Multichannel Multiscale Two-Stage Convolutional Neural Network for the Detection and Localization of Myocardial Infarction Using Vectorcardiogram Signal

Myocardial infarction (MI) occurs due to the decrease in the blood flow into one part of the heart, and it further causes damage to the heart muscle. The 12-channel electrocardiogram (ECG) has been widely used to detect and localize MI pathology in clinical studies. The vectorcardiogram (VCG) is a 3...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 11; no. 17; p. 7920
Main Authors Karhade, Jay, Ghosh, Samit Kumar, Gajbhiye, Pranjali, Tripathy, Rajesh Kumar, Acharya, U. Rajendra
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Myocardial infarction (MI) occurs due to the decrease in the blood flow into one part of the heart, and it further causes damage to the heart muscle. The 12-channel electrocardiogram (ECG) has been widely used to detect and localize MI pathology in clinical studies. The vectorcardiogram (VCG) is a 3-channel recording system used to measure the heart’s electrical activity in sagittal, transverse, and frontal planes. The VCG signals have advantages over the 12-channel ECG to localize posterior MI pathology. Detection and localization of MI using VCG signals are vital in clinical practice. This paper proposes a multi-channel multi-scale two-stage deep-learning-based approach to detect and localize MI using VCG signals. In the first stage, the multivariate variational mode decomposition (MVMD) decomposes the three-channel-based VCG signal beat into five components along each channel. The multi-channel multi-scale VCG tensor is formulated using the modes of each channel of VCG data, and it is used as the input to the deep convolutional neural network (CNN) to classify MI and normal sinus rhythm (NSR) classes. In the second stage, the multi-class deep CNN is used for the categorization of anterior MI (AMI), anterior-lateral MI (ALMI), anterior-septal MI (ASMI), inferior MI (IMI), inferior-lateral MI (ILMI), inferior-posterior-lateral (IPLMI) classes using MI detected multi-channel multi-scale VCG instances from the first stage. The proposed approach is developed using the VCG data obtained from a public database. The results reveal that the approach has obtained the accuracy, sensitivity, and specificity values of 99.58%, 99.18%, and 99.87%, respectively, for MI detection. Moreover, for MI localization, we have obtained the overall accuracy value of 99.86% in the second stage for our proposed network. The proposed approach has demonstrated superior classification performance compared to the existing VCG signal-based MI detection and localization techniques.
AbstractList Myocardial infarction (MI) occurs due to the decrease in the blood flow into one part of the heart, and it further causes damage to the heart muscle. The 12-channel electrocardiogram (ECG) has been widely used to detect and localize MI pathology in clinical studies. The vectorcardiogram (VCG) is a 3-channel recording system used to measure the heart’s electrical activity in sagittal, transverse, and frontal planes. The VCG signals have advantages over the 12-channel ECG to localize posterior MI pathology. Detection and localization of MI using VCG signals are vital in clinical practice. This paper proposes a multi-channel multi-scale two-stage deep-learning-based approach to detect and localize MI using VCG signals. In the first stage, the multivariate variational mode decomposition (MVMD) decomposes the three-channel-based VCG signal beat into five components along each channel. The multi-channel multi-scale VCG tensor is formulated using the modes of each channel of VCG data, and it is used as the input to the deep convolutional neural network (CNN) to classify MI and normal sinus rhythm (NSR) classes. In the second stage, the multi-class deep CNN is used for the categorization of anterior MI (AMI), anterior-lateral MI (ALMI), anterior-septal MI (ASMI), inferior MI (IMI), inferior-lateral MI (ILMI), inferior-posterior-lateral (IPLMI) classes using MI detected multi-channel multi-scale VCG instances from the first stage. The proposed approach is developed using the VCG data obtained from a public database. The results reveal that the approach has obtained the accuracy, sensitivity, and specificity values of 99.58%, 99.18%, and 99.87%, respectively, for MI detection. Moreover, for MI localization, we have obtained the overall accuracy value of 99.86% in the second stage for our proposed network. The proposed approach has demonstrated superior classification performance compared to the existing VCG signal-based MI detection and localization techniques.
Author Tripathy, Rajesh Kumar
Acharya, U. Rajendra
Karhade, Jay
Ghosh, Samit Kumar
Gajbhiye, Pranjali
Author_xml – sequence: 1
  givenname: Jay
  surname: Karhade
  fullname: Karhade, Jay
– sequence: 2
  givenname: Samit Kumar
  orcidid: 0000-0003-2267-7314
  surname: Ghosh
  fullname: Ghosh, Samit Kumar
– sequence: 3
  givenname: Pranjali
  orcidid: 0000-0001-5567-5732
  surname: Gajbhiye
  fullname: Gajbhiye, Pranjali
– sequence: 4
  givenname: Rajesh Kumar
  orcidid: 0000-0003-2517-3103
  surname: Tripathy
  fullname: Tripathy, Rajesh Kumar
– sequence: 5
  givenname: U. Rajendra
  orcidid: 0000-0003-2689-8552
  surname: Acharya
  fullname: Acharya, U. Rajendra
BookMark eNptkcFu1DAQhi3USpTSEy9giSMKeOI4jo9ooe1KWzi05WrNeu3USxovttOqPEkfFzeLUIXqy4x_f_OPPPOGHIxhtIS8A_aRc8U-4W4HAFKqmr0iRzWTbcUbkAfP8tfkJKUtK0cB74AdkceLacje3OA42oHOl2RwsPTqPlSXGXtLF2G8C8OUfRhxoN_sFOeQ70P8SV2INN9Y-sVma54QiuOGrkLx8L9xFoKjFw9FiBtfCpejw7gnr5Mfe_qj1IU4P4c-4i299H1p9JYcOhySPfkbj8n16derxXm1-n62XHxeVYa3Ta6k5KxF04BoBe-s6BS0GwBhVN0WhRluuVOy4Vw4FKoTwgGvm5ozruq1UvyYLPe-m4BbvYv-FuODDuj1LITYa4xlQoPVnZPGCcUNc6pBxtclkQBr1nasbrumeL3fe-1i-DXZlPU2TLF8JulaSCY60QAU6sOeMjGkFK371xWYftqkfrbJQsN_tPF5HmyO6IcXa_4Al-mjAw
CitedBy_id crossref_primary_10_3390_app12189052
crossref_primary_10_1109_TCSII_2024_3355016
crossref_primary_10_1109_ACCESS_2023_3312948
crossref_primary_10_3389_fcvm_2022_860032
crossref_primary_10_1016_j_engappai_2022_105428
crossref_primary_10_1186_s12938_025_01349_w
crossref_primary_10_3390_s23187756
crossref_primary_10_1109_TBME_2022_3202962
crossref_primary_10_1109_TIM_2023_3290966
crossref_primary_10_1016_j_compbiomed_2023_107781
crossref_primary_10_3389_fphys_2023_1105891
crossref_primary_10_3390_diagnostics13030336
crossref_primary_10_3389_fonc_2023_1117420
Cites_doi 10.1016/j.medengphy.2012.03.005
10.1016/j.compbiomed.2020.103769
10.1016/j.jacc.2004.07.014
10.1016/S0022-0736(77)80051-4
10.1016/j.ajem.2013.04.037
10.1109/JBHI.2017.2771768
10.1016/j.compbiomed.2021.104428
10.3390/e22101141
10.1007/978-3-319-13117-7_95
10.1016/j.medengphy.2011.08.009
10.1016/j.imu.2020.100479
10.1142/S0219519417400449
10.1161/01.CIR.101.23.e215
10.1109/TBME.2015.2405134
10.3389/fcvm.2020.00025
10.1515/bmt-2015-0005
10.1136/emj.2010.099861
10.1007/s10916-016-0441-5
10.1109/JSEN.2019.2896308
10.1016/j.compbiomed.2014.04.009
10.1016/S0022-0736(86)80034-6
10.1109/TSP.2019.2951223
10.1109/TBME.2010.2063704
10.1109/JSEN.2019.2935552
10.1161/01.CIR.96.6.1798
10.1007/s11760-017-1068-9
10.1109/TMI.2017.2743464
10.1016/j.jelectrocard.2013.06.001
10.1016/j.ins.2017.06.027
10.1016/j.compbiomed.2020.103939
10.1109/LSENS.2020.2992760
10.1080/21681163.2019.1583607
10.1016/j.disamonth.2012.12.004
10.1016/j.compbiomed.2019.103424
10.1016/0022-0736(90)90135-O
10.2466/pr0.2000.87.3f.1171
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app11177920
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_8f7cf593c0f94a03bc0f711b06802684
10_3390_app11177920
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c364t-77306ac4156538e58916d115c9266530c3e3f974335fa59855f1324230392b993
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:30:32 EDT 2025
Mon Jun 30 11:21:55 EDT 2025
Thu Apr 24 23:09:05 EDT 2025
Tue Jul 01 00:51:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-77306ac4156538e58916d115c9266530c3e3f974335fa59855f1324230392b993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2689-8552
0000-0003-2517-3103
0000-0001-5567-5732
0000-0003-2267-7314
OpenAccessLink https://doaj.org/article/8f7cf593c0f94a03bc0f711b06802684
PQID 2570585411
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_8f7cf593c0f94a03bc0f711b06802684
proquest_journals_2570585411
crossref_primary_10_3390_app11177920
crossref_citationtrail_10_3390_app11177920
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Correa (ref_18) 2014; 50
Jain (ref_36) 2020; 21
Schreck (ref_10) 2013; 31
Loperfido (ref_11) 1986; 19
Correa (ref_17) 2013; 35
Tripathy (ref_2) 2019; 19
ref_12
Tripathy (ref_3) 2017; 11
ref_33
Tripathy (ref_28) 2017; 17
Panda (ref_29) 2020; 124
ref_30
Rehman (ref_40) 2010; 466
Tripathy (ref_27) 2016; 40
Yang (ref_15) 2010; 58
Liu (ref_25) 2017; 22
Zema (ref_35) 1990; 23
Maheshwari (ref_37) 2021; 134
Parale (ref_8) 2004; 52
Acharya (ref_24) 2017; 415
Yamauchi (ref_34) 1977; 10
Militello (ref_22) 2019; 114
Tripathy (ref_23) 2019; 19
Ohlin (ref_4) 1997; 96
Aftab (ref_26) 2019; 67
Khan (ref_7) 2012; 29
Chen (ref_19) 2020; 7
Prabhakararao (ref_9) 2020; 4
Hasan (ref_32) 2016; 61
Yang (ref_14) 2012; 34
ref_41
Goldberger (ref_31) 2000; 101
Sharma (ref_6) 2015; 62
Antman (ref_1) 2004; 44
Tripathy (ref_42) 2020; 120
Oktay (ref_20) 2017; 37
Dahiya (ref_21) 2019; 7
Dehnavi (ref_13) 2011; 16
Boateng (ref_5) 2013; 59
Becker (ref_39) 2000; 87
Correa (ref_16) 2013; 46
Jani (ref_38) 2019; 140
References_xml – volume: 35
  start-page: 16
  year: 2013
  ident: ref_17
  article-title: Novel set of vectorcardiographic parameters for the identification of ischemic patients
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2012.03.005
– volume: 466
  start-page: 1291
  year: 2010
  ident: ref_40
  article-title: Multivariate empirical mode decomposition
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– volume: 120
  start-page: 103769
  year: 2020
  ident: ref_42
  article-title: Automated sleep apnea detection from cardio-pulmonary signal using bivariate fast and adaptive EMD coupled with cross time–frequency analysis
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103769
– ident: ref_30
– volume: 44
  start-page: E1
  year: 2004
  ident: ref_1
  article-title: ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the Management of Patients with Acute Myocardial Infarction)
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2004.07.014
– volume: 10
  start-page: 171
  year: 1977
  ident: ref_34
  article-title: Analysis of discrepancies between VCG and ECG interpreation of anterior wall myocardial infarction
  publication-title: J. Electrocardiol.
  doi: 10.1016/S0022-0736(77)80051-4
– volume: 31
  start-page: 1183
  year: 2013
  ident: ref_10
  article-title: Derivation of the 12-lead electrocardiogram and 3-lead vectorcardiogram
  publication-title: Am. J. Emerg. Med.
  doi: 10.1016/j.ajem.2013.04.037
– volume: 22
  start-page: 1434
  year: 2017
  ident: ref_25
  article-title: Real-time multilead convolutional neural network for myocardial infarction detection
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2771768
– volume: 16
  start-page: 136
  year: 2011
  ident: ref_13
  article-title: Detection and classification of cardiac ischemia using vectorcardiogram signal via neural network
  publication-title: J. Res. Med. Sci. Off. J. Isfahan Univ. Med Sci.
– volume: 134
  start-page: 104428
  year: 2021
  ident: ref_37
  article-title: Automated accurate emotion recognition system using rhythm-specific deep convolutional neural network technique with multi-channel EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104428
– ident: ref_41
  doi: 10.3390/e22101141
– ident: ref_33
  doi: 10.1007/978-3-319-13117-7_95
– volume: 52
  start-page: 376
  year: 2004
  ident: ref_8
  article-title: Importance of reciprocal leads in acute myocardial infarction
  publication-title: JAPI
– volume: 34
  start-page: 485
  year: 2012
  ident: ref_14
  article-title: Identification of myocardial infarction (MI) using spatio-temporal heart dynamics
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2011.08.009
– volume: 21
  start-page: 100479
  year: 2020
  ident: ref_36
  article-title: A two-stage Deep CNN Architecture for the Classification of Low-risk and High-risk Hypertension Classes using Multi-lead ECG Signals
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2020.100479
– volume: 17
  start-page: 1740044
  year: 2017
  ident: ref_28
  article-title: Automated detection of atrial fibrillation ECG signals using two stage VMD and atrial fibrillation diagnosis index
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519417400449
– volume: 101
  start-page: e215
  year: 2000
  ident: ref_31
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 62
  start-page: 1827
  year: 2015
  ident: ref_6
  article-title: Multiscale energy and eigenspace approach to detection and localization of myocardial infarction
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2405134
– volume: 7
  start-page: 25
  year: 2020
  ident: ref_19
  article-title: Deep learning for cardiac image segmentation: A review
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2020.00025
– volume: 61
  start-page: 3
  year: 2016
  ident: ref_32
  article-title: A review of beat-to-beat vectorcardiographic (VCG) parameters for analyzing repolarization variability in ECG signals
  publication-title: Biomed. Eng. (Biomedizinische Technik)
  doi: 10.1515/bmt-2015-0005
– volume: 29
  start-page: 15
  year: 2012
  ident: ref_7
  article-title: Posterior myocardial infarction: Are we failing to diagnose this?
  publication-title: Emerg. Med. J.
  doi: 10.1136/emj.2010.099861
– volume: 40
  start-page: 79
  year: 2016
  ident: ref_27
  article-title: Detection of shockable ventricular arrhythmia using variational mode decomposition
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-016-0441-5
– volume: 19
  start-page: 4509
  year: 2019
  ident: ref_23
  article-title: A novel approach for detection of myocardial infarction from ECG signals of multiple electrodes
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2896308
– ident: ref_12
– volume: 50
  start-page: 49
  year: 2014
  ident: ref_18
  article-title: Novel technique for ST-T interval characterization in patients with acute myocardial ischemia
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2014.04.009
– volume: 19
  start-page: 247
  year: 1986
  ident: ref_11
  article-title: Assessment of left ventricular hypertrophy by ECG and VCG in patients with inferior and posterior myocardial infarction. A comparison with echocardiographic data
  publication-title: J. Electrocardiol.
  doi: 10.1016/S0022-0736(86)80034-6
– volume: 67
  start-page: 6039
  year: 2019
  ident: ref_26
  article-title: Multivariate variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2019.2951223
– volume: 58
  start-page: 339
  year: 2010
  ident: ref_15
  article-title: Multiscale recurrence quantification analysis of spatial cardiac vectorcardiogram signals
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2063704
– volume: 19
  start-page: 11437
  year: 2019
  ident: ref_2
  article-title: Localization of myocardial infarction from multi-lead ECG signals using multiscale analysis and convolutional neural network
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2935552
– volume: 96
  start-page: 1798
  year: 1997
  ident: ref_4
  article-title: Acute myocardial infarction detected in the 12-lead ECG by artificial neural networks
  publication-title: Circulation
  doi: 10.1161/01.CIR.96.6.1798
– volume: 11
  start-page: 1139
  year: 2017
  ident: ref_3
  article-title: Detection of myocardial infarction from vectorcardiogram using relevance vector machine
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-017-1068-9
– volume: 37
  start-page: 384
  year: 2017
  ident: ref_20
  article-title: Anatomically constrained neural networks (ACNNs): Application to cardiac image enhancement and segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2743464
– volume: 46
  start-page: 635
  year: 2013
  ident: ref_16
  article-title: Acute myocardial ischemia monitoring before and during angioplasty by a novel vectorcardiographic parameter set
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2013.06.001
– volume: 415
  start-page: 190
  year: 2017
  ident: ref_24
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.06.027
– volume: 124
  start-page: 103939
  year: 2020
  ident: ref_29
  article-title: Detection of shockable ventricular cardiac arrhythmias from ECG signals using FFREWT filter-bank and deep convolutional neural network
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103939
– volume: 4
  start-page: 1
  year: 2020
  ident: ref_9
  article-title: Automated detection of posterior myocardial infarction from VCG signals using stationary wavelet transform based features
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2020.2992760
– volume: 140
  start-page: A15934
  year: 2019
  ident: ref_38
  article-title: Automatic segmentation of left ventricular myocardium and scar from LGE-CMR images utilizing deep learning with weighted categorical cross entropy loss function weight initialization
  publication-title: Circulation
– volume: 7
  start-page: 690
  year: 2019
  ident: ref_21
  article-title: Integrated 3D anatomical model for automatic myocardial segmentation in cardiac CT imagery
  publication-title: Comput. Methods Biomech. Biomed. Eng. Imaging Vis.
  doi: 10.1080/21681163.2019.1583607
– volume: 59
  start-page: 83
  year: 2013
  ident: ref_5
  article-title: Acute myocardial infarction
  publication-title: Disease-a-Month
  doi: 10.1016/j.disamonth.2012.12.004
– volume: 114
  start-page: 103424
  year: 2019
  ident: ref_22
  article-title: A semi-automatic approach for epicardial adipose tissue segmentation and quantification on cardiac CT scans
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103424
– volume: 23
  start-page: 147
  year: 1990
  ident: ref_35
  article-title: Electrocardiographic tall R waves in the right precordial leads: Comparison of recently proposed ECG and VCG criteria for distinguishing posterolateral myocardial infarction from prominent anterior forces in normal subjects
  publication-title: J. Electrocardiol.
  doi: 10.1016/0022-0736(90)90135-O
– volume: 87
  start-page: 1171E
  year: 2000
  ident: ref_39
  article-title: Creating comparability among reliability coefficients: The case of Cronbach alpha and Cohen kappa
  publication-title: Psychol. Rep.
  doi: 10.2466/pr0.2000.87.3f.1171
SSID ssj0000913810
Score 2.296128
Snippet Myocardial infarction (MI) occurs due to the decrease in the blood flow into one part of the heart, and it further causes damage to the heart muscle. The...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 7920
SubjectTerms accuracy
Automation
Decomposition
deep CNN
Deep learning
Discriminant analysis
Disease
Heart attacks
Localization
Morphology
multivariate VMD
myocardial infarction
Neural networks
Pathology
Principal components analysis
Signal processing
vectorcardiogram
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA9-vOiDOD9wfpEHH1Qotqap7ZPonExREXWyt5KkyRBGq24q_if-ud7dsjlQfGqbBAq5y-V3l8vvGNuxrkh1omRgMlMEsU5coJxOApUaR3FISzyz1zdJqx1fdmTHB9z6Pq1yZBPJUBeVwRj5AVZbA2gbR9Hx80uAVaPwdNWX0Jhms2CCU3C-Zk-bN7d34ygLsl6mUTi8mCfAv8dz4QgPKjOs8D2xFRFj_y-DTLvM-SJb8PCQnwzlWWNTtlxi8xOkgUus5pdjn-96zui9ZfZFF2nxFm9pe5w--jD7lj98VAEAyq7ljap893oGf0BSDnpQFjgH6MoBCvIzO6DcrJKrsuBXuNH5i5q8cvz6ExpQo3r8onSwRKiDsg74I4X_qZsyvvj9Uxd-tMLa582HRivwRRcCI5J4AGgbnAhl0K8DW2ix6GBSAGw0GWzlUoRGWOHACRFCOiWzVEoXESgLAWlpQDurbKasSrvGeBYqYQsnIo1Oy2GitBJaFyBDW8jMiDrbH81_bjwjORbG6OXgmaCw8glh1dnOePDzkIjj72GnKMjxEGTPpobqtZv7xZin7sg4mQkTuixWodDwchRFGuuQIPtNnW2O1CD3S7qf_yjg-v_dG2zuEBNfKBFtk80MXt_sFiCXgd726vkNgBLwWw
  priority: 102
  providerName: ProQuest
Title Multichannel Multiscale Two-Stage Convolutional Neural Network for the Detection and Localization of Myocardial Infarction Using Vectorcardiogram Signal
URI https://www.proquest.com/docview/2570585411
https://doaj.org/article/8f7cf593c0f94a03bc0f711b06802684
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0VeoFDBRTEtnTlAwdAiohxHOIjUBZaFVTxJW6R7dgIaZWtuttW_BN-bmcmBkUqEpeektiWHNljzxt75g3AZohN5UqrM298kxWujJmNrsxs5SOfQwbmmT07L0-vi6-3-raX6ot8wjp64G7gdqu476M2yufRFDZXDl_2pXSUM4KYSmj3RZ3XM6Z4DzaSqKu6gDyFdj3dB0u6oDSU2bungpip_5-NmLXLaAneJVgoDrrfWYY3oV2BxR5Z4Aosp2U4FVuJK3r7PTxyAC1F77ZhLPhjiqMexNWfSYZA8i6Io0n7O8kX9kBkHPxg72-BkFUgBBSfw4x9slph20Z8IwWXAjTFJIqzBywgSRqLL23EpcEV7G0gbvjYn6vZ00tc3t9hR6twPTq-OjrNUrKFzKuymCHKRuPBerLncA8MlGywbBAueoMqXKvcq6AiGh9K6Wi1qbSOksFYjgjLIcpZg_l20oZ1ECa3KjRRSUfGyl5pnVXONbqQodHGqwHsPI1_7RMTOSXEGNdokdBk1b3JGsDmc-MfHQHHy80OaSKfmxBrNhegLNVJlurXZGkAG09iUKelPK0pzR_aVIWUH_5HHx9hYY_cYthNbQPmZz9_hU-Ia2ZuCHPV6GQIbw-Pz79fDFmg_wK5NPlU
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB5V7QE4oLaACC2whyIBkoWd9breA0LQEhKa9EKKejO7692oUmS3Tdqqb8JT8IzMTOwQCcStJ__MSpY8P_vt7sw3AHs-lLnNjIqcdmWU2ixEJtgsMrkLvA_pmWd2dJz1T9Kvp-p0DX61tTCUVtnGRA7UZe1oj_wddVtDaJsmyYfzi4i6RtHpattCY2EWR_72Bpdss_eDQ9Tvq26393l80I-argKRk1k6RziJKNk4Wrigs3vqqpeViIucxrlKydhJLwOibClVMErnSoWEUUeMUMJqIl_CkL-Bck0elfe-LPd0iGMzT-JFGSDKYzqFTuhYVFM_8ZWJj_sD_BX-eU7rbcLDBoyKjwvr2YI1X23DgxWKwm3Yapx_Jl43DNVvHsFPLtulmuHKTwU_zFDXXoxv6gjh68SLg7q6bqwav0AUIHzhnHOBQFkg8BSHfs6ZYJUwVSmGNK02ZaGiDmJ0iy_IfqdiUAX88yzgHAfxnQ8bWMz5ZeLb2QQ_9BhO7kQZT2C9qiv_FISOjfRlkImlJVI3M9ZIa0u0GF8q7WQH3rb_v3AN_zm14ZgWuA4iZRUryurA3nLw-YL249_DPpEil0OIq5tf1JeTonH9Ig_7LigtXRx0amJp8WY_SSx1PSGunQ7stmZQNAFkVvwx92f_F7-Ee_3xaFgMB8dHO3C_Syk3nAK3C-vzyyv_HDHT3L5gQxXw46494zeFeyde
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9RAEB_KFUQfxFbF06r7UEGF0OQ2yWUfRGyvR8-2R9FW-pbubnYP4Uhq77T0m_hZ_HTOzG3OA8W3PuXPLgQyszO_2Z35DcC281Vhcp1FVtkqSk3uI-1NHunCet6HdMwzezzOD87Sj-fZ-Rr8amthKK2ytYlsqKvG0h75DnVbQ2ibJsmOD2kRJ4Ph-8tvEXWQopPWtp3GQkUO3c01hm-zd6MByvpVrzfcP907iEKHgcjKPJ0jtETErC0FMbjwHXXYyyvESFah38pkbKWTHhG3lJnXmSqyzCeMQGKEFUYREROa__U-RkVxB9Z398cnn5Y7PMS4WSTxoihQShXTmXRCh6SKuouvuEHuFvCXM2APN3wA9wM0FR8WurQBa67ehHsrhIWbsBFMwUy8DnzVbx7CTy7ipQri2k0FP8xQ8k6cXjcRgtmJE3tN_SPoOH6BCEH4whnoAmGzQBgqBm7OeWG10HUljsjJhiJR0XhxfIMvSJunYlR7_Pc8wBkP4gsfPfAwZ5uJz18n-KFHcHYr4ngMnbqp3RMQKtbSVV4mhgKmXq6NlsZUqD-uypSVXXjb_v_SBjZ0asoxLTEqImGVK8LqwvZy8uWCBOTf03ZJkMspxNzNL5qrSRkMQVn4vvWZkjb2KtWxNHjTTxJDPVCIeacLW60alMGczMo_yv_0_8Mv4Q6uivJoND58Bnd7lH_D-XBb0JlffXfPEUDNzYugqQIubntx_AZGFCzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multichannel+Multiscale+Two-Stage+Convolutional+Neural+Network+for+the+Detection+and+Localization+of+Myocardial+Infarction+Using+Vectorcardiogram+Signal&rft.jtitle=Applied+sciences&rft.au=Karhade%2C+Jay&rft.au=Ghosh%2C+Samit+Kumar&rft.au=Gajbhiye%2C+Pranjali&rft.au=Tripathy%2C+Rajesh+Kumar&rft.date=2021-09-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=11&rft.issue=17&rft.spage=7920&rft_id=info:doi/10.3390%2Fapp11177920&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app11177920
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon