Determination of all hydrodynamic added properties resulting from fluid structure interactions using singular value decomposition
The hydrodynamic added effects such as inertia, damping and stiffness resulting from a fluid flow surrounding a structure strongly affect its dynamic response. Thus, accurate determination of such effects is of prime importance in the design of modern mechanical systems exposing fluid–structure inte...
Saved in:
Published in | Journal of fluids and structures Vol. 120; p. 103898 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The hydrodynamic added effects such as inertia, damping and stiffness resulting from a fluid flow surrounding a structure strongly affect its dynamic response. Thus, accurate determination of such effects is of prime importance in the design of modern mechanical systems exposing fluid–structure interactions. The main goal of this study is to develop a unified methodology for the simultaneous identification of all hydrodynamic added effects caused by fluid–structure interactions. The proposed model is based on the least squares solution of an over-determined system of equations using singular value decomposition. The singular value decomposition determine the added inertia and stiffness without any assumption on their respective magnitude and variation, necessary for other methods. The method is firstly validated using the analytical solutions for single degree of freedom free vibration and forced oscillations under single and multiple frequency excitations for a variety of cases. It is found that the proposed method can predict all presumed added properties for transient forced oscillations under single and multiple external forces. Next, the method is applied to two challenging fluid structure interaction test studies; an oscillating hydrofoil in a turbulent flow and a Kaplan turbine runner subjected to single and multiple frequency perturbations. In both cases, the results of the proposed method are found to be consistent with results of methods in the literature and confirmed the underlying hypothesis of their analysis. The results confirm the ability of the newly developed methodology in evaluation all fluid added effects in complex engineering turbulent flows subject to one to several excitations, simultaneously.
•A novel methodology for identification of all fluid added properties is proposed.•The methodology performs well in identification of the fluid added properties, assuming the fluid added stiffness is small.•The developed methodology is based on the least squares solution and singular value decomposition methods.•The methodology is applied to two CFD problems: (i) an oscillating hydrofoil and (ii) a Kaplan turbine runner.•The results of the proposed method are in excellent agreement with results of alternative methods in the literature. |
---|---|
AbstractList | The hydrodynamic added effects such as inertia, damping and stiffness resulting from a fluid flow surrounding a structure strongly affect its dynamic response. Thus, accurate determination of such effects is of prime importance in the design of modern mechanical systems exposing fluid–structure interactions. The main goal of this study is to develop a unified methodology for the simultaneous identification of all hydrodynamic added effects caused by fluid–structure interactions. The proposed model is based on the least squares solution of an over-determined system of equations using singular value decomposition. The singular value decomposition determine the added inertia and stiffness without any assumption on their respective magnitude and variation, necessary for other methods. The method is firstly validated using the analytical solutions for single degree of freedom free vibration and forced oscillations under single and multiple frequency excitations for a variety of cases. It is found that the proposed method can predict all presumed added properties for transient forced oscillations under single and multiple external forces. Next, the method is applied to two challenging fluid structure interaction test studies; an oscillating hydrofoil in a turbulent flow and a Kaplan turbine runner subjected to single and multiple frequency perturbations. In both cases, the results of the proposed method are found to be consistent with results of methods in the literature and confirmed the underlying hypothesis of their analysis. The results confirm the ability of the newly developed methodology in evaluation all fluid added effects in complex engineering turbulent flows subject to one to several excitations, simultaneously.
•A novel methodology for identification of all fluid added properties is proposed.•The methodology performs well in identification of the fluid added properties, assuming the fluid added stiffness is small.•The developed methodology is based on the least squares solution and singular value decomposition methods.•The methodology is applied to two CFD problems: (i) an oscillating hydrofoil and (ii) a Kaplan turbine runner.•The results of the proposed method are in excellent agreement with results of alternative methods in the literature. |
ArticleNumber | 103898 |
Author | Cervantes, Michel J. Raisee, Mehrdad |
Author_xml | – sequence: 1 givenname: Mehrdad surname: Raisee fullname: Raisee, Mehrdad email: mraisee@ut.ac.ir organization: Hydraulic Machinery Research Institute, School of Mechanical Engineering, College of Engineering, University of Tehran, 11155-4563, Iran – sequence: 2 givenname: Michel J. surname: Cervantes fullname: Cervantes, Michel J. organization: Division of Fluid and Experimental Mechanics, Department of Engineering Science and Mathematics, Luleå University of Technology, Luleå, Sweden |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-97891$$DView record from Swedish Publication Index |
BookMark | eNqNkE1r3DAQhnVIIR_tfxDk2t3Kli1L9LQk6QcEeml7FbI0TrTIlhlJKXvsP68dh0J7ymXmMO_7DDyX5GyKExByXbF9xSrx4bg_DqF4lzIWm9O-ZjVfLlwqeUYumJRqp7pGnJPLlI6MMdXw6oL8voUMOPrJZB8nGgdqQqCPJ4fRnSYzekuNc-DojHEGzB4SRUglZD890AHjSJ-_0u1tQaB-WojGrrxES1pz6yjBIH0yoQB1YOM4x-TXzFvyZjAhwbuXfUV-fLr7fvNld__t89ebw_3OctHkXddCzy3vnHJyqIWwsh64YV2nhOP9oOq-6QEkb1rBmIDGCGVa07eysVw1bc2vyPuNm37BXHo9ox8NnnQ0Xt_6nwcd8UGHXLTqpKqW-MctbjGmhDD8LVRMr8L1Uf8jXK_C9SZ8aR_-a1ufnxVnND68knG3MWCx8uQBdbIeJgvOI9isXfSv4vwB1X-x_Q |
CitedBy_id | crossref_primary_10_1063_5_0237070 |
Cites_doi | 10.1016/j.compfluid.2006.08.007 10.1016/j.oceaneng.2016.05.046 10.1007/BF01528208 10.2514/3.10246 10.1115/1.4035113 10.1016/j.jfluidstructs.2010.07.002 10.1016/j.jweia.2011.05.006 10.1007/s10409-012-0075-x 10.1016/j.jfluidstructs.2017.01.004 10.1016/j.jfluidstructs.2013.01.008 10.1088/0143-0807/36/1/015011 10.1115/IMECE2011-62516 10.1115/1.1385829 10.1155/2009/349397 10.1016/j.jfluidstructs.2012.12.002 10.1016/j.jfluidstructs.2006.04.001 10.1103/PhysRev.4.345 10.1016/j.jfluidstructs.2020.103142 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION ADTPV AOWAS |
DOI | 10.1016/j.jfluidstructs.2023.103898 |
DatabaseName | CrossRef SwePub SwePub Articles |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | oai_DiVA_org_ltu_97891 10_1016_j_jfluidstructs_2023_103898 S088997462300066X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LG5 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SST SSZ T5K TN5 VH1 WUQ XPP ZMT ~A~ ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH ADTPV AOWAS EFKBS |
ID | FETCH-LOGICAL-c364t-75eb3c37d9d8f266c82f3a07796d3bf92b4bee83456006e4a69a5ab584c394523 |
IEDL.DBID | .~1 |
ISSN | 0889-9746 1095-8622 |
IngestDate | Thu Aug 21 07:30:33 EDT 2025 Tue Jul 01 03:18:04 EDT 2025 Thu Apr 24 22:59:55 EDT 2025 Tue Dec 03 03:45:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Added damping Added mass Fluid–solid interaction Added stiffness Singular-value-decomposition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-75eb3c37d9d8f266c82f3a07796d3bf92b4bee83456006e4a69a5ab584c394523 |
ParticipantIDs | swepub_primary_oai_DiVA_org_ltu_97891 crossref_primary_10_1016_j_jfluidstructs_2023_103898 crossref_citationtrail_10_1016_j_jfluidstructs_2023_103898 elsevier_sciencedirect_doi_10_1016_j_jfluidstructs_2023_103898 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of fluids and structures |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | De Langre (b5) 2009; 86 Rodriguez, Egusquiza, Escaler, Liang, Avellan (b21) 2006; 22 Wang, Zhang, Zhang, Wang (b26) 2012; 28 Munch, Ausoni, Braun, Farhat, Avellan (b18) 2010; 26 Soltani Dehkharqani, Cervantes, Aidanpää (b24) 2019; 240 Yuanqi, Wang, Shen, Tamura, Y (b27) 2011; 99 Nässelqvist (b19) 2011 Kim, Palazzolo (b11) 2016; 138 Chen, Alam, Zhou (b2) 2020; 99 Liang, Rodrıguez, Egusquiza, Escaler, Farhat, Avellan (b13) 2007; 36 Gauthier, Giroux, Etienne, Gosselin (b6) 2017; 69 Kaminer, Kavitskii (b8) 1976; 8 Buckingham (b1) 1914; 4 Soltani Dehkharqani, Aidanpää, Engström, Cervantes (b22) 2018; 70 Keto-Tokoi, J.M., Matusiak, J.E., Keskinen, E.K., 2011. Hydrodynamic Added Mass and Damping of the Kaplan Turbine. ASME Paper No. IMECE2011-62516. Karlsson, Nilsson, Aidanpaa (b9) 2009 Puolakka, Keto-Tokoi, Matusiak (b20) 2013; 37 Koochesfahani (b12) 1989; 27 Theodorsen (b25) 1935 Mulu, Cervantes, Devals, Vu, Guibault (b17) 2015; 9 Hou, Yuan, Xie, Jin, Shi (b7) 2015; 36 Liu, Zhou, Escaler, Wang, Luo, De La Torre (b14) 2017; 139 Moore, Palazzolo (b16) 2001; 123 Mao, Young (b15) 2016; 121 De Langre (b4) 2006 Soltani Dehkharqani, Cervantes, Aidanpää (b23) 2017; 9 De La Torre, Escaler, Egusquiza, Farhat (b3) 2013; 39 Soltani Dehkharqani (10.1016/j.jfluidstructs.2023.103898_b23) 2017; 9 Mao (10.1016/j.jfluidstructs.2023.103898_b15) 2016; 121 Chen (10.1016/j.jfluidstructs.2023.103898_b2) 2020; 99 Rodriguez (10.1016/j.jfluidstructs.2023.103898_b21) 2006; 22 De La Torre (10.1016/j.jfluidstructs.2023.103898_b3) 2013; 39 Hou (10.1016/j.jfluidstructs.2023.103898_b7) 2015; 36 Mulu (10.1016/j.jfluidstructs.2023.103898_b17) 2015; 9 Nässelqvist (10.1016/j.jfluidstructs.2023.103898_b19) 2011 Gauthier (10.1016/j.jfluidstructs.2023.103898_b6) 2017; 69 Liu (10.1016/j.jfluidstructs.2023.103898_b14) 2017; 139 Theodorsen (10.1016/j.jfluidstructs.2023.103898_b25) 1935 10.1016/j.jfluidstructs.2023.103898_b10 Buckingham (10.1016/j.jfluidstructs.2023.103898_b1) 1914; 4 Koochesfahani (10.1016/j.jfluidstructs.2023.103898_b12) 1989; 27 Wang (10.1016/j.jfluidstructs.2023.103898_b26) 2012; 28 Moore (10.1016/j.jfluidstructs.2023.103898_b16) 2001; 123 Kim (10.1016/j.jfluidstructs.2023.103898_b11) 2016; 138 Soltani Dehkharqani (10.1016/j.jfluidstructs.2023.103898_b22) 2018; 70 Soltani Dehkharqani (10.1016/j.jfluidstructs.2023.103898_b24) 2019; 240 Munch (10.1016/j.jfluidstructs.2023.103898_b18) 2010; 26 Puolakka (10.1016/j.jfluidstructs.2023.103898_b20) 2013; 37 Yuanqi (10.1016/j.jfluidstructs.2023.103898_b27) 2011; 99 Kaminer (10.1016/j.jfluidstructs.2023.103898_b8) 1976; 8 De Langre (10.1016/j.jfluidstructs.2023.103898_b4) 2006 De Langre (10.1016/j.jfluidstructs.2023.103898_b5) 2009; 86 Karlsson (10.1016/j.jfluidstructs.2023.103898_b9) 2009 Liang (10.1016/j.jfluidstructs.2023.103898_b13) 2007; 36 |
References_xml | – volume: 22 start-page: 699 year: 2006 end-page: 712 ident: b21 article-title: Experimental investigation of added mass effects on a francis turbine runner in still water publication-title: J. Fluids Struct. – volume: 99 start-page: 815 year: 2011 end-page: 824 ident: b27 article-title: Added-mass estimation of flat membranes vibrating in still air publication-title: J. Wind Engnd Aerodyn. – volume: 86 start-page: 2000 year: 2009 ident: b5 article-title: Dimensional analysis in fluid–structure interaction publication-title: Houille Blanche – year: 1935 ident: b25 article-title: General Theory of Aerodynamic Instability and the Mechanism of Flutter – volume: 28 start-page: 870 year: 2012 end-page: 876 ident: b26 article-title: Numerical analysis of added mass and damping offloating production, storage and off loading system publication-title: Acta Mech. Sin. – year: 2006 ident: b4 article-title: Fluides et solides. Les editions de l’école polythechnique – volume: 39 start-page: 173 year: 2013 end-page: 187 ident: b3 article-title: Experimental investigation of added mass effects on a hydrofoil under cavitation conditions publication-title: J. Fluids Struct. – volume: 26 start-page: 1018 year: 2010 end-page: 1033 ident: b18 article-title: Fluid-structure coupling for an oscillating hydrofoil publication-title: J. Fluids Struct. – volume: 99 year: 2020 ident: b2 article-title: Dependence of added mass on cylinder cross-sectional geometry and orientation publication-title: J. Fluids Struct. – volume: 138 year: 2016 ident: b11 article-title: Rotordynamic force prediction of a shrouded centrifugal pump impeller—part I: numerical analysis publication-title: J. Vib. Acoust. – reference: Keto-Tokoi, J.M., Matusiak, J.E., Keskinen, E.K., 2011. Hydrodynamic Added Mass and Damping of the Kaplan Turbine. ASME Paper No. IMECE2011-62516. – volume: 9 start-page: 139 year: 2015 end-page: 156 ident: b17 article-title: Simulation-based investigation of unsteady flow in near-hub region of a Kaplan turbine with experimental comparison publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 27 start-page: 1200 year: 1989 end-page: 1205 ident: b12 article-title: Vortical patterns in the wake of an oscillating airfoil publication-title: AIAA J. – volume: 240 year: 2019 ident: b24 article-title: Fluid added polar inertia and damping for the torsional vibration of a Kaplan turbine model runner considering multiple perturbations publication-title: IOP Conf. Ser.: Earth Environ. Sci. – volume: 69 start-page: 341 year: 2017 end-page: 354 ident: b6 article-title: A numerical method for the determination of flow-induced damping in hydroelectric turbines publication-title: J. Fluids Struct. – volume: 9 start-page: 1 year: 2017 end-page: 10 ident: b23 article-title: Numerical analysis of fluid-added parameters for the torsional vibration of a Kaplan turbine model runner publication-title: Adv. Mech. Eng. – volume: 8 start-page: 25 year: 1976 end-page: 27 ident: b8 article-title: Experimental investigation of hydrodynamic damping during bending oscillations of blade profiles in water flow publication-title: Strength Mater. – volume: 36 start-page: 1106 year: 2007 end-page: 1118 ident: b13 article-title: Numerical simulation of fluid added mass effect on a Francis turbine runner publication-title: Comput. & Fluids – volume: 36 year: 2015 ident: b7 article-title: Oscillation properties of a simple pendulum in a viscous liquid publication-title: Eur. J. Phys. – volume: 121 start-page: 437 year: 2016 end-page: 452 ident: b15 article-title: Influence of skew on the added mass and damping characteristics of marine propellers publication-title: Ocean Eng. – volume: 37 start-page: 22 year: 2013 end-page: 33 ident: b20 article-title: Unsteady load on an oscillating Kaplan turbine runner publication-title: J. Fluids Struct. – volume: 4 start-page: 345 year: 1914 end-page: 376 ident: b1 article-title: On physically similar systems; illustrations of the use of dimensional equations publication-title: Phys. Rev. – year: 2009 ident: b9 article-title: Numerical estimation of torsional dynamic coefficients of a hydraulic turbine publication-title: Int. J. Rotat. Mach. – year: 2011 ident: b19 article-title: Simulation and Characterization of Rotor Dynamic Properties for Vertical Machines – volume: 123 start-page: 910 year: 2001 end-page: 918 ident: b16 article-title: Rotordynamic force prediction of whirling centrifugal impeller shroud passages using computational fluid dynamic techniques publication-title: J. Eng. Gas Turb. Power – volume: 70 year: 2018 ident: b22 article-title: A review of available methods for the assessment of fluid added mass, damping, and stiffness with an emphasis on hydraulic turbines publication-title: Appl. Mech. Rev. – volume: 139 year: 2017 ident: b14 article-title: Numerical simulation of added mass effects on a hydrofoil in cavitating flow using acoustic fluid–structure interaction publication-title: ASME J. Fluids Eng. – volume: 36 start-page: 1106 issue: 6 year: 2007 ident: 10.1016/j.jfluidstructs.2023.103898_b13 article-title: Numerical simulation of fluid added mass effect on a Francis turbine runner publication-title: Comput. & Fluids doi: 10.1016/j.compfluid.2006.08.007 – volume: 121 start-page: 437 year: 2016 ident: 10.1016/j.jfluidstructs.2023.103898_b15 article-title: Influence of skew on the added mass and damping characteristics of marine propellers publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2016.05.046 – volume: 9 start-page: 1 year: 2017 ident: 10.1016/j.jfluidstructs.2023.103898_b23 article-title: Numerical analysis of fluid-added parameters for the torsional vibration of a Kaplan turbine model runner publication-title: Adv. Mech. Eng. – volume: 8 start-page: 25 issue: 1 year: 1976 ident: 10.1016/j.jfluidstructs.2023.103898_b8 article-title: Experimental investigation of hydrodynamic damping during bending oscillations of blade profiles in water flow publication-title: Strength Mater. doi: 10.1007/BF01528208 – volume: 27 start-page: 1200 year: 1989 ident: 10.1016/j.jfluidstructs.2023.103898_b12 article-title: Vortical patterns in the wake of an oscillating airfoil publication-title: AIAA J. doi: 10.2514/3.10246 – volume: 139 issue: 4 year: 2017 ident: 10.1016/j.jfluidstructs.2023.103898_b14 article-title: Numerical simulation of added mass effects on a hydrofoil in cavitating flow using acoustic fluid–structure interaction publication-title: ASME J. Fluids Eng. doi: 10.1115/1.4035113 – volume: 26 start-page: 1018 issue: 6 year: 2010 ident: 10.1016/j.jfluidstructs.2023.103898_b18 article-title: Fluid-structure coupling for an oscillating hydrofoil publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2010.07.002 – volume: 99 start-page: 815 year: 2011 ident: 10.1016/j.jfluidstructs.2023.103898_b27 article-title: Added-mass estimation of flat membranes vibrating in still air publication-title: J. Wind Engnd Aerodyn. doi: 10.1016/j.jweia.2011.05.006 – year: 2011 ident: 10.1016/j.jfluidstructs.2023.103898_b19 – volume: 70 issn: 0003-6900 year: 2018 ident: 10.1016/j.jfluidstructs.2023.103898_b22 article-title: A review of available methods for the assessment of fluid added mass, damping, and stiffness with an emphasis on hydraulic turbines publication-title: Appl. Mech. Rev. – volume: 28 start-page: 870 year: 2012 ident: 10.1016/j.jfluidstructs.2023.103898_b26 article-title: Numerical analysis of added mass and damping offloating production, storage and off loading system publication-title: Acta Mech. Sin. doi: 10.1007/s10409-012-0075-x – volume: 69 start-page: 341 year: 2017 ident: 10.1016/j.jfluidstructs.2023.103898_b6 article-title: A numerical method for the determination of flow-induced damping in hydroelectric turbines publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2017.01.004 – volume: 39 start-page: 173 year: 2013 ident: 10.1016/j.jfluidstructs.2023.103898_b3 article-title: Experimental investigation of added mass effects on a hydrofoil under cavitation conditions publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2013.01.008 – volume: 86 start-page: 2000 issue: 3–4 year: 2009 ident: 10.1016/j.jfluidstructs.2023.103898_b5 article-title: Dimensional analysis in fluid–structure interaction publication-title: Houille Blanche – year: 1935 ident: 10.1016/j.jfluidstructs.2023.103898_b25 – volume: 36 year: 2015 ident: 10.1016/j.jfluidstructs.2023.103898_b7 article-title: Oscillation properties of a simple pendulum in a viscous liquid publication-title: Eur. J. Phys. doi: 10.1088/0143-0807/36/1/015011 – ident: 10.1016/j.jfluidstructs.2023.103898_b10 doi: 10.1115/IMECE2011-62516 – volume: 123 start-page: 910 year: 2001 ident: 10.1016/j.jfluidstructs.2023.103898_b16 article-title: Rotordynamic force prediction of whirling centrifugal impeller shroud passages using computational fluid dynamic techniques publication-title: J. Eng. Gas Turb. Power doi: 10.1115/1.1385829 – year: 2009 ident: 10.1016/j.jfluidstructs.2023.103898_b9 article-title: Numerical estimation of torsional dynamic coefficients of a hydraulic turbine publication-title: Int. J. Rotat. Mach. doi: 10.1155/2009/349397 – volume: 9 start-page: 139 issue: 1 year: 2015 ident: 10.1016/j.jfluidstructs.2023.103898_b17 article-title: Simulation-based investigation of unsteady flow in near-hub region of a Kaplan turbine with experimental comparison publication-title: Eng. Appl. Comput. Fluid Mech. – year: 2006 ident: 10.1016/j.jfluidstructs.2023.103898_b4 – volume: 138 year: 2016 ident: 10.1016/j.jfluidstructs.2023.103898_b11 article-title: Rotordynamic force prediction of a shrouded centrifugal pump impeller—part I: numerical analysis publication-title: J. Vib. Acoust. – volume: 37 start-page: 22 year: 2013 ident: 10.1016/j.jfluidstructs.2023.103898_b20 article-title: Unsteady load on an oscillating Kaplan turbine runner publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2012.12.002 – volume: 22 start-page: 699 issue: 5 year: 2006 ident: 10.1016/j.jfluidstructs.2023.103898_b21 article-title: Experimental investigation of added mass effects on a francis turbine runner in still water publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2006.04.001 – volume: 4 start-page: 345 issue: 4 year: 1914 ident: 10.1016/j.jfluidstructs.2023.103898_b1 article-title: On physically similar systems; illustrations of the use of dimensional equations publication-title: Phys. Rev. doi: 10.1103/PhysRev.4.345 – volume: 240 year: 2019 ident: 10.1016/j.jfluidstructs.2023.103898_b24 article-title: Fluid added polar inertia and damping for the torsional vibration of a Kaplan turbine model runner considering multiple perturbations publication-title: IOP Conf. Ser.: Earth Environ. Sci. – volume: 99 year: 2020 ident: 10.1016/j.jfluidstructs.2023.103898_b2 article-title: Dependence of added mass on cylinder cross-sectional geometry and orientation publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2020.103142 |
SSID | ssj0009431 |
Score | 2.374569 |
Snippet | The hydrodynamic added effects such as inertia, damping and stiffness resulting from a fluid flow surrounding a structure strongly affect its dynamic response.... |
SourceID | swepub crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 103898 |
SubjectTerms | Added damping Added mass Added stiffness Fluid Mechanics Fluid–solid interaction Singular-value-decomposition Strömningslära |
Title | Determination of all hydrodynamic added properties resulting from fluid structure interactions using singular value decomposition |
URI | https://dx.doi.org/10.1016/j.jfluidstructs.2023.103898 https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-97891 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8yQfQgfuL8GAH1WLc1aZp4EMbmmIq76GS30Cbp3CjbmNvBi-B_bl7TTncQBC-FlqR55IX30f7e7yF0UY9jpgPDPRMEzKORX_ciomteYhNcVTM-4wr-6D52WadH7_tBfw01i1oYgFXmtt_Z9Mxa50-q-W5Wp8Nh9QkAOjYatv47c5x9qGCnIZzyq49vmIegrichoHlg9AY6_8Z4jZJ0MdSOqRW4u32SEYYL_quX-kknmrmg9g7azmNH3HDi7aI1M95DWz8YBffRZ6uAt8CG40mCozTFr-_a2knXex6DqdF4Ch_hZ8Cmim3CDajC8QBDrQnOhMVO2sXMYCCUmLnyhzcMMPkBhgvAVzFQhRusDQDTc_TXAeq1b5-bHS_vsuApwujcCwObTysSaqF5Yt214n5ColoYCqZJnAg_prExnFCIjZihERNREMU2cFFEUJvHHqLSeDI2RwjXktCGHIkIjBKUKxv68MjnmkG9KrGKL6PrYlelyinIoRNGKgus2UiuqESCSqRTSRnR5eSpY-L427SbQn1y5WBJ6zP-9oJLp_TlqsDI3Rq-NORkNpDpfCFtJi7qx_9d6ARtwp3DAp-ikh1hzmzEM48r2ZGuoPXG3UOn-wWQBghW |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkCgcEKUgXm0ttT2G3Y0dx-aAhKBoocClUO3NSmxnWRTtrpbdAxck_jkzccLjUAmplxwSO7Y8zjycb74B-NHJc-kSryKfJDISWdyJMu7aUYEBrm37WCpLf3QvLmX3Wpz1kt4cHDW5MASrrHV_0OmVtq7vtOrVbI0Hg9YfAuigN4z2uzKcvQ-wIPDzpTIGew8vOA8tQlFCgvNQ80X4_gLyui3K2cAFqlYi7455xRiu1T_N1Gs-0coGnazCSu08ssMwv08w54drsPyKUvAzPB43-BZacTYqWFaW7ObeoaIMxecZ6RrHxnQKPyE6VYYRN8EKh31GySasmiwLs51NPCNGiUnIf7hjhJPvM7oQfpURV7hnzhMyvYZ_rcP1ya-ro25Ul1mILJdiGqUJBtSWp047VaC9tioueNZOUy0dzwsd5yL3XnFBzpH0IpM6S7IcPRfLtcBAdgPmh6Oh3wTWLlL0OQqdeKuFsuj7qCxWTlLCKkfJb8F-s6rG1hzkVAqjNA3Y7Na8EYkhkZggki0Qz53HgYrjfd0OGvGZNzvLoNF43wt-BqE_j0qU3MeDv4dmNOmbcjozGIrrzvb_DvQNPnavLs7N-enl7x1YoicBGLwL89jaf0H3Z5p_rbb3E3vxCeQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determination+of+all+hydrodynamic+added+properties+resulting+from+fluid+structure+interactions+using+singular+value+decomposition&rft.jtitle=Journal+of+fluids+and+structures&rft.au=Raisee%2C+Mehrdad&rft.au=Cervantes%2C+Michel+J.&rft.date=2023-07-01&rft.issn=0889-9746&rft.volume=120&rft_id=info:doi/10.1016%2Fj.jfluidstructs.2023.103898&rft.externalDocID=oai_DiVA_org_ltu_97891 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0889-9746&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0889-9746&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0889-9746&client=summon |