireland
BookMark eNqNkMtOwzAQRS1UJNrCN5AfSBjbaeIsWFQVL6kSC2BtOfYEXAUb2S6Iv8elFQs2sJqH5lzduTMycd4hIecUKgq0udhU6J5jCludKgZ0UVFWAe2OyJSKlpctZ3xCpkBrWgLrmhMyi3EDAEwImJL1wze5DWostHcp-LHwQ_FhnSnytrcOY57SSxG9HYt4uMbCuoRB6WS9y70etwbNKTke1Bjx7FDn5On66nF1W67vb-5Wy3WpeVOnUsCg-1qbQYOiusEaRd7z_I1gfaM6la3VPYgaFgxpa4zqgPMWW9qKTrMFn5PLva4OPsaAg9Q2qZ2VFJQdJQW5i0Zu5E80cheNpEzmaDLf_uLfgn1V4fMf5HJPYn7v3WKQUVt0Go0NmG-Nt39qfAHanof5
CitedBy_id crossref_primary_10_1007_s42417_024_01544_4
crossref_primary_10_1016_j_oceaneng_2022_112234
crossref_primary_10_1007_s11012_021_01323_5
crossref_primary_10_3390_en14206635
crossref_primary_10_1016_j_engstruct_2025_119954
crossref_primary_10_1080_19648189_2021_2013949
crossref_primary_10_1002_stc_2532
crossref_primary_10_1016_j_engstruct_2020_111744
crossref_primary_10_1007_s13344_024_0031_0
crossref_primary_10_1002_we_2063
crossref_primary_10_1002_stc_2261
crossref_primary_10_1016_j_oceaneng_2020_107289
crossref_primary_10_1142_S0219876224500610
crossref_primary_10_1002_we_2623
crossref_primary_10_1007_s40430_021_02837_5
crossref_primary_10_1080_15732479_2018_1550096
crossref_primary_10_1016_j_engstruct_2019_110087
crossref_primary_10_1142_S0219455422501942
crossref_primary_10_1016_j_oceaneng_2024_117912
crossref_primary_10_1016_j_marstruc_2020_102726
crossref_primary_10_1002_stc_2284
crossref_primary_10_3390_su152416878
crossref_primary_10_1007_s40996_023_01292_7
crossref_primary_10_1016_j_oceaneng_2024_118310
crossref_primary_10_1016_j_engstruct_2018_07_009
crossref_primary_10_1186_s43065_025_00118_2
crossref_primary_10_1142_S0219876222500050
crossref_primary_10_1016_j_oceaneng_2022_110637
crossref_primary_10_1016_j_soildyn_2019_03_008
crossref_primary_10_1002_stc_2117
crossref_primary_10_1007_s13296_018_0191_y
crossref_primary_10_1142_S0219455423501018
crossref_primary_10_1007_s40996_019_00302_x
crossref_primary_10_1016_j_marstruc_2021_102938
crossref_primary_10_1002_stc_2471
crossref_primary_10_1016_j_istruc_2021_01_018
crossref_primary_10_1016_j_engstruct_2022_114558
crossref_primary_10_3390_s20185348
crossref_primary_10_1007_s40430_018_1471_3
crossref_primary_10_1186_s43088_023_00444_y
crossref_primary_10_1520_JTE20180025
crossref_primary_10_1002_stc_2083
crossref_primary_10_1002_tal_1785
crossref_primary_10_1016_j_engstruct_2020_110928
crossref_primary_10_1002_stc_2627
crossref_primary_10_1002_stc_2067
crossref_primary_10_1016_j_egyr_2024_03_014
crossref_primary_10_1016_j_jsv_2017_12_026
crossref_primary_10_1080_1064119X_2021_1972062
crossref_primary_10_1016_j_oceaneng_2023_115057
crossref_primary_10_1016_j_ymssp_2022_108975
crossref_primary_10_1007_s42417_022_00504_0
crossref_primary_10_1016_j_engstruct_2024_117529
crossref_primary_10_1016_j_rser_2024_115227
crossref_primary_10_1002_tal_2163
crossref_primary_10_1016_j_istruc_2018_10_009
crossref_primary_10_1016_j_engstruct_2017_12_001
crossref_primary_10_1016_j_ymssp_2017_06_016
crossref_primary_10_1088_1742_6596_2767_6_062023
crossref_primary_10_1080_24705314_2020_1729518
crossref_primary_10_1080_13632469_2022_2113000
Cites_doi 10.1002/we.249
10.1002/stc.176
10.1016/S0141-0296(97)00078-3
10.1002/eqe.485
10.2172/947422
10.1016/j.soildyn.2009.11.001
10.1080/13632460009350372
10.1002/stc.404
10.1016/j.engstruct.2012.06.041
10.1109/TCST.2013.2260825
10.1016/0022-460X(72)90600-1
10.1155/2012/408493
10.1016/0038-092X(82)90072-X
10.1016/0267-7261(86)90020-5
10.1016/j.engstruct.2005.03.004
10.1002/stc.1524
10.1016/j.engstruct.2011.01.011
10.1002/eqe.4290020108
10.1007/s00466-010-0550-9
10.1016/0167-6105(83)90108-3
10.1016/j.apor.2006.03.004
10.4028/www.scientific.net/KEM.569-570.660
10.1016/0167-6105(88)90129-8
10.1002/we.426
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engstruct.2015.12.019
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7323
EndPage 151
ExternalDocumentID 10_1016_j_engstruct_2015_12_019
S014102961500783X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
SSH
VH1
WUQ
ZY4
ID FETCH-LOGICAL-c364t-80fcb4cdfc0a1c6e4e8364310182b6a9a2884b084052e17dda90337e71789c253
IEDL.DBID .~1
ISSN 0141-0296
IngestDate Tue Jul 01 03:01:49 EDT 2025
Thu Apr 24 22:48:37 EDT 2025
Fri Feb 23 02:26:50 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords TMD
Soil–structure interaction
ATMD
Wind turbine
Structural control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-80fcb4cdfc0a1c6e4e8364310182b6a9a2884b084052e17dda90337e71789c253
OpenAccessLink https://arrow.tudublin.ie/context/engschcivart/article/1156/viewcontent/Structural_control_of_wind_turbines_with_soil_structure_interacti.pdf
PageCount 21
ParticipantIDs crossref_citationtrail_10_1016_j_engstruct_2015_12_019
crossref_primary_10_1016_j_engstruct_2015_12_019
elsevier_sciencedirect_doi_10_1016_j_engstruct_2015_12_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-15
PublicationDateYYYYMMDD 2016-03-15
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-15
  day: 15
PublicationDecade 2010
PublicationTitle Engineering structures
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Novak, Hifnawy (b0025) 1988; 28
Rana, Soong (b0160) 1998; 20
Zaaijer M. Foundation models for the dynamic response of offshore wind turbines. In: Proceedings of MAREC; 2002. p. 1–1000.
Bush, Manuel (b0065) 2009
Fitzgerald, Basu (b0095) 2013; 569
Jonkman JM, Buhl M. FAST user’s guide. NREL/EL-500-38230 (previously NREL/EL-500-29798), Golden, CO: National Renewable Energy Laboratory; 2005.
Mylonakis, Gazetas (b0040) 2000; 4
Buhl M. Modes. NWTC design codes; May 2005.
Lackner, Rotea (b0080) 2011; 14
Novak, Hifnawy (b0020) 1983; 11
Zhu (b0105) 2011; 47
Jonkman JM, Butterfield S, Musial W, Scott G. Definition of a 5-MW reference wind turbine for offshore system development. National Renewable Energy Laboratory. Technical report, NREL/TP-500-38060, Golden, Colorado; 2009.
Shinozuka, Jan (b0145) 1972; 25
Moghaddasi, Cubrinovski, Chase, Pampanin, Carr (b0015) 2011; 33
Hansen (b0125) 2000
Luco (b0010) 1986; 5
Ghosh, Basu (b0035) 2005; 34
Arrigan, Pakrashi, Basu, Nagarajaiah (b0085) 2011; 18
Fitzgerald, Basu, Nielsen (b0100) 2013
Harte, Basu, Nielsen (b0075) 2012; 45
Manwell, McGowan, Rogers (b0150) 2002
Zaaijer (b0055) 2006; 28
Adhikari, Bhattacharya (b0070) 2012; 19
Connell (b0130) 1982; 29
Kausel (b0030) 2010; 30
Stewart, Lackner (b0090) 2013; 21
.
Veletsos, Verbic (b0005) 1973; 2
Camp T, Morris M, Van Rooij R, Van Der Tempel J, Zaaijer M, Henderson A, et al. Design methods for offshore wind turbines at exposed sites. Final report of the OWTES project, Garrad Hassan and Partners Ltd, Bristol, UK; 2003.
Kwakernaak, Sivan (b0165) 1972
Veers P. Three-dimensional wind simulation. SAND88-0152, UC-261, Sandia National Laboratories, Albuquerque, NM; 1988.
Ghosh, Basu (b0120) 2007; 14
Murtagh, Ghosh, Basu, Broderick (b0135) 2008; 11
Murtagh, Basu, Broderick (b0060) 2005; 27
Stewart (10.1016/j.engstruct.2015.12.019_b0090) 2013; 21
Bush (10.1016/j.engstruct.2015.12.019_b0065) 2009
Zhu (10.1016/j.engstruct.2015.12.019_b0105) 2011; 47
Veletsos (10.1016/j.engstruct.2015.12.019_b0005) 1973; 2
Mylonakis (10.1016/j.engstruct.2015.12.019_b0040) 2000; 4
10.1016/j.engstruct.2015.12.019_b0110
10.1016/j.engstruct.2015.12.019_b0050
Hansen (10.1016/j.engstruct.2015.12.019_b0125) 2000
Rana (10.1016/j.engstruct.2015.12.019_b0160) 1998; 20
10.1016/j.engstruct.2015.12.019_b0045
Murtagh (10.1016/j.engstruct.2015.12.019_b0135) 2008; 11
Luco (10.1016/j.engstruct.2015.12.019_b0010) 1986; 5
Zaaijer (10.1016/j.engstruct.2015.12.019_b0055) 2006; 28
Lackner (10.1016/j.engstruct.2015.12.019_b0080) 2011; 14
Fitzgerald (10.1016/j.engstruct.2015.12.019_b0100) 2013
Novak (10.1016/j.engstruct.2015.12.019_b0020) 1983; 11
Ghosh (10.1016/j.engstruct.2015.12.019_b0120) 2007; 14
10.1016/j.engstruct.2015.12.019_b0140
Shinozuka (10.1016/j.engstruct.2015.12.019_b0145) 1972; 25
Adhikari (10.1016/j.engstruct.2015.12.019_b0070) 2012; 19
Manwell (10.1016/j.engstruct.2015.12.019_b0150) 2002
Harte (10.1016/j.engstruct.2015.12.019_b0075) 2012; 45
Kausel (10.1016/j.engstruct.2015.12.019_b0030) 2010; 30
10.1016/j.engstruct.2015.12.019_b0115
Moghaddasi (10.1016/j.engstruct.2015.12.019_b0015) 2011; 33
10.1016/j.engstruct.2015.12.019_b0155
Kwakernaak (10.1016/j.engstruct.2015.12.019_b0165) 1972
Ghosh (10.1016/j.engstruct.2015.12.019_b0035) 2005; 34
Novak (10.1016/j.engstruct.2015.12.019_b0025) 1988; 28
Arrigan (10.1016/j.engstruct.2015.12.019_b0085) 2011; 18
Fitzgerald (10.1016/j.engstruct.2015.12.019_b0095) 2013; 569
Connell (10.1016/j.engstruct.2015.12.019_b0130) 1982; 29
Murtagh (10.1016/j.engstruct.2015.12.019_b0060) 2005; 27
References_xml – volume: 28
  start-page: 45
  year: 2006
  end-page: 57
  ident: b0055
  article-title: Foundation modelling to assess dynamic behaviour of offshore wind turbines
  publication-title: Appl Ocean Res
– volume: 45
  start-page: 509
  year: 2012
  end-page: 518
  ident: b0075
  article-title: Dynamic analysis of wind turbines including soil–structure interaction
  publication-title: Eng Struct
– volume: 14
  start-page: 373
  year: 2011
  end-page: 388
  ident: b0080
  article-title: Passive structural control of offshore wind turbines
  publication-title: Wind Energy
– volume: 19
  start-page: 37
  year: 2012
  end-page: 56
  ident: b0070
  article-title: Dynamic analysis of wind turbine towers on flexible foundations
  publication-title: Shock Vib
– volume: 27
  start-page: 1209
  year: 2005
  end-page: 1219
  ident: b0060
  article-title: Along-wind response of a wind turbine tower with blade coupling subjected to rotationally sampled wind loading
  publication-title: Eng Struct
– volume: 34
  start-page: 1375
  year: 2005
  end-page: 1389
  ident: b0035
  article-title: Effect of soil interaction on the performance of liquid column dampers for seismic applications
  publication-title: Earthq Eng Struct Dyn
– volume: 11
  start-page: 305
  year: 2008
  end-page: 317
  ident: b0135
  article-title: Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence
  publication-title: Wind Energy
– reference: Jonkman JM, Butterfield S, Musial W, Scott G. Definition of a 5-MW reference wind turbine for offshore system development. National Renewable Energy Laboratory. Technical report, NREL/TP-500-38060, Golden, Colorado; 2009.
– volume: 30
  start-page: 822
  year: 2010
  end-page: 832
  ident: b0030
  article-title: Early history of soil–structure interaction
  publication-title: Soil Dyn Earthq Eng
– year: 2002
  ident: b0150
  article-title: Wind energy explained: theory, design and application
– reference: Buhl M. Modes. NWTC design codes; May 2005. <
– reference: Veers P. Three-dimensional wind simulation. SAND88-0152, UC-261, Sandia National Laboratories, Albuquerque, NM; 1988.
– volume: 14
  start-page: 681
  year: 2007
  end-page: 692
  ident: b0120
  article-title: A closed-form optimal tuning criterion for TMD in damped structures
  publication-title: Struct Control Health Monit
– year: 2013
  ident: b0100
  article-title: Active tuned mass dampers for control of in-plane vibrations of wind turbine blades
  publication-title: Struct Control Health Monit
– volume: 47
  start-page: 395
  year: 2011
  end-page: 408
  ident: b0105
  article-title: The vibrations of pre-twisted rotating Timoshenko beams by the Rayleigh–Ritz method
  publication-title: Comput Mech
– volume: 5
  start-page: 170
  year: 1986
  end-page: 177
  ident: b0010
  article-title: Soil–structure interaction effects on the seismic response of tall chimneys
  publication-title: Soil Dyn Earthq Eng
– volume: 2
  start-page: 87
  year: 1973
  end-page: 102
  ident: b0005
  article-title: Vibration of viscoelastic foundations
  publication-title: Earthq Eng Struct Dyn
– volume: 11
  start-page: 295
  year: 1983
  end-page: 306
  ident: b0020
  article-title: Damping of structures due to soil–structure interaction
  publication-title: J Wind Eng Ind Aerodyn
– reference: Jonkman JM, Buhl M. FAST user’s guide. NREL/EL-500-38230 (previously NREL/EL-500-29798), Golden, CO: National Renewable Energy Laboratory; 2005.
– volume: 20
  start-page: 193
  year: 1998
  end-page: 204
  ident: b0160
  article-title: Parametric study and simplified design of tuned mass dampers
  publication-title: Eng Struct
– volume: 25
  start-page: 111
  year: 1972
  end-page: 128
  ident: b0145
  article-title: Digital simulation of random processes and its applications
  publication-title: J Sound Vib
– year: 1972
  ident: b0165
  article-title: Linear optimal control systems
– volume: 33
  start-page: 1338
  year: 2011
  end-page: 1347
  ident: b0015
  article-title: Effects of soil–foundation–structure interaction on seismic structural response via robust monte carlo simulation
  publication-title: Eng Struct
– reference: >.
– volume: 21
  start-page: 1090
  year: 2013
  end-page: 1104
  ident: b0090
  article-title: Offshore wind turbine load reduction employing optimal passive tuned mass damping systems
  publication-title: IEEE Trans Control Syst Technol
– reference: Camp T, Morris M, Van Rooij R, Van Der Tempel J, Zaaijer M, Henderson A, et al. Design methods for offshore wind turbines at exposed sites. Final report of the OWTES project, Garrad Hassan and Partners Ltd, Bristol, UK; 2003.
– volume: 4
  start-page: 277
  year: 2000
  end-page: 301
  ident: b0040
  article-title: Seismic soil–structure interaction: beneficial or detrimental?
  publication-title: J Earthquake Eng
– year: 2000
  ident: b0125
  article-title: Aerodynamics of wind turbines
– volume: 18
  start-page: 840
  year: 2011
  end-page: 851
  ident: b0085
  article-title: Control of flapwise vibrations in wind turbine blades using semi-active tuned mass dampers
  publication-title: Struct Control Health Monit
– reference: Zaaijer M. Foundation models for the dynamic response of offshore wind turbines. In: Proceedings of MAREC; 2002. p. 1–1000.
– volume: 29
  start-page: 363
  year: 1982
  end-page: 375
  ident: b0130
  article-title: The spectrum of wind speed fluctuations encountered by a rotating blade of a wind energy conversion system
  publication-title: Sol Energy
– volume: 569
  start-page: 660
  year: 2013
  end-page: 667
  ident: b0095
  article-title: Active tuned mass damper control of wind turbine nacelle/tower vibrations with damaged foundations
  publication-title: Key Eng Mater
– volume: 28
  start-page: 329
  year: 1988
  end-page: 338
  ident: b0025
  article-title: Structural response to wind with soil–structure interaction
  publication-title: J Wind Eng Ind Aerodyn
– start-page: 1
  year: 2009
  end-page: 1000
  ident: b0065
  article-title: Foundation models for offshore wind turbines
  publication-title: ASME wind energy symposium
– volume: 11
  start-page: 305
  issue: 4
  year: 2008
  ident: 10.1016/j.engstruct.2015.12.019_b0135
  article-title: Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence
  publication-title: Wind Energy
  doi: 10.1002/we.249
– volume: 14
  start-page: 681
  issue: 4
  year: 2007
  ident: 10.1016/j.engstruct.2015.12.019_b0120
  article-title: A closed-form optimal tuning criterion for TMD in damped structures
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.176
– year: 2000
  ident: 10.1016/j.engstruct.2015.12.019_b0125
– volume: 20
  start-page: 193
  issue: 3
  year: 1998
  ident: 10.1016/j.engstruct.2015.12.019_b0160
  article-title: Parametric study and simplified design of tuned mass dampers
  publication-title: Eng Struct
  doi: 10.1016/S0141-0296(97)00078-3
– volume: 34
  start-page: 1375
  issue: 11
  year: 2005
  ident: 10.1016/j.engstruct.2015.12.019_b0035
  article-title: Effect of soil interaction on the performance of liquid column dampers for seismic applications
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.485
– ident: 10.1016/j.engstruct.2015.12.019_b0115
  doi: 10.2172/947422
– volume: 30
  start-page: 822
  issue: 9
  year: 2010
  ident: 10.1016/j.engstruct.2015.12.019_b0030
  article-title: Early history of soil–structure interaction
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2009.11.001
– volume: 4
  start-page: 277
  issue: 03
  year: 2000
  ident: 10.1016/j.engstruct.2015.12.019_b0040
  article-title: Seismic soil–structure interaction: beneficial or detrimental?
  publication-title: J Earthquake Eng
  doi: 10.1080/13632460009350372
– volume: 18
  start-page: 840
  issue: 8
  year: 2011
  ident: 10.1016/j.engstruct.2015.12.019_b0085
  article-title: Control of flapwise vibrations in wind turbine blades using semi-active tuned mass dampers
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.404
– ident: 10.1016/j.engstruct.2015.12.019_b0045
– volume: 45
  start-page: 509
  year: 2012
  ident: 10.1016/j.engstruct.2015.12.019_b0075
  article-title: Dynamic analysis of wind turbines including soil–structure interaction
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2012.06.041
– volume: 21
  start-page: 1090
  issue: 4
  year: 2013
  ident: 10.1016/j.engstruct.2015.12.019_b0090
  article-title: Offshore wind turbine load reduction employing optimal passive tuned mass damping systems
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2013.2260825
– volume: 25
  start-page: 111
  issue: 1
  year: 1972
  ident: 10.1016/j.engstruct.2015.12.019_b0145
  article-title: Digital simulation of random processes and its applications
  publication-title: J Sound Vib
  doi: 10.1016/0022-460X(72)90600-1
– ident: 10.1016/j.engstruct.2015.12.019_b0140
– volume: 19
  start-page: 37
  issue: 1
  year: 2012
  ident: 10.1016/j.engstruct.2015.12.019_b0070
  article-title: Dynamic analysis of wind turbine towers on flexible foundations
  publication-title: Shock Vib
  doi: 10.1155/2012/408493
– volume: 29
  start-page: 363
  issue: 5
  year: 1982
  ident: 10.1016/j.engstruct.2015.12.019_b0130
  article-title: The spectrum of wind speed fluctuations encountered by a rotating blade of a wind energy conversion system
  publication-title: Sol Energy
  doi: 10.1016/0038-092X(82)90072-X
– year: 1972
  ident: 10.1016/j.engstruct.2015.12.019_b0165
– volume: 5
  start-page: 170
  issue: 3
  year: 1986
  ident: 10.1016/j.engstruct.2015.12.019_b0010
  article-title: Soil–structure interaction effects on the seismic response of tall chimneys
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/0267-7261(86)90020-5
– volume: 27
  start-page: 1209
  issue: 8
  year: 2005
  ident: 10.1016/j.engstruct.2015.12.019_b0060
  article-title: Along-wind response of a wind turbine tower with blade coupling subjected to rotationally sampled wind loading
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2005.03.004
– ident: 10.1016/j.engstruct.2015.12.019_b0050
– year: 2013
  ident: 10.1016/j.engstruct.2015.12.019_b0100
  article-title: Active tuned mass dampers for control of in-plane vibrations of wind turbine blades
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.1524
– volume: 33
  start-page: 1338
  issue: 4
  year: 2011
  ident: 10.1016/j.engstruct.2015.12.019_b0015
  article-title: Effects of soil–foundation–structure interaction on seismic structural response via robust monte carlo simulation
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2011.01.011
– start-page: 1
  year: 2009
  ident: 10.1016/j.engstruct.2015.12.019_b0065
  article-title: Foundation models for offshore wind turbines
– ident: 10.1016/j.engstruct.2015.12.019_b0155
– volume: 2
  start-page: 87
  issue: 1
  year: 1973
  ident: 10.1016/j.engstruct.2015.12.019_b0005
  article-title: Vibration of viscoelastic foundations
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.4290020108
– volume: 47
  start-page: 395
  year: 2011
  ident: 10.1016/j.engstruct.2015.12.019_b0105
  article-title: The vibrations of pre-twisted rotating Timoshenko beams by the Rayleigh–Ritz method
  publication-title: Comput Mech
  doi: 10.1007/s00466-010-0550-9
– volume: 11
  start-page: 295
  issue: 1–3
  year: 1983
  ident: 10.1016/j.engstruct.2015.12.019_b0020
  article-title: Damping of structures due to soil–structure interaction
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/0167-6105(83)90108-3
– volume: 28
  start-page: 45
  issue: 1
  year: 2006
  ident: 10.1016/j.engstruct.2015.12.019_b0055
  article-title: Foundation modelling to assess dynamic behaviour of offshore wind turbines
  publication-title: Appl Ocean Res
  doi: 10.1016/j.apor.2006.03.004
– ident: 10.1016/j.engstruct.2015.12.019_b0110
– year: 2002
  ident: 10.1016/j.engstruct.2015.12.019_b0150
– volume: 569
  start-page: 660
  year: 2013
  ident: 10.1016/j.engstruct.2015.12.019_b0095
  article-title: Active tuned mass damper control of wind turbine nacelle/tower vibrations with damaged foundations
  publication-title: Key Eng Mater
  doi: 10.4028/www.scientific.net/KEM.569-570.660
– volume: 28
  start-page: 329
  issue: 13
  year: 1988
  ident: 10.1016/j.engstruct.2015.12.019_b0025
  article-title: Structural response to wind with soil–structure interaction
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/0167-6105(88)90129-8
– volume: 14
  start-page: 373
  issue: 3
  year: 2011
  ident: 10.1016/j.engstruct.2015.12.019_b0080
  article-title: Passive structural control of offshore wind turbines
  publication-title: Wind Energy
  doi: 10.1002/we.426
SSID ssj0002880
Score 2.4256642
Snippet •Soil–structure interaction (SSI) is considered in a structural control scheme for wind turbines.•SSI has a negligible effect on blade vibrations.•Active tuned...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 131
SubjectTerms ATMD
Soil–structure interaction
Structural control
TMD
Wind turbine
Title Structural control of wind turbines with soil structure interaction included
URI https://dx.doi.org/10.1016/j.engstruct.2015.12.019
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIryqDywhjp-5MFWVVTl1aVU6mYlfqCiKq1oERu_HV_iFCohdWBLrLsouZzOPvu77xC6FjpLqUkjl-RYG_BEsSATygRWKaZpbOOwBI8_D6PBmD9MxKSBenUtDMAqfeyvYnoZrf1Ix1uzs5hOO6MSokhTYDSHs6gJVLDzGLz85usH5kGTsnsaCAcgvYHxMsVrRdMKGC9R7gsC5c5fM9SvWad_gPb9chF3qzc6RA1THKG9XySCx-hpVD4b6DOwB57jucWfLtnGbjQHXDuG7Va8nE9neOmlDQamiPeqrsFdq9mHNvoEjft3L71B4HskBIpFfOUmGKtyrrRVJAtVZLhJ3DgDHi6aR1maue_nOXFpnKAmjLX7NYSx2LgsLkkVFewUNYt5Yc4QThmz1uiEaMK41SSluU5snIVaUWo0aaGototUnkAc-ljMZI0Ue5Nrg0owqAypdAZtIbJWXFQcGttVbmvDyw13kC7Sb1M-_4_yBdp1dxHAzEJxiZpOwFy5dccqb5eO1UY73fvHwfAb_N3bfA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwED5RGNoOVZ8qfXroGuHYeXZDqCiUxwJIbFbiR0WFAipU_fu1EweBVImhW3S5i5KLdeezP38H8OKLNCYyDnSRo5TjRZw6qc-lozingoQqdAvw-HAUJFPvfebPatCpzsIYWKWN_WVML6K1lbSsN1ur-bw1LiCKJDaM5mYvanYEDcNO5deh0e71k9E2IJOoaKBm9B1jsAfzkvlHydRqYF5-sTRoWHf-SlI7iad7Dmd2xoja5UtdQE3ml3C6wyN4BYNx8WzDoIEs9hwtFfrR9TbS0sxA25FZcUXr5XyB1lZbIkMW8VUebdDXfPEtpLiGafdt0kkc2ybB4TTwNjrHKJ55XCiOU5cH0pORllNDxUWyII1T_f1ehnUl5xPphkL_HUxpKHUhF8Wc-PQG6vkyl7eAYkqVkiLCAlNPCRyTTEQqTF3BCZECNyGo_MK45RA3rSwWrAKLfbKtQ5lxKHMJ0w5tAt4arkoajcMmr5Xj2d6IYDrYHzK--4_xMxwnk-GADXqj_j2c6DuBQZ25_gPUtbJ81NOQTfZkh9kvhjveLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+control+of+wind+turbines+with+soil+structure+interaction+included&rft.jtitle=Engineering+structures&rft.au=Fitzgerald%2C+Breiffni&rft.au=Basu%2C+Biswajit&rft.date=2016-03-15&rft.issn=0141-0296&rft.volume=111&rft.spage=131&rft.epage=151&rft_id=info:doi/10.1016%2Fj.engstruct.2015.12.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engstruct_2015_12_019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon