Low-power-consumption ultraviolet photodetector based on p-NiO/SiO2/n-ZnO
•Ultraviolet photodetector based on thinfilm based p-NiO/SiO2/n-ZnO heterostructure is successfully fabricated for the first time.•A design of low-power-consumption photodetector is realized by using low-cost method.•Rectification ratio and rise time of the photodetector are 57 and 0.048 s, respecti...
Saved in:
Published in | Optics and laser technology Vol. 157; p. 108634 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Ultraviolet photodetector based on thinfilm based p-NiO/SiO2/n-ZnO heterostructure is successfully fabricated for the first time.•A design of low-power-consumption photodetector is realized by using low-cost method.•Rectification ratio and rise time of the photodetector are 57 and 0.048 s, respectively.•Low dark current and good stability of the photodetector have been demonstrated.
Ultraviolet (UV) photodetector has found extensive applications, ranging from optical communication to ozone sensing. Wide bandgap metal oxide heterostructures have gained significant interest in the development of UV photodetectors due to their excellent electronic and optical properties, as well as ease of fabrication. However, there are surface and interface issues at these heterostructures that have detrimental effects on device performance. In this work, UV photodetector consisting of p-NiO/SiO2/n-ZnO heterostructure was prepared by RF magnetron sputtering method. The device exhibited remarkable performances, such as having a rectification ratio of 57, responsivity (R) of 5.77 AW−1, external quantum efficiency (EQE) of 1.96 × 103% and rise time of 0.048 s at a low power consumption of −0.1 V under 365 nm UV irradiation. This work demonstrated a method for low-cost fabrication of photodetectors with rectification behavior and at low power consumption. |
---|---|
AbstractList | •Ultraviolet photodetector based on thinfilm based p-NiO/SiO2/n-ZnO heterostructure is successfully fabricated for the first time.•A design of low-power-consumption photodetector is realized by using low-cost method.•Rectification ratio and rise time of the photodetector are 57 and 0.048 s, respectively.•Low dark current and good stability of the photodetector have been demonstrated.
Ultraviolet (UV) photodetector has found extensive applications, ranging from optical communication to ozone sensing. Wide bandgap metal oxide heterostructures have gained significant interest in the development of UV photodetectors due to their excellent electronic and optical properties, as well as ease of fabrication. However, there are surface and interface issues at these heterostructures that have detrimental effects on device performance. In this work, UV photodetector consisting of p-NiO/SiO2/n-ZnO heterostructure was prepared by RF magnetron sputtering method. The device exhibited remarkable performances, such as having a rectification ratio of 57, responsivity (R) of 5.77 AW−1, external quantum efficiency (EQE) of 1.96 × 103% and rise time of 0.048 s at a low power consumption of −0.1 V under 365 nm UV irradiation. This work demonstrated a method for low-cost fabrication of photodetectors with rectification behavior and at low power consumption. |
ArticleNumber | 108634 |
Author | Lau, Shu Ping Jia, Menghan Lü, Yanfei Teng, Kar Seng Xiang, Jinzhong Wang, Fang Tang, Libin |
Author_xml | – sequence: 1 givenname: Menghan surname: Jia fullname: Jia, Menghan organization: School of Physics and Astronomy, Yunnan University, Kunming 650500, People’s Republic of China – sequence: 2 givenname: Fang surname: Wang fullname: Wang, Fang organization: Yunnan State Key Laboratory of Advanced Photoelectric Materials and Devices, Kunming 650223, People’s Republic of China – sequence: 3 givenname: Libin surname: Tang fullname: Tang, Libin email: scitang@163.com organization: Kunming Institute of Physics, Kunming 650223, People’s Republic of China – sequence: 4 givenname: Jinzhong surname: Xiang fullname: Xiang, Jinzhong email: jzhxiang@ynu.edu.cn organization: School of Physics and Astronomy, Yunnan University, Kunming 650500, People’s Republic of China – sequence: 5 givenname: Kar Seng surname: Teng fullname: Teng, Kar Seng email: k.s.teng@swansea.ac.uk organization: Department of Electronic and Electrical Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, United Kingdom – sequence: 6 givenname: Shu Ping surname: Lau fullname: Lau, Shu Ping organization: Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAP, People’s Republic of China – sequence: 7 givenname: Yanfei surname: Lü fullname: Lü, Yanfei email: optik@sina.com organization: School of Physics and Astronomy, Yunnan University, Kunming 650500, People’s Republic of China |
BookMark | eNqNkM1KAzEUhYNUsK0-g32BtDfJ_C5clOJPoTgLdeMmZJI7mDKdDEna4ts7peLCja4uHO534HwTMupch4TcMpgzYNliO3d9bFWIqOccOB_SIhPJBRmzIi8pT5N0RMYAAqgoS35FJiFsASDJUjEm64070t4d0VPturDf9dG6brZvo1cH61qMs_7DRWdw6I_Oz2oV0MyGl54-22rxYiu-6Oh7V12Ty0a1AW--75S8Pdy_rp7opnpcr5YbqkWWRJoXBgowDJqSqaZMiloZ0KUAgY3ComEZTxjmvEYDDOokVzrTKZi6rhuR50xMSX7u1d6F4LGRvbc75T8lA3kyIrfyx4g8GZFnIwN594vUNqrT3mGsbf_BL888DvMOFr0M2mKn0Vg_yJHG2T87vgD-VIXr |
CitedBy_id | crossref_primary_10_1016_j_jphotochem_2023_115119 crossref_primary_10_1016_j_infrared_2024_105305 crossref_primary_10_1007_s10946_024_10217_2 crossref_primary_10_1088_1555_6611_acfb78 crossref_primary_10_1039_D4TC02641A crossref_primary_10_1088_1612_202X_ad174f crossref_primary_10_35848_1347_4065_ad65ab crossref_primary_10_1016_j_apsusc_2023_158641 crossref_primary_10_1016_j_mssp_2023_107592 crossref_primary_10_1016_j_optlastec_2024_111510 crossref_primary_10_3390_s24237733 crossref_primary_10_1016_j_optmat_2023_114353 crossref_primary_10_1002_aelm_202300909 crossref_primary_10_1080_00150193_2023_2198964 crossref_primary_10_1088_1555_6611_ad4bb3 crossref_primary_10_1088_1555_6611_ad2dd0 crossref_primary_10_1088_1612_202X_ad4bb9 crossref_primary_10_1039_D4TC03377A crossref_primary_10_3390_s23052741 crossref_primary_10_1002_pssa_202400497 crossref_primary_10_1021_acs_cgd_4c00396 crossref_primary_10_1007_s10854_023_11584_3 crossref_primary_10_1007_s10854_024_13266_0 |
Cites_doi | 10.1016/j.apsusc.2014.07.115 10.1038/ncomms5007 10.1016/j.apsusc.2021.151956 10.1007/s10853-019-04305-x 10.1002/aelm.201500232 10.1039/C7TC02221B 10.1002/adfm.201102506 10.1016/j.jallcom.2020.157080 10.7567/APEX.9.091101 10.1021/acsami.8b14380 10.1109/LED.2015.2448721 10.1016/j.apsusc.2006.04.031 10.1063/1.4938129 10.1063/1.4932194 10.1002/adfm.201001140 10.1063/1.5006941 10.1002/adma.201501517 10.1016/S0038-1098(97)00216-0 10.1021/acsami.6b13771 10.1039/C7TC04565D 10.1364/OL.402454 10.1016/j.jallcom.2020.154803 10.3390/s130810482 10.1016/j.apsusc.2016.07.041 10.1088/1361-6641/aa59b0 10.1002/adma.201301828 10.1364/OE.23.027683 10.1039/C3CS60348B 10.1063/1.4961114 10.1021/acsnano.8b07997 10.1021/am4050019 10.1364/OL.385280 10.1039/C8TC05877F 10.1063/1.4853535 10.1063/1.4890524 10.1186/s11671-020-3271-9 10.1109/LED.2012.2223653 10.1063/1.4978765 |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.optlastec.2022.108634 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-2545 |
ExternalDocumentID | 10_1016_j_optlastec_2022_108634 S0030399222007812 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W JJJVA KOM LY7 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSM SSQ SST SSZ T5K TN5 UHS WH7 WUQ XFK ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c364t-78d080d10f91af948bad0c9303efae8f16241e72bed010b47ac6c50dbbbf37713 |
IEDL.DBID | .~1 |
ISSN | 0030-3992 |
IngestDate | Thu Apr 24 22:59:08 EDT 2025 Tue Jul 01 01:38:50 EDT 2025 Fri Feb 23 02:40:11 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Heterostructure UV photodetector Metal oxide semiconductor Low power consumption |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-78d080d10f91af948bad0c9303efae8f16241e72bed010b47ac6c50dbbbf37713 |
OpenAccessLink | https://cronfa.swan.ac.uk/Record/cronfa61325/Download/61325__25234__e4b0383aa4954ebe84c955e9665eb275.pdf |
ParticipantIDs | crossref_primary_10_1016_j_optlastec_2022_108634 crossref_citationtrail_10_1016_j_optlastec_2022_108634 elsevier_sciencedirect_doi_10_1016_j_optlastec_2022_108634 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationTitle | Optics and laser technology |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Nasiri, Bo, Wang, Fu, Tricoli (b0015) 2015; 27 Sang, Liao, Sumiya (b0005) 2013; 13 Zheng, Li, Zhao, Chen, Zhao, Yang, Zhang (b0010) 2006; 253 Zu, Zu, Tang, Wong, Kawasaki, Ohtomo, Koinuma, Segawa (b0080) 1997; 103 Zhu, Ma, Xue, Su (b0135) 2022; 581 Zhao, Tang, Yang, Seng Teng, Ping Lau (b0120) 2020; 45 Youn, Park, Kim, Jeong (b0130) 2020; 836 Zhang, Ji, Zhang, Guan, Ren, Xu, Huang, Zou, Hu (b0100) 2017; 5 Pansri, Supruangnet, Nakajima, Rattanasuporn, Noothongkaew (b0195) 2019; 55 Patel, Kim, Kim (b0030) 2015; 1 Xu, Chen, Cai, Long, Zhang, Su, He, Tang, Liu, Peng, Fang (b0160) 2018; 30 Guo, Wu, An, Guo, Chu, Sun, Li, Li, Tang (b0150) 2014; 105 Chen, Hu, Fang, Wu (b0045) 2012; 22 Li, Zhang, Lin, Zhang, Zheng, Huang (b0145) 2019; 11 Kim, Ryu, Manders, Lee, So (b0085) 2014; 6 Li, Wan, Chang, Huang, Tsai, Lee, Cheng (b0095) 2015; 36 Kim, Seo, Singisetti, Ma (b0075) 2017; 5 Wang, Tian, Liao, Bando, Golberg (b0070) 2014; 43 Kokubun, Kubo, Nakagomi (b0125) 2016; 9 Liu, Gu, Zhang, Wu, Long, Fan (b0020) 2014; 5 Zheng, Tang, Yang, Wang, Li (b0140) 2020; 45 Liu, Zhang, Zhang, Gu, Meng, Wen, Chen, Ruan (b0035) 2014; 315 Tyagi, Tomar, Gupta (b0025) 2013; 34 Cai, Tang, Xiang, Ji, Lai, Lau, Zhao, Kong, Zhang (b0110) 2016; 109 Chen, Li, Mo, Li, Wen, Lei, Zhu, Yang, Gui, Yao, Fang (b0165) 2017; 110 Pearton, Yang, Cary, Ren, Kim, Tadjer, Mastro (b0065) 2018; 5 Zhang, Ning, Fang (b0090) 2019; 7 Jia, Wang, Tang, Xiang, Teng, Lau (b0115) 2020; 15 Fan, Cao, Xu, Li (b0170) 2021; 853 Guo, Shi, Qian, Lv, Li, Su, Liu, Chen, Wang, Cui, Li, Tang (b0175) 2017; 32 Kozuka, Tsukazaki, Kawasaki (b0105) 2014; 1 Hasan, Xie, Barron, Liu, Nguyen, Motayed, Rao, Debnath (b0185) 2015; 3 Zhang, Ge, Wang, Zhang, Wu, Liang (b0040) 2016; 387 Guo, Liu, Li, Wu, Wang, Cui, Li, Tang (b0155) 2017; 9 Li, Tokizono, Liao, Zhong, Koide, Yamada, Delaunay (b0060) 2010; 20 Tian, Zhai, Zhang, Li, Wang, Liu, Liu, Cai, Tsukagoshi, Golberg, Bando (b0050) 2013; 25 Guo, Su, Shi, Li, Zhao, Ye, Wang, Liu, Chen, Li, Tang (b0055) 2018; 12 Xie, Hasan, Qiu, Arinze, Nguyen, Motayed, Thon, Debnath (b0180) 2015; 107 Li, Chen, Hu, Li, Liu, Lee, Wang, Li, Lo (b0190) 2015; 23 Liu (10.1016/j.optlastec.2022.108634_b0020) 2014; 5 Patel (10.1016/j.optlastec.2022.108634_b0030) 2015; 1 Sang (10.1016/j.optlastec.2022.108634_b0005) 2013; 13 Pansri (10.1016/j.optlastec.2022.108634_b0195) 2019; 55 Youn (10.1016/j.optlastec.2022.108634_b0130) 2020; 836 Zhao (10.1016/j.optlastec.2022.108634_b0120) 2020; 45 Zhang (10.1016/j.optlastec.2022.108634_b0100) 2017; 5 Nasiri (10.1016/j.optlastec.2022.108634_b0015) 2015; 27 Xu (10.1016/j.optlastec.2022.108634_b0160) 2018; 30 Zheng (10.1016/j.optlastec.2022.108634_b0140) 2020; 45 Hasan (10.1016/j.optlastec.2022.108634_b0185) 2015; 3 Xie (10.1016/j.optlastec.2022.108634_b0180) 2015; 107 Li (10.1016/j.optlastec.2022.108634_b0145) 2019; 11 Liu (10.1016/j.optlastec.2022.108634_b0035) 2014; 315 Tyagi (10.1016/j.optlastec.2022.108634_b0025) 2013; 34 Kokubun (10.1016/j.optlastec.2022.108634_b0125) 2016; 9 Chen (10.1016/j.optlastec.2022.108634_b0045) 2012; 22 Kozuka (10.1016/j.optlastec.2022.108634_b0105) 2014; 1 Zhang (10.1016/j.optlastec.2022.108634_b0090) 2019; 7 Guo (10.1016/j.optlastec.2022.108634_b0150) 2014; 105 Cai (10.1016/j.optlastec.2022.108634_b0110) 2016; 109 Kim (10.1016/j.optlastec.2022.108634_b0075) 2017; 5 Wang (10.1016/j.optlastec.2022.108634_b0070) 2014; 43 Jia (10.1016/j.optlastec.2022.108634_b0115) 2020; 15 Li (10.1016/j.optlastec.2022.108634_b0190) 2015; 23 Zhang (10.1016/j.optlastec.2022.108634_b0040) 2016; 387 Guo (10.1016/j.optlastec.2022.108634_b0055) 2018; 12 Li (10.1016/j.optlastec.2022.108634_b0060) 2010; 20 Fan (10.1016/j.optlastec.2022.108634_b0170) 2021; 853 Pearton (10.1016/j.optlastec.2022.108634_b0065) 2018; 5 Kim (10.1016/j.optlastec.2022.108634_b0085) 2014; 6 Zu (10.1016/j.optlastec.2022.108634_b0080) 1997; 103 Li (10.1016/j.optlastec.2022.108634_b0095) 2015; 36 Tian (10.1016/j.optlastec.2022.108634_b0050) 2013; 25 Guo (10.1016/j.optlastec.2022.108634_b0155) 2017; 9 Chen (10.1016/j.optlastec.2022.108634_b0165) 2017; 110 Zheng (10.1016/j.optlastec.2022.108634_b0010) 2006; 253 Zhu (10.1016/j.optlastec.2022.108634_b0135) 2022; 581 Guo (10.1016/j.optlastec.2022.108634_b0175) 2017; 32 |
References_xml | – volume: 3 year: 2015 ident: b0185 article-title: Self-powered p-NiO/n-ZnO heterojunction ultraviolet photodetectors fabricated on plastic substrates publication-title: APL Mater. – volume: 34 start-page: 81 year: 2013 end-page: 83 ident: b0025 article-title: P-N Junction of NiO Thin Film for Photonic Devices publication-title: IEEE Electron Device Lett. – volume: 5 year: 2018 ident: b0065 article-title: A review of Ga publication-title: Appl. Phys. Rev. – volume: 581 year: 2022 ident: b0135 article-title: The formation and role of the SiO publication-title: Appl. Surf. Sci. – volume: 5 start-page: 4007 year: 2014 ident: b0020 article-title: All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity publication-title: Nat. Commun. – volume: 836 year: 2020 ident: b0130 article-title: Performance enhancement of CIGS thin-film solar cells with a functional-window NiO thin layer publication-title: J. Alloys Compd. – volume: 387 start-page: 1162 year: 2016 end-page: 1168 ident: b0040 article-title: Single-layer graphene-TiO publication-title: Appl. Surf. Sci. – volume: 23 start-page: 27683 year: 2015 end-page: 27689 ident: b0190 article-title: Highly spectrum-selective ultraviolet photodetector based on p-NiO/n-IGZO thin film heterojunction structure publication-title: Opt. Express – volume: 22 start-page: 1229 year: 2012 end-page: 1235 ident: b0045 article-title: General Fabrication of Monolayer SnO publication-title: Adv. Funct. Mater. – volume: 6 start-page: 1370 year: 2014 end-page: 1374 ident: b0085 article-title: Air-Stable, Solution-Processed Oxide p-n Heterojunction Ultraviolet Photodetector publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 12520 year: 2017 end-page: 12528 ident: b0100 article-title: A self-powered broadband photodetector based on an n-Si(111)/p-NiO heterojunction with high photosensitivity and enhanced external quantum efficiency publication-title: J. Mater. Chem. C – volume: 43 start-page: 1400 year: 2014 end-page: 1422 ident: b0070 article-title: Recent advances in solution-processed inorganic nanofilm photodetectors publication-title: Chem. Soc. Rev. – volume: 109 year: 2016 ident: b0110 article-title: High performance ultraviolet photodetectors based on ZnO nanoflakes/PVK heterojunction publication-title: Appl. Phys. Lett. – volume: 11 start-page: 1013 year: 2019 end-page: 1020 ident: b0145 article-title: Graphene interdigital electrodes for improving sensitivity in a Ga publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 4336 year: 2015 end-page: 4343 ident: b0015 article-title: Ultraporous Electron-Depleted ZnO Nanoparticle Networks for Highly Sensitive Portable Visible-Blind UV Photodetectors publication-title: Adv. Mater. – volume: 20 start-page: 3972 year: 2010 end-page: 3978 ident: b0060 article-title: Efficient Assembly of Bridged β-Ga publication-title: Adv. Funct. Mater. – volume: 105 year: 2014 ident: b0150 article-title: Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga publication-title: Appl. Phys. Lett. – volume: 7 start-page: 223 year: 2019 end-page: 229 ident: b0090 article-title: From nanofibers to ordered ZnO/NiO heterojunction arrays for self-powered and transparent UV photodetectors publication-title: J. Mater. Chem. C – volume: 45 start-page: 4843 year: 2020 end-page: 4846 ident: b0140 article-title: Vertically aligned GaN nanorod arrays/p-Si heterojunction self-powered UV photodetector with ultrahigh photoresponsivity publication-title: Opt. Lett. – volume: 32 start-page: 03LT01 year: 2017 ident: b0175 article-title: Fabrication of β-Ga publication-title: Semicond. Sci. Technol. – volume: 853 year: 2021 ident: b0170 article-title: Mixed-phase β-Ga publication-title: J. Alloys Compd. – volume: 103 start-page: 459 year: 1997 end-page: 463 ident: b0080 article-title: Ultraviolet spontaneous and stimulated emissions prom ZnO microcrystallite thin films at room temperature publication-title: Solid Slate Commun. – volume: 5 start-page: 8338 year: 2017 end-page: 8354 ident: b0075 article-title: Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga publication-title: J. Mater. Chem. C – volume: 1 year: 2014 ident: b0105 article-title: Challenges and opportunities of ZnO-related single crystalline heterostructures publication-title: Appl. Phys. Rev. – volume: 45 start-page: 1108 year: 2020 end-page: 1111 ident: b0120 article-title: Infrared photodetector based on GeTe nanofilms with high performance publication-title: Opt. Lett. – volume: 30 year: 2018 ident: b0160 article-title: A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO publication-title: Adv. Mater. – volume: 110 year: 2017 ident: b0165 article-title: Self-powered narrowband p-NiO/n-ZnO nanowire ultraviolet photodetector with interface modification of Al publication-title: Appl. Phys. Lett. – volume: 36 start-page: 850 year: 2015 end-page: 852 ident: b0095 article-title: Sensitivity enhancement of ultraviolet photodetectors with the structure of p-NiO/insulator-SiO publication-title: IEEE Electron Device Lett. – volume: 107 year: 2015 ident: b0180 article-title: High-performing visible-blind photodetectors based on SnO publication-title: Appl. Phys. Lett. – volume: 12 start-page: 12827 year: 2018 end-page: 12835 ident: b0055 article-title: Self-Powered Ultraviolet Photodetector with Superhigh Photoresponsivity (3.05 A/W) Based on the GaN/Sn:Ga publication-title: ACS Nano – volume: 253 start-page: 2264 year: 2006 end-page: 2267 ident: b0010 article-title: Photoconductive ultraviolet detectors based on ZnO films publication-title: Appl. Surf. Sci. – volume: 15 start-page: 47 year: 2020 ident: b0115 article-title: High-performance deep ultraviolet photodetector based on NiO/beta-Ga publication-title: Nanoscale Res. Lett. – volume: 1 start-page: 1500232 year: 2015 ident: b0030 article-title: All Transparent Metal Oxide Ultraviolet Photodetector publication-title: Adv. Electron. Mater. – volume: 25 start-page: 4625 year: 2013 end-page: 4630 ident: b0050 article-title: Low-cost fully transparent ultraviolet photodetectors based on electrospun ZnO-SnO publication-title: Adv. Mater. – volume: 9 year: 2016 ident: b0125 article-title: All-oxide p-n heterojunction diodes comprising p-type NiO and n-type β-Ga publication-title: Appl. Phys. Express – volume: 13 start-page: 10482 year: 2013 end-page: 10518 ident: b0005 article-title: A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures publication-title: Sensors – volume: 315 start-page: 55 year: 2014 end-page: 58 ident: b0035 article-title: Effects of growth substrates on the morphologies of TiO publication-title: Appl. Surf. Sci. – volume: 55 start-page: 4332 year: 2019 end-page: 4344 ident: b0195 article-title: Band offset determination of p-NiO/n-TiO publication-title: J. Mater. Sci. – volume: 9 start-page: 1619 year: 2017 end-page: 1628 ident: b0155 article-title: Zero-Power-Consumption Solar-Blind Photodetector Based on beta-Ga publication-title: ACS Appl. Mater. Interfaces – volume: 315 start-page: 55 year: 2014 ident: 10.1016/j.optlastec.2022.108634_b0035 article-title: Effects of growth substrates on the morphologies of TiO2 nanowire arrays and the performance of assembled UV detectors publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.07.115 – volume: 5 start-page: 4007 year: 2014 ident: 10.1016/j.optlastec.2022.108634_b0020 article-title: All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity publication-title: Nat. Commun. doi: 10.1038/ncomms5007 – volume: 581 year: 2022 ident: 10.1016/j.optlastec.2022.108634_b0135 article-title: The formation and role of the SiO2 oxidation layer in the 4H-SiC/β-Ga2O3 interface publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.151956 – volume: 55 start-page: 4332 issue: 10 year: 2019 ident: 10.1016/j.optlastec.2022.108634_b0195 article-title: Band offset determination of p-NiO/n-TiO2 heterojunctions for applications in high-performance UV photodetectors publication-title: J. Mater. Sci. doi: 10.1007/s10853-019-04305-x – volume: 1 start-page: 1500232 issue: 11 year: 2015 ident: 10.1016/j.optlastec.2022.108634_b0030 article-title: All Transparent Metal Oxide Ultraviolet Photodetector publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201500232 – volume: 5 start-page: 8338 issue: 33 year: 2017 ident: 10.1016/j.optlastec.2022.108634_b0075 article-title: Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond publication-title: J. Mater. Chem. C doi: 10.1039/C7TC02221B – volume: 22 start-page: 1229 issue: 6 year: 2012 ident: 10.1016/j.optlastec.2022.108634_b0045 article-title: General Fabrication of Monolayer SnO2 Nanonets for High-Performance Ultraviolet Photodetectors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201102506 – volume: 853 year: 2021 ident: 10.1016/j.optlastec.2022.108634_b0170 article-title: Mixed-phase β-Ga2O3 and SnO2 metal-semiconductor-metal photodetectors with extended detection range from 293 nm to 330 nm publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.157080 – volume: 9 issue: 9 year: 2016 ident: 10.1016/j.optlastec.2022.108634_b0125 article-title: All-oxide p-n heterojunction diodes comprising p-type NiO and n-type β-Ga2O3 publication-title: Appl. Phys. Express doi: 10.7567/APEX.9.091101 – volume: 11 start-page: 1013 issue: 1 year: 2019 ident: 10.1016/j.optlastec.2022.108634_b0145 article-title: Graphene interdigital electrodes for improving sensitivity in a Ga2O3:Zn deep-ultraviolet photoconductive detector publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b14380 – volume: 36 start-page: 850 issue: 8 year: 2015 ident: 10.1016/j.optlastec.2022.108634_b0095 article-title: Sensitivity enhancement of ultraviolet photodetectors with the structure of p-NiO/insulator-SiO2/n-ZnO nanowires publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2015.2448721 – volume: 253 start-page: 2264 issue: 4 year: 2006 ident: 10.1016/j.optlastec.2022.108634_b0010 article-title: Photoconductive ultraviolet detectors based on ZnO films publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2006.04.031 – volume: 107 issue: 24 year: 2015 ident: 10.1016/j.optlastec.2022.108634_b0180 article-title: High-performing visible-blind photodetectors based on SnO2/CuO nanoheterojunctions publication-title: Appl. Phys. Lett. doi: 10.1063/1.4938129 – volume: 3 issue: 10 year: 2015 ident: 10.1016/j.optlastec.2022.108634_b0185 article-title: Self-powered p-NiO/n-ZnO heterojunction ultraviolet photodetectors fabricated on plastic substrates publication-title: APL Mater. doi: 10.1063/1.4932194 – volume: 20 start-page: 3972 issue: 22 year: 2010 ident: 10.1016/j.optlastec.2022.108634_b0060 article-title: Efficient Assembly of Bridged β-Ga2O3 Nanowires for Solar-Blind Photodetection publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201001140 – volume: 5 issue: 1 year: 2018 ident: 10.1016/j.optlastec.2022.108634_b0065 article-title: A review of Ga2O3materials, processing, and devices publication-title: Appl. Phys. Rev. doi: 10.1063/1.5006941 – volume: 27 start-page: 4336 issue: 29 year: 2015 ident: 10.1016/j.optlastec.2022.108634_b0015 article-title: Ultraporous Electron-Depleted ZnO Nanoparticle Networks for Highly Sensitive Portable Visible-Blind UV Photodetectors publication-title: Adv. Mater. doi: 10.1002/adma.201501517 – volume: 103 start-page: 459 issue: 8 year: 1997 ident: 10.1016/j.optlastec.2022.108634_b0080 article-title: Ultraviolet spontaneous and stimulated emissions prom ZnO microcrystallite thin films at room temperature publication-title: Solid Slate Commun. doi: 10.1016/S0038-1098(97)00216-0 – volume: 9 start-page: 1619 issue: 2 year: 2017 ident: 10.1016/j.optlastec.2022.108634_b0155 article-title: Zero-Power-Consumption Solar-Blind Photodetector Based on beta-Ga2O3/NSTO Heterojunction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13771 – volume: 5 start-page: 12520 issue: 47 year: 2017 ident: 10.1016/j.optlastec.2022.108634_b0100 article-title: A self-powered broadband photodetector based on an n-Si(111)/p-NiO heterojunction with high photosensitivity and enhanced external quantum efficiency publication-title: J. Mater. Chem. C doi: 10.1039/C7TC04565D – volume: 45 start-page: 4843 issue: 17 year: 2020 ident: 10.1016/j.optlastec.2022.108634_b0140 article-title: Vertically aligned GaN nanorod arrays/p-Si heterojunction self-powered UV photodetector with ultrahigh photoresponsivity publication-title: Opt. Lett. doi: 10.1364/OL.402454 – volume: 836 year: 2020 ident: 10.1016/j.optlastec.2022.108634_b0130 article-title: Performance enhancement of CIGS thin-film solar cells with a functional-window NiO thin layer publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154803 – volume: 13 start-page: 10482 issue: 8 year: 2013 ident: 10.1016/j.optlastec.2022.108634_b0005 article-title: A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures publication-title: Sensors doi: 10.3390/s130810482 – volume: 387 start-page: 1162 year: 2016 ident: 10.1016/j.optlastec.2022.108634_b0040 article-title: Single-layer graphene-TiO2 nanotubes array heterojunction for ultraviolet photodetector application publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.07.041 – volume: 32 start-page: 03LT01 issue: 3 year: 2017 ident: 10.1016/j.optlastec.2022.108634_b0175 article-title: Fabrication of β-Ga2O3/ZnO heterojunction for solar-blind deep ultraviolet photodetection publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/aa59b0 – volume: 25 start-page: 4625 issue: 33 year: 2013 ident: 10.1016/j.optlastec.2022.108634_b0050 article-title: Low-cost fully transparent ultraviolet photodetectors based on electrospun ZnO-SnO2 heterojunction nanofibers publication-title: Adv. Mater. doi: 10.1002/adma.201301828 – volume: 23 start-page: 27683 issue: 21 year: 2015 ident: 10.1016/j.optlastec.2022.108634_b0190 article-title: Highly spectrum-selective ultraviolet photodetector based on p-NiO/n-IGZO thin film heterojunction structure publication-title: Opt. Express doi: 10.1364/OE.23.027683 – volume: 43 start-page: 1400 issue: 5 year: 2014 ident: 10.1016/j.optlastec.2022.108634_b0070 article-title: Recent advances in solution-processed inorganic nanofilm photodetectors publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60348B – volume: 109 issue: 7 year: 2016 ident: 10.1016/j.optlastec.2022.108634_b0110 article-title: High performance ultraviolet photodetectors based on ZnO nanoflakes/PVK heterojunction publication-title: Appl. Phys. Lett. doi: 10.1063/1.4961114 – volume: 30 issue: 43 year: 2018 ident: 10.1016/j.optlastec.2022.108634_b0160 article-title: A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector publication-title: Adv. Mater. – volume: 12 start-page: 12827 issue: 12 year: 2018 ident: 10.1016/j.optlastec.2022.108634_b0055 article-title: Self-Powered Ultraviolet Photodetector with Superhigh Photoresponsivity (3.05 A/W) Based on the GaN/Sn:Ga2O3 pn Junction publication-title: ACS Nano doi: 10.1021/acsnano.8b07997 – volume: 6 start-page: 1370 issue: 3 year: 2014 ident: 10.1016/j.optlastec.2022.108634_b0085 article-title: Air-Stable, Solution-Processed Oxide p-n Heterojunction Ultraviolet Photodetector publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am4050019 – volume: 45 start-page: 1108 issue: 5 year: 2020 ident: 10.1016/j.optlastec.2022.108634_b0120 article-title: Infrared photodetector based on GeTe nanofilms with high performance publication-title: Opt. Lett. doi: 10.1364/OL.385280 – volume: 7 start-page: 223 issue: 2 year: 2019 ident: 10.1016/j.optlastec.2022.108634_b0090 article-title: From nanofibers to ordered ZnO/NiO heterojunction arrays for self-powered and transparent UV photodetectors publication-title: J. Mater. Chem. C doi: 10.1039/C8TC05877F – volume: 1 issue: 1 year: 2014 ident: 10.1016/j.optlastec.2022.108634_b0105 article-title: Challenges and opportunities of ZnO-related single crystalline heterostructures publication-title: Appl. Phys. Rev. doi: 10.1063/1.4853535 – volume: 105 issue: 2 year: 2014 ident: 10.1016/j.optlastec.2022.108634_b0150 article-title: Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors publication-title: Appl. Phys. Lett. doi: 10.1063/1.4890524 – volume: 15 start-page: 47 issue: 1 year: 2020 ident: 10.1016/j.optlastec.2022.108634_b0115 article-title: High-performance deep ultraviolet photodetector based on NiO/beta-Ga2O3 heterojunction publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-020-3271-9 – volume: 34 start-page: 81 issue: 1 year: 2013 ident: 10.1016/j.optlastec.2022.108634_b0025 article-title: P-N Junction of NiO Thin Film for Photonic Devices publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2012.2223653 – volume: 110 issue: 12 year: 2017 ident: 10.1016/j.optlastec.2022.108634_b0165 article-title: Self-powered narrowband p-NiO/n-ZnO nanowire ultraviolet photodetector with interface modification of Al2O3 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4978765 |
SSID | ssj0004653 |
Score | 2.4489648 |
Snippet | •Ultraviolet photodetector based on thinfilm based p-NiO/SiO2/n-ZnO heterostructure is successfully fabricated for the first time.•A design of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108634 |
SubjectTerms | Heterostructure Low power consumption Metal oxide semiconductor UV photodetector |
Title | Low-power-consumption ultraviolet photodetector based on p-NiO/SiO2/n-ZnO |
URI | https://dx.doi.org/10.1016/j.optlastec.2022.108634 |
Volume | 157 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KRdCDaFWsj5KD1zWv7SbxVoql9dEetFC8hN3sBislCXWLN3-7s5uktCD04DXMQPgyfPPIPBC6dShPJfgFHElHYgIeF4NkiKXDOBFSQIikE8WXMR1OyeOsO2ugfj0Lo9sqK-4vOd2wdfXErtC0i_lcz_gC_eq1qrrcFppLw4QE2srvftyN2chqE6UPfAPSWz1eeaEgRlVS7zL0PHN1yCd_e6gNrzM4RkdVuGj1yjc6QQ2ZtdDhxhLBFto3TZzJ1ykaPeffuNBnz3BiJisNHVirhVoy8wNeWcVHrnIhlanVW9qFCQtECjyeT-zX-cSzM_yeTc7QdPDw1h_i6lQCTnxKFA5CAaGfcJ00clkakZAz4SQRACRTJsPUpeCpZeBxKSAB4yRgCU26juCcp34Aieo5amZ5Ji-QRRh8upQyiCRSAI-zgHWZH_iCJTziPm0jWsMTJ9UecX3OYhHXDWOf8RrXWOMal7i2kbNWLMpVGrtV7mv84y2riIHwdylf_kf5Ch3ow_JlseUaNdVyJW8g_FC8Y-yrg_Z6o6fh-BeYJtu2 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qRdSD-MT6zEGPa_PYJo3gQXzQ2tdBBfESd7MbrJQktFuKF_-Uf9DZJJUWBA_iNewsy5dhvpndeQCcmC6PJPIC8aUpCUXGJbiyTqTJOBVSoIukA8VO12080run2lMJPqe1MDqtsrD9uU3PrHXxpVqgWU37fV3ji-ZXt1XV123IU0VmZUu-TzBuG100r_Enn9r27c3DVYMUowVI6LhUEa8u0FUSlhn5Fot8WudMmKGPG8qIyXpkuchs0rO5FBiwcOqx0A1rpuCcR46HgR3uuwCLFM2FHptw9mHNFGMWrS8dNHB4vLmksiRV6BQrqZsn2nY25sihP1PiDM3drsNa4Z8alzkEG1CS8SasznQt3ISlLGs0HG1Bs51MSKrnrJEwK-XM7I8xHqghy178lZG-JioRUmWPA4bmTGHgkpR0-73qfb9nV2PyHPe24fFfANyBcpzEchcMylBXIpeh6xIheJx5rMYczxEs5D533Aq4U3iCsGhcrudnDIJphtpb8I1roHENclwrYH4Lpnnvjt9Fzqf4B3NqGCDD_Ca89xfhY1huPHTaQbvZbe3Dip5qn9_0HEBZDcfyEH0fxY8yXTPg5b-V-wuu_hgd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-power-consumption+ultraviolet+photodetector+based+on+p-NiO%2FSiO2%2Fn-ZnO&rft.jtitle=Optics+and+laser+technology&rft.au=Jia%2C+Menghan&rft.au=Wang%2C+Fang&rft.au=Tang%2C+Libin&rft.au=Xiang%2C+Jinzhong&rft.date=2023-01-01&rft.issn=0030-3992&rft.volume=157&rft.spage=108634&rft_id=info:doi/10.1016%2Fj.optlastec.2022.108634&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optlastec_2022_108634 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon |