Multichannel Multiscale Two-Stage Convolutional Neural Network for the Detection and Localization of Myocardial Infarction Using Vectorcardiogram Signal
Myocardial infarction (MI) occurs due to the decrease in the blood flow into one part of the heart, and it further causes damage to the heart muscle. The 12-channel electrocardiogram (ECG) has been widely used to detect and localize MI pathology in clinical studies. The vectorcardiogram (VCG) is a 3...
Saved in:
Published in | Applied sciences Vol. 11; no. 17; p. 7920 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Myocardial infarction (MI) occurs due to the decrease in the blood flow into one part of the heart, and it further causes damage to the heart muscle. The 12-channel electrocardiogram (ECG) has been widely used to detect and localize MI pathology in clinical studies. The vectorcardiogram (VCG) is a 3-channel recording system used to measure the heart’s electrical activity in sagittal, transverse, and frontal planes. The VCG signals have advantages over the 12-channel ECG to localize posterior MI pathology. Detection and localization of MI using VCG signals are vital in clinical practice. This paper proposes a multi-channel multi-scale two-stage deep-learning-based approach to detect and localize MI using VCG signals. In the first stage, the multivariate variational mode decomposition (MVMD) decomposes the three-channel-based VCG signal beat into five components along each channel. The multi-channel multi-scale VCG tensor is formulated using the modes of each channel of VCG data, and it is used as the input to the deep convolutional neural network (CNN) to classify MI and normal sinus rhythm (NSR) classes. In the second stage, the multi-class deep CNN is used for the categorization of anterior MI (AMI), anterior-lateral MI (ALMI), anterior-septal MI (ASMI), inferior MI (IMI), inferior-lateral MI (ILMI), inferior-posterior-lateral (IPLMI) classes using MI detected multi-channel multi-scale VCG instances from the first stage. The proposed approach is developed using the VCG data obtained from a public database. The results reveal that the approach has obtained the accuracy, sensitivity, and specificity values of 99.58%, 99.18%, and 99.87%, respectively, for MI detection. Moreover, for MI localization, we have obtained the overall accuracy value of 99.86% in the second stage for our proposed network. The proposed approach has demonstrated superior classification performance compared to the existing VCG signal-based MI detection and localization techniques. |
---|---|
AbstractList | Myocardial infarction (MI) occurs due to the decrease in the blood flow into one part of the heart, and it further causes damage to the heart muscle. The 12-channel electrocardiogram (ECG) has been widely used to detect and localize MI pathology in clinical studies. The vectorcardiogram (VCG) is a 3-channel recording system used to measure the heart’s electrical activity in sagittal, transverse, and frontal planes. The VCG signals have advantages over the 12-channel ECG to localize posterior MI pathology. Detection and localization of MI using VCG signals are vital in clinical practice. This paper proposes a multi-channel multi-scale two-stage deep-learning-based approach to detect and localize MI using VCG signals. In the first stage, the multivariate variational mode decomposition (MVMD) decomposes the three-channel-based VCG signal beat into five components along each channel. The multi-channel multi-scale VCG tensor is formulated using the modes of each channel of VCG data, and it is used as the input to the deep convolutional neural network (CNN) to classify MI and normal sinus rhythm (NSR) classes. In the second stage, the multi-class deep CNN is used for the categorization of anterior MI (AMI), anterior-lateral MI (ALMI), anterior-septal MI (ASMI), inferior MI (IMI), inferior-lateral MI (ILMI), inferior-posterior-lateral (IPLMI) classes using MI detected multi-channel multi-scale VCG instances from the first stage. The proposed approach is developed using the VCG data obtained from a public database. The results reveal that the approach has obtained the accuracy, sensitivity, and specificity values of 99.58%, 99.18%, and 99.87%, respectively, for MI detection. Moreover, for MI localization, we have obtained the overall accuracy value of 99.86% in the second stage for our proposed network. The proposed approach has demonstrated superior classification performance compared to the existing VCG signal-based MI detection and localization techniques. |
Author | Tripathy, Rajesh Kumar Acharya, U. Rajendra Karhade, Jay Ghosh, Samit Kumar Gajbhiye, Pranjali |
Author_xml | – sequence: 1 givenname: Jay surname: Karhade fullname: Karhade, Jay – sequence: 2 givenname: Samit Kumar orcidid: 0000-0003-2267-7314 surname: Ghosh fullname: Ghosh, Samit Kumar – sequence: 3 givenname: Pranjali orcidid: 0000-0001-5567-5732 surname: Gajbhiye fullname: Gajbhiye, Pranjali – sequence: 4 givenname: Rajesh Kumar orcidid: 0000-0003-2517-3103 surname: Tripathy fullname: Tripathy, Rajesh Kumar – sequence: 5 givenname: U. Rajendra orcidid: 0000-0003-2689-8552 surname: Acharya fullname: Acharya, U. Rajendra |
BookMark | eNptkcFu1DAQhi3USpTSEy9giSMKeOI4jo9ooe1KWzi05WrNeu3USxovttOqPEkfFzeLUIXqy4x_f_OPPPOGHIxhtIS8A_aRc8U-4W4HAFKqmr0iRzWTbcUbkAfP8tfkJKUtK0cB74AdkceLacje3OA42oHOl2RwsPTqPlSXGXtLF2G8C8OUfRhxoN_sFOeQ70P8SV2INN9Y-sVma54QiuOGrkLx8L9xFoKjFw9FiBtfCpejw7gnr5Mfe_qj1IU4P4c-4i299H1p9JYcOhySPfkbj8n16derxXm1-n62XHxeVYa3Ta6k5KxF04BoBe-s6BS0GwBhVN0WhRluuVOy4Vw4FKoTwgGvm5ozruq1UvyYLPe-m4BbvYv-FuODDuj1LITYa4xlQoPVnZPGCcUNc6pBxtclkQBr1nasbrumeL3fe-1i-DXZlPU2TLF8JulaSCY60QAU6sOeMjGkFK371xWYftqkfrbJQsN_tPF5HmyO6IcXa_4Al-mjAw |
CitedBy_id | crossref_primary_10_3390_app12189052 crossref_primary_10_1109_TCSII_2024_3355016 crossref_primary_10_1109_ACCESS_2023_3312948 crossref_primary_10_3389_fcvm_2022_860032 crossref_primary_10_1016_j_engappai_2022_105428 crossref_primary_10_1186_s12938_025_01349_w crossref_primary_10_3390_s23187756 crossref_primary_10_1109_TBME_2022_3202962 crossref_primary_10_1109_TIM_2023_3290966 crossref_primary_10_1016_j_compbiomed_2023_107781 crossref_primary_10_3389_fphys_2023_1105891 crossref_primary_10_3390_diagnostics13030336 crossref_primary_10_3389_fonc_2023_1117420 |
Cites_doi | 10.1016/j.medengphy.2012.03.005 10.1016/j.compbiomed.2020.103769 10.1016/j.jacc.2004.07.014 10.1016/S0022-0736(77)80051-4 10.1016/j.ajem.2013.04.037 10.1109/JBHI.2017.2771768 10.1016/j.compbiomed.2021.104428 10.3390/e22101141 10.1007/978-3-319-13117-7_95 10.1016/j.medengphy.2011.08.009 10.1016/j.imu.2020.100479 10.1142/S0219519417400449 10.1161/01.CIR.101.23.e215 10.1109/TBME.2015.2405134 10.3389/fcvm.2020.00025 10.1515/bmt-2015-0005 10.1136/emj.2010.099861 10.1007/s10916-016-0441-5 10.1109/JSEN.2019.2896308 10.1016/j.compbiomed.2014.04.009 10.1016/S0022-0736(86)80034-6 10.1109/TSP.2019.2951223 10.1109/TBME.2010.2063704 10.1109/JSEN.2019.2935552 10.1161/01.CIR.96.6.1798 10.1007/s11760-017-1068-9 10.1109/TMI.2017.2743464 10.1016/j.jelectrocard.2013.06.001 10.1016/j.ins.2017.06.027 10.1016/j.compbiomed.2020.103939 10.1109/LSENS.2020.2992760 10.1080/21681163.2019.1583607 10.1016/j.disamonth.2012.12.004 10.1016/j.compbiomed.2019.103424 10.1016/0022-0736(90)90135-O 10.2466/pr0.2000.87.3f.1171 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
DOI | 10.3390/app11177920 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_8f7cf593c0f94a03bc0f711b06802684 10_3390_app11177920 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c364t-77306ac4156538e58916d115c9266530c3e3f974335fa59855f1324230392b993 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:30:32 EDT 2025 Mon Jun 30 11:21:55 EDT 2025 Thu Apr 24 23:09:05 EDT 2025 Tue Jul 01 00:51:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-77306ac4156538e58916d115c9266530c3e3f974335fa59855f1324230392b993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2689-8552 0000-0003-2517-3103 0000-0001-5567-5732 0000-0003-2267-7314 |
OpenAccessLink | https://doaj.org/article/8f7cf593c0f94a03bc0f711b06802684 |
PQID | 2570585411 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8f7cf593c0f94a03bc0f711b06802684 proquest_journals_2570585411 crossref_primary_10_3390_app11177920 crossref_citationtrail_10_3390_app11177920 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Correa (ref_18) 2014; 50 Jain (ref_36) 2020; 21 Schreck (ref_10) 2013; 31 Loperfido (ref_11) 1986; 19 Correa (ref_17) 2013; 35 Tripathy (ref_2) 2019; 19 ref_12 Tripathy (ref_3) 2017; 11 ref_33 Tripathy (ref_28) 2017; 17 Panda (ref_29) 2020; 124 ref_30 Rehman (ref_40) 2010; 466 Tripathy (ref_27) 2016; 40 Yang (ref_15) 2010; 58 Liu (ref_25) 2017; 22 Zema (ref_35) 1990; 23 Maheshwari (ref_37) 2021; 134 Parale (ref_8) 2004; 52 Acharya (ref_24) 2017; 415 Yamauchi (ref_34) 1977; 10 Militello (ref_22) 2019; 114 Tripathy (ref_23) 2019; 19 Ohlin (ref_4) 1997; 96 Aftab (ref_26) 2019; 67 Khan (ref_7) 2012; 29 Chen (ref_19) 2020; 7 Prabhakararao (ref_9) 2020; 4 Hasan (ref_32) 2016; 61 Yang (ref_14) 2012; 34 ref_41 Goldberger (ref_31) 2000; 101 Sharma (ref_6) 2015; 62 Antman (ref_1) 2004; 44 Tripathy (ref_42) 2020; 120 Oktay (ref_20) 2017; 37 Dahiya (ref_21) 2019; 7 Dehnavi (ref_13) 2011; 16 Boateng (ref_5) 2013; 59 Becker (ref_39) 2000; 87 Correa (ref_16) 2013; 46 Jani (ref_38) 2019; 140 |
References_xml | – volume: 35 start-page: 16 year: 2013 ident: ref_17 article-title: Novel set of vectorcardiographic parameters for the identification of ischemic patients publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2012.03.005 – volume: 466 start-page: 1291 year: 2010 ident: ref_40 article-title: Multivariate empirical mode decomposition publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 120 start-page: 103769 year: 2020 ident: ref_42 article-title: Automated sleep apnea detection from cardio-pulmonary signal using bivariate fast and adaptive EMD coupled with cross time–frequency analysis publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103769 – ident: ref_30 – volume: 44 start-page: E1 year: 2004 ident: ref_1 article-title: ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the Management of Patients with Acute Myocardial Infarction) publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2004.07.014 – volume: 10 start-page: 171 year: 1977 ident: ref_34 article-title: Analysis of discrepancies between VCG and ECG interpreation of anterior wall myocardial infarction publication-title: J. Electrocardiol. doi: 10.1016/S0022-0736(77)80051-4 – volume: 31 start-page: 1183 year: 2013 ident: ref_10 article-title: Derivation of the 12-lead electrocardiogram and 3-lead vectorcardiogram publication-title: Am. J. Emerg. Med. doi: 10.1016/j.ajem.2013.04.037 – volume: 22 start-page: 1434 year: 2017 ident: ref_25 article-title: Real-time multilead convolutional neural network for myocardial infarction detection publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2771768 – volume: 16 start-page: 136 year: 2011 ident: ref_13 article-title: Detection and classification of cardiac ischemia using vectorcardiogram signal via neural network publication-title: J. Res. Med. Sci. Off. J. Isfahan Univ. Med Sci. – volume: 134 start-page: 104428 year: 2021 ident: ref_37 article-title: Automated accurate emotion recognition system using rhythm-specific deep convolutional neural network technique with multi-channel EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104428 – ident: ref_41 doi: 10.3390/e22101141 – ident: ref_33 doi: 10.1007/978-3-319-13117-7_95 – volume: 52 start-page: 376 year: 2004 ident: ref_8 article-title: Importance of reciprocal leads in acute myocardial infarction publication-title: JAPI – volume: 34 start-page: 485 year: 2012 ident: ref_14 article-title: Identification of myocardial infarction (MI) using spatio-temporal heart dynamics publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2011.08.009 – volume: 21 start-page: 100479 year: 2020 ident: ref_36 article-title: A two-stage Deep CNN Architecture for the Classification of Low-risk and High-risk Hypertension Classes using Multi-lead ECG Signals publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2020.100479 – volume: 17 start-page: 1740044 year: 2017 ident: ref_28 article-title: Automated detection of atrial fibrillation ECG signals using two stage VMD and atrial fibrillation diagnosis index publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519417400449 – volume: 101 start-page: e215 year: 2000 ident: ref_31 article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 62 start-page: 1827 year: 2015 ident: ref_6 article-title: Multiscale energy and eigenspace approach to detection and localization of myocardial infarction publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2405134 – volume: 7 start-page: 25 year: 2020 ident: ref_19 article-title: Deep learning for cardiac image segmentation: A review publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2020.00025 – volume: 61 start-page: 3 year: 2016 ident: ref_32 article-title: A review of beat-to-beat vectorcardiographic (VCG) parameters for analyzing repolarization variability in ECG signals publication-title: Biomed. Eng. (Biomedizinische Technik) doi: 10.1515/bmt-2015-0005 – volume: 29 start-page: 15 year: 2012 ident: ref_7 article-title: Posterior myocardial infarction: Are we failing to diagnose this? publication-title: Emerg. Med. J. doi: 10.1136/emj.2010.099861 – volume: 40 start-page: 79 year: 2016 ident: ref_27 article-title: Detection of shockable ventricular arrhythmia using variational mode decomposition publication-title: J. Med. Syst. doi: 10.1007/s10916-016-0441-5 – volume: 19 start-page: 4509 year: 2019 ident: ref_23 article-title: A novel approach for detection of myocardial infarction from ECG signals of multiple electrodes publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2896308 – ident: ref_12 – volume: 50 start-page: 49 year: 2014 ident: ref_18 article-title: Novel technique for ST-T interval characterization in patients with acute myocardial ischemia publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2014.04.009 – volume: 19 start-page: 247 year: 1986 ident: ref_11 article-title: Assessment of left ventricular hypertrophy by ECG and VCG in patients with inferior and posterior myocardial infarction. A comparison with echocardiographic data publication-title: J. Electrocardiol. doi: 10.1016/S0022-0736(86)80034-6 – volume: 67 start-page: 6039 year: 2019 ident: ref_26 article-title: Multivariate variational mode decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2019.2951223 – volume: 58 start-page: 339 year: 2010 ident: ref_15 article-title: Multiscale recurrence quantification analysis of spatial cardiac vectorcardiogram signals publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2063704 – volume: 19 start-page: 11437 year: 2019 ident: ref_2 article-title: Localization of myocardial infarction from multi-lead ECG signals using multiscale analysis and convolutional neural network publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2935552 – volume: 96 start-page: 1798 year: 1997 ident: ref_4 article-title: Acute myocardial infarction detected in the 12-lead ECG by artificial neural networks publication-title: Circulation doi: 10.1161/01.CIR.96.6.1798 – volume: 11 start-page: 1139 year: 2017 ident: ref_3 article-title: Detection of myocardial infarction from vectorcardiogram using relevance vector machine publication-title: Signal Image Video Process. doi: 10.1007/s11760-017-1068-9 – volume: 37 start-page: 384 year: 2017 ident: ref_20 article-title: Anatomically constrained neural networks (ACNNs): Application to cardiac image enhancement and segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2743464 – volume: 46 start-page: 635 year: 2013 ident: ref_16 article-title: Acute myocardial ischemia monitoring before and during angioplasty by a novel vectorcardiographic parameter set publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2013.06.001 – volume: 415 start-page: 190 year: 2017 ident: ref_24 article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.06.027 – volume: 124 start-page: 103939 year: 2020 ident: ref_29 article-title: Detection of shockable ventricular cardiac arrhythmias from ECG signals using FFREWT filter-bank and deep convolutional neural network publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103939 – volume: 4 start-page: 1 year: 2020 ident: ref_9 article-title: Automated detection of posterior myocardial infarction from VCG signals using stationary wavelet transform based features publication-title: IEEE Sens. Lett. doi: 10.1109/LSENS.2020.2992760 – volume: 140 start-page: A15934 year: 2019 ident: ref_38 article-title: Automatic segmentation of left ventricular myocardium and scar from LGE-CMR images utilizing deep learning with weighted categorical cross entropy loss function weight initialization publication-title: Circulation – volume: 7 start-page: 690 year: 2019 ident: ref_21 article-title: Integrated 3D anatomical model for automatic myocardial segmentation in cardiac CT imagery publication-title: Comput. Methods Biomech. Biomed. Eng. Imaging Vis. doi: 10.1080/21681163.2019.1583607 – volume: 59 start-page: 83 year: 2013 ident: ref_5 article-title: Acute myocardial infarction publication-title: Disease-a-Month doi: 10.1016/j.disamonth.2012.12.004 – volume: 114 start-page: 103424 year: 2019 ident: ref_22 article-title: A semi-automatic approach for epicardial adipose tissue segmentation and quantification on cardiac CT scans publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103424 – volume: 23 start-page: 147 year: 1990 ident: ref_35 article-title: Electrocardiographic tall R waves in the right precordial leads: Comparison of recently proposed ECG and VCG criteria for distinguishing posterolateral myocardial infarction from prominent anterior forces in normal subjects publication-title: J. Electrocardiol. doi: 10.1016/0022-0736(90)90135-O – volume: 87 start-page: 1171E year: 2000 ident: ref_39 article-title: Creating comparability among reliability coefficients: The case of Cronbach alpha and Cohen kappa publication-title: Psychol. Rep. doi: 10.2466/pr0.2000.87.3f.1171 |
SSID | ssj0000913810 |
Score | 2.296128 |
Snippet | Myocardial infarction (MI) occurs due to the decrease in the blood flow into one part of the heart, and it further causes damage to the heart muscle. The... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 7920 |
SubjectTerms | accuracy Automation Decomposition deep CNN Deep learning Discriminant analysis Disease Heart attacks Localization Morphology multivariate VMD myocardial infarction Neural networks Pathology Principal components analysis Signal processing vectorcardiogram Wavelet transforms |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA9-vOiDOD9wfpEHH1Qotqap7ZPonExREXWyt5KkyRBGq24q_if-ud7dsjlQfGqbBAq5y-V3l8vvGNuxrkh1omRgMlMEsU5coJxOApUaR3FISzyz1zdJqx1fdmTHB9z6Pq1yZBPJUBeVwRj5AVZbA2gbR9Hx80uAVaPwdNWX0Jhms2CCU3C-Zk-bN7d34ygLsl6mUTi8mCfAv8dz4QgPKjOs8D2xFRFj_y-DTLvM-SJb8PCQnwzlWWNTtlxi8xOkgUus5pdjn-96zui9ZfZFF2nxFm9pe5w--jD7lj98VAEAyq7ljap893oGf0BSDnpQFjgH6MoBCvIzO6DcrJKrsuBXuNH5i5q8cvz6ExpQo3r8onSwRKiDsg74I4X_qZsyvvj9Uxd-tMLa582HRivwRRcCI5J4AGgbnAhl0K8DW2ix6GBSAGw0GWzlUoRGWOHACRFCOiWzVEoXESgLAWlpQDurbKasSrvGeBYqYQsnIo1Oy2GitBJaFyBDW8jMiDrbH81_bjwjORbG6OXgmaCw8glh1dnOePDzkIjj72GnKMjxEGTPpobqtZv7xZin7sg4mQkTuixWodDwchRFGuuQIPtNnW2O1CD3S7qf_yjg-v_dG2zuEBNfKBFtk80MXt_sFiCXgd726vkNgBLwWw priority: 102 providerName: ProQuest |
Title | Multichannel Multiscale Two-Stage Convolutional Neural Network for the Detection and Localization of Myocardial Infarction Using Vectorcardiogram Signal |
URI | https://www.proquest.com/docview/2570585411 https://doaj.org/article/8f7cf593c0f94a03bc0f711b06802684 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0VeoFDBRTEtnTlAwdAiohxHOIjUBZaFVTxJW6R7dgIaZWtuttW_BN-bmcmBkUqEpeektiWHNljzxt75g3AZohN5UqrM298kxWujJmNrsxs5SOfQwbmmT07L0-vi6-3-raX6ot8wjp64G7gdqu476M2yufRFDZXDl_2pXSUM4KYSmj3RZ3XM6Z4DzaSqKu6gDyFdj3dB0u6oDSU2bungpip_5-NmLXLaAneJVgoDrrfWYY3oV2BxR5Z4Aosp2U4FVuJK3r7PTxyAC1F77ZhLPhjiqMexNWfSYZA8i6Io0n7O8kX9kBkHPxg72-BkFUgBBSfw4x9slph20Z8IwWXAjTFJIqzBywgSRqLL23EpcEV7G0gbvjYn6vZ00tc3t9hR6twPTq-OjrNUrKFzKuymCHKRuPBerLncA8MlGywbBAueoMqXKvcq6AiGh9K6Wi1qbSOksFYjgjLIcpZg_l20oZ1ECa3KjRRSUfGyl5pnVXONbqQodHGqwHsPI1_7RMTOSXEGNdokdBk1b3JGsDmc-MfHQHHy80OaSKfmxBrNhegLNVJlurXZGkAG09iUKelPK0pzR_aVIWUH_5HHx9hYY_cYthNbQPmZz9_hU-Ia2ZuCHPV6GQIbw-Pz79fDFmg_wK5NPlU |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB5V7QE4oLaACC2whyIBkoWd9breA0LQEhKa9EKKejO7692oUmS3Tdqqb8JT8IzMTOwQCcStJ__MSpY8P_vt7sw3AHs-lLnNjIqcdmWU2ixEJtgsMrkLvA_pmWd2dJz1T9Kvp-p0DX61tTCUVtnGRA7UZe1oj_wddVtDaJsmyYfzi4i6RtHpattCY2EWR_72Bpdss_eDQ9Tvq26393l80I-argKRk1k6RziJKNk4Wrigs3vqqpeViIucxrlKydhJLwOibClVMErnSoWEUUeMUMJqIl_CkL-Bck0elfe-LPd0iGMzT-JFGSDKYzqFTuhYVFM_8ZWJj_sD_BX-eU7rbcLDBoyKjwvr2YI1X23DgxWKwm3Yapx_Jl43DNVvHsFPLtulmuHKTwU_zFDXXoxv6gjh68SLg7q6bqwav0AUIHzhnHOBQFkg8BSHfs6ZYJUwVSmGNK02ZaGiDmJ0iy_IfqdiUAX88yzgHAfxnQ8bWMz5ZeLb2QQ_9BhO7kQZT2C9qiv_FISOjfRlkImlJVI3M9ZIa0u0GF8q7WQH3rb_v3AN_zm14ZgWuA4iZRUryurA3nLw-YL249_DPpEil0OIq5tf1JeTonH9Ig_7LigtXRx0amJp8WY_SSx1PSGunQ7stmZQNAFkVvwx92f_F7-Ee_3xaFgMB8dHO3C_Syk3nAK3C-vzyyv_HDHT3L5gQxXw46494zeFeyde |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9RAEB_KFUQfxFbF06r7UEGF0OQ2yWUfRGyvR8-2R9FW-pbubnYP4Uhq77T0m_hZ_HTOzG3OA8W3PuXPLgQyszO_2Z35DcC281Vhcp1FVtkqSk3uI-1NHunCet6HdMwzezzOD87Sj-fZ-Rr8amthKK2ytYlsqKvG0h75DnVbQ2ibJsmOD2kRJ4Ph-8tvEXWQopPWtp3GQkUO3c01hm-zd6MByvpVrzfcP907iEKHgcjKPJ0jtETErC0FMbjwHXXYyyvESFah38pkbKWTHhG3lJnXmSqyzCeMQGKEFUYREROa__U-RkVxB9Z398cnn5Y7PMS4WSTxoihQShXTmXRCh6SKuouvuEHuFvCXM2APN3wA9wM0FR8WurQBa67ehHsrhIWbsBFMwUy8DnzVbx7CTy7ipQri2k0FP8xQ8k6cXjcRgtmJE3tN_SPoOH6BCEH4whnoAmGzQBgqBm7OeWG10HUljsjJhiJR0XhxfIMvSJunYlR7_Pc8wBkP4gsfPfAwZ5uJz18n-KFHcHYr4ngMnbqp3RMQKtbSVV4mhgKmXq6NlsZUqD-uypSVXXjb_v_SBjZ0asoxLTEqImGVK8LqwvZy8uWCBOTf03ZJkMspxNzNL5qrSRkMQVn4vvWZkjb2KtWxNHjTTxJDPVCIeacLW60alMGczMo_yv_0_8Mv4Q6uivJoND58Bnd7lH_D-XBb0JlffXfPEUDNzYugqQIubntx_AZGFCzw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multichannel+Multiscale+Two-Stage+Convolutional+Neural+Network+for+the+Detection+and+Localization+of+Myocardial+Infarction+Using+Vectorcardiogram+Signal&rft.jtitle=Applied+sciences&rft.au=Karhade%2C+Jay&rft.au=Ghosh%2C+Samit+Kumar&rft.au=Gajbhiye%2C+Pranjali&rft.au=Tripathy%2C+Rajesh+Kumar&rft.date=2021-09-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=11&rft.issue=17&rft.spage=7920&rft_id=info:doi/10.3390%2Fapp11177920&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app11177920 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |