A Pilot Trial of the Combination of Transgenic NY-ESO-1–reactive Adoptive Cellular Therapy with Dendritic Cell Vaccination with or without Ipilimumab
Transgenic adoptive cell therapy (ACT) targeting the tumor antigen NY-ESO-1 can be effective for the treatment of sarcoma and melanoma. Preclinical models have shown that this therapy can be improved with the addition of dendritic cell (DC) vaccination and immune checkpoint blockade. We studied the...
Saved in:
Published in | Clinical cancer research Vol. 25; no. 7; pp. 2096 - 2108 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transgenic adoptive cell therapy (ACT) targeting the tumor antigen NY-ESO-1 can be effective for the treatment of sarcoma and melanoma. Preclinical models have shown that this therapy can be improved with the addition of dendritic cell (DC) vaccination and immune checkpoint blockade. We studied the safety, feasibility, and antitumor efficacy of transgenic ACT with DC vaccination, with and without CTLA-4 blockade with ipilimumab.
Freshly prepared autologous NY-ESO-1-specific T-cell receptor (TCR) transgenic lymphocytes were adoptively transferred together with NY-ESO-1 peptide-pulsed DC vaccination in HLA-A2.1-positive subjects alone (ESO, NCT02070406) or with ipilimumab (INY, NCT01697527) in patients with advanced sarcoma or melanoma.
Six patients were enrolled in the ESO cohort, and four were enrolled in the INY cohort. Four out of six patients treated per ESO (66%), and two out of four patients treated per INY (50%) displayed evidence of tumor regression. Peripheral blood reconstitution with NY-ESO-1-specific T cells peaked within 2 weeks of ACT, indicating rapid
expansion. Tracking of transgenic T cells to the tumor sites was demonstrated in on-treatment biopsies via TCR sequencing. Multiparametric mass cytometry of transgenic cells demonstrated shifting of transgenic cells from memory phenotypes to more terminally differentiated effector phenotypes over time.
ACT of fresh NY-ESO-1 transgenic T cells prepared via a short
protocol and given with DC vaccination, with or without ipilimumab, is feasible and results in transient antitumor activity, with no apparent clinical benefit of the addition of ipilimumab. Improvements are needed to maintain tumor responses. |
---|---|
AbstractList | Transgenic adoptive cell therapy (ACT) targeting the tumor antigen NY-ESO-1 can be effective for the treatment of sarcoma and melanoma. Preclinical models have shown that this therapy can be improved with the addition of dendritic cell (DC) vaccination and immune checkpoint blockade. We studied the safety, feasibility, and antitumor efficacy of transgenic ACT with DC vaccination, with and without CTLA-4 blockade with ipilimumab.
Freshly prepared autologous NY-ESO-1-specific T-cell receptor (TCR) transgenic lymphocytes were adoptively transferred together with NY-ESO-1 peptide-pulsed DC vaccination in HLA-A2.1-positive subjects alone (ESO, NCT02070406) or with ipilimumab (INY, NCT01697527) in patients with advanced sarcoma or melanoma.
Six patients were enrolled in the ESO cohort, and four were enrolled in the INY cohort. Four out of six patients treated per ESO (66%), and two out of four patients treated per INY (50%) displayed evidence of tumor regression. Peripheral blood reconstitution with NY-ESO-1-specific T cells peaked within 2 weeks of ACT, indicating rapid
expansion. Tracking of transgenic T cells to the tumor sites was demonstrated in on-treatment biopsies via TCR sequencing. Multiparametric mass cytometry of transgenic cells demonstrated shifting of transgenic cells from memory phenotypes to more terminally differentiated effector phenotypes over time.
ACT of fresh NY-ESO-1 transgenic T cells prepared via a short
protocol and given with DC vaccination, with or without ipilimumab, is feasible and results in transient antitumor activity, with no apparent clinical benefit of the addition of ipilimumab. Improvements are needed to maintain tumor responses. Transgenic adoptive cell therapy (ACT) targeting the tumor antigen NY-ESO-1 can be effective for the treatment of sarcoma and melanoma. Preclinical models have shown that this therapy can be improved with the addition of dendritic cell (DC) vaccination and immune checkpoint blockade. We studied the safety, feasibility, and antitumor efficacy of transgenic ACT with DC vaccination, with and without CTLA-4 blockade with ipilimumab.PURPOSETransgenic adoptive cell therapy (ACT) targeting the tumor antigen NY-ESO-1 can be effective for the treatment of sarcoma and melanoma. Preclinical models have shown that this therapy can be improved with the addition of dendritic cell (DC) vaccination and immune checkpoint blockade. We studied the safety, feasibility, and antitumor efficacy of transgenic ACT with DC vaccination, with and without CTLA-4 blockade with ipilimumab.Freshly prepared autologous NY-ESO-1-specific T-cell receptor (TCR) transgenic lymphocytes were adoptively transferred together with NY-ESO-1 peptide-pulsed DC vaccination in HLA-A2.1-positive subjects alone (ESO, NCT02070406) or with ipilimumab (INY, NCT01697527) in patients with advanced sarcoma or melanoma.PATIENTS AND METHODSFreshly prepared autologous NY-ESO-1-specific T-cell receptor (TCR) transgenic lymphocytes were adoptively transferred together with NY-ESO-1 peptide-pulsed DC vaccination in HLA-A2.1-positive subjects alone (ESO, NCT02070406) or with ipilimumab (INY, NCT01697527) in patients with advanced sarcoma or melanoma.Six patients were enrolled in the ESO cohort, and four were enrolled in the INY cohort. Four out of six patients treated per ESO (66%), and two out of four patients treated per INY (50%) displayed evidence of tumor regression. Peripheral blood reconstitution with NY-ESO-1-specific T cells peaked within 2 weeks of ACT, indicating rapid in vivo expansion. Tracking of transgenic T cells to the tumor sites was demonstrated in on-treatment biopsies via TCR sequencing. Multiparametric mass cytometry of transgenic cells demonstrated shifting of transgenic cells from memory phenotypes to more terminally differentiated effector phenotypes over time.RESULTSSix patients were enrolled in the ESO cohort, and four were enrolled in the INY cohort. Four out of six patients treated per ESO (66%), and two out of four patients treated per INY (50%) displayed evidence of tumor regression. Peripheral blood reconstitution with NY-ESO-1-specific T cells peaked within 2 weeks of ACT, indicating rapid in vivo expansion. Tracking of transgenic T cells to the tumor sites was demonstrated in on-treatment biopsies via TCR sequencing. Multiparametric mass cytometry of transgenic cells demonstrated shifting of transgenic cells from memory phenotypes to more terminally differentiated effector phenotypes over time.ACT of fresh NY-ESO-1 transgenic T cells prepared via a short ex vivo protocol and given with DC vaccination, with or without ipilimumab, is feasible and results in transient antitumor activity, with no apparent clinical benefit of the addition of ipilimumab. Improvements are needed to maintain tumor responses.CONCLUSIONSACT of fresh NY-ESO-1 transgenic T cells prepared via a short ex vivo protocol and given with DC vaccination, with or without ipilimumab, is feasible and results in transient antitumor activity, with no apparent clinical benefit of the addition of ipilimumab. Improvements are needed to maintain tumor responses. |
Author | Hu-Lieskovan, Siwen Berent-Maoz, Beata Cheung-Lau, Gardenia Pang, Jia Carretero, Ignacio Baselga Macabali, Mignonette Grasso, Catherine S. Garcilazo, Ivan Perez Ribas, Antoni Cabrera, Paula Nowicki, Theodore S. Singh, Arun Tran, Justin Tsoi, Jennifer Cochran, Alistair J. Chmielowski, Bartosz Kalbasi, Anusha Comin-Anduix, Begoña Huang, Rong Rong Kaplan-Lefko, Paula Wang, Xiaoyan |
AuthorAffiliation | 2. Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California 3. Department of Pathology, University of California Los Angeles, Los Angeles, California 4. Department of General Internal Medicine and Health Services Research, University of California Los Angeles, Los Angeles, California 5. Division of Molecular and Cellular Oncology, Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California 7. Division of Surgical-Oncology, Department of Surgery, University of California Los Angeles, Los Angeles, California 6. Jonsson Comprehensive Cancer Center, Los Angeles, California 8. Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California 9. Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California 1. Division of Pediatric Hematology-Oncology, Department of Pediatrics, Univ |
AuthorAffiliation_xml | – name: 4. Department of General Internal Medicine and Health Services Research, University of California Los Angeles, Los Angeles, California – name: 3. Department of Pathology, University of California Los Angeles, Los Angeles, California – name: 6. Jonsson Comprehensive Cancer Center, Los Angeles, California – name: 1. Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of California Los Angeles, Los Angeles, California – name: 8. Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California – name: 2. Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California – name: 5. Division of Molecular and Cellular Oncology, Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California – name: 7. Division of Surgical-Oncology, Department of Surgery, University of California Los Angeles, Los Angeles, California – name: 9. Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California |
Author_xml | – sequence: 1 givenname: Theodore S. surname: Nowicki fullname: Nowicki, Theodore S. – sequence: 2 givenname: Beata surname: Berent-Maoz fullname: Berent-Maoz, Beata – sequence: 3 givenname: Gardenia surname: Cheung-Lau fullname: Cheung-Lau, Gardenia – sequence: 4 givenname: Rong Rong surname: Huang fullname: Huang, Rong Rong – sequence: 5 givenname: Xiaoyan surname: Wang fullname: Wang, Xiaoyan – sequence: 6 givenname: Jennifer surname: Tsoi fullname: Tsoi, Jennifer – sequence: 7 givenname: Paula surname: Kaplan-Lefko fullname: Kaplan-Lefko, Paula – sequence: 8 givenname: Paula surname: Cabrera fullname: Cabrera, Paula – sequence: 9 givenname: Justin surname: Tran fullname: Tran, Justin – sequence: 10 givenname: Jia surname: Pang fullname: Pang, Jia – sequence: 11 givenname: Mignonette surname: Macabali fullname: Macabali, Mignonette – sequence: 12 givenname: Ivan Perez surname: Garcilazo fullname: Garcilazo, Ivan Perez – sequence: 13 givenname: Ignacio Baselga surname: Carretero fullname: Carretero, Ignacio Baselga – sequence: 14 givenname: Anusha surname: Kalbasi fullname: Kalbasi, Anusha – sequence: 15 givenname: Alistair J. surname: Cochran fullname: Cochran, Alistair J. – sequence: 16 givenname: Catherine S. surname: Grasso fullname: Grasso, Catherine S. – sequence: 17 givenname: Siwen surname: Hu-Lieskovan fullname: Hu-Lieskovan, Siwen – sequence: 18 givenname: Bartosz surname: Chmielowski fullname: Chmielowski, Bartosz – sequence: 19 givenname: Begoña surname: Comin-Anduix fullname: Comin-Anduix, Begoña – sequence: 20 givenname: Arun surname: Singh fullname: Singh, Arun – sequence: 21 givenname: Antoni surname: Ribas fullname: Ribas, Antoni |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30573690$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1TAQhS3Uiv7AI4C8ZONiJ3acCAnpKhSoVLUILkisrInt9BoldnCcou54Bxa8H09CcttbARtWM_Kcc8b2d4T2fPAWoSeMnjAmyueMypJQnmcndf2esJLkvCoeoEMmhCR5Voi9ud9pDtDROH6hlHFG-UN0kFMh86Kih-jnCr9zXUh4HR10OLQ4bSyuQ984D8kFvxytI_jxynqn8cVncvrhkrBf339ECzq5a4tXJgzbprZdN3UQ8XpjIww3-JtLG_zKehNdms3LHH8CrXfZ23mI2xqmhM8G17l-6qF5hPZb6Eb7-K4eo4-vT9f1W3J--easXp0TnRc8EclMw5tcU2MBaGaEMRRkZVoqMqPbArgsRZtpsBIKLSTPhGmMKKCisoXC5Mfo5W3uMDW9Ndr6FKFTQ3Q9xBsVwKm_J95t1FW4VgXnQpZ0Dnh2FxDD18mOSfVu1PNDwdswjSpjoqpKzvkiffrnrvslOxqzQNwKdAzjGG17L2FULdTVQlQtRNVMXbFSLdRn34t_fNql7Q_PV3bdf9y_AfEetyw |
CitedBy_id | crossref_primary_10_1038_s41392_023_01309_7 crossref_primary_10_1016_j_cps_2021_06_005 crossref_primary_10_1007_s12094_020_02344_4 crossref_primary_10_1016_j_bbcan_2021_188606 crossref_primary_10_3390_vaccines11040835 crossref_primary_10_1186_s40425_019_0629_6 crossref_primary_10_1158_1078_0432_CCR_20_1966 crossref_primary_10_1002_adhm_202100157 crossref_primary_10_3390_cancers11081048 crossref_primary_10_1016_j_iotech_2019_06_001 crossref_primary_10_1016_j_celrep_2019_06_049 crossref_primary_10_1002_mc_23015 crossref_primary_10_1126_science_aba9844 crossref_primary_10_1126_science_aba7365 crossref_primary_10_1016_j_bbcan_2021_188558 crossref_primary_10_1186_s40425_019_0695_9 crossref_primary_10_1080_15384047_2024_2308097 crossref_primary_10_1016_j_bulcan_2021_06_004 crossref_primary_10_1136_jitc_2024_008998 crossref_primary_10_1093_bib_bbad220 crossref_primary_10_1200_EDBK_432234 crossref_primary_10_3389_fimmu_2020_01689 crossref_primary_10_1172_jci_insight_141264 crossref_primary_10_3389_fimmu_2019_02801 crossref_primary_10_1111_imr_12772 crossref_primary_10_1158_2159_8290_CD_20_0300 crossref_primary_10_1016_j_immuni_2020_07_007 crossref_primary_10_1111_ddg_14334 crossref_primary_10_1038_s41401_020_0415_5 crossref_primary_10_1111_ddg_14334_g crossref_primary_10_3390_cancers14174249 crossref_primary_10_1093_jjco_hyab005 crossref_primary_10_1136_jitc_2019_000329 crossref_primary_10_1186_s40164_024_00504_8 crossref_primary_10_1007_s00262_022_03287_1 crossref_primary_10_1007_s00281_024_01011_y crossref_primary_10_1097_PPO_0000000000000603 crossref_primary_10_1038_s43018_023_00588_x crossref_primary_10_1007_s10147_025_02744_y crossref_primary_10_1016_j_canlet_2019_10_024 crossref_primary_10_3389_fimmu_2024_1352805 crossref_primary_10_3389_fimmu_2023_1269015 crossref_primary_10_1002_EXP_20210058 crossref_primary_10_6004_jnccn_2022_7027 crossref_primary_10_1016_j_imlet_2019_10_002 crossref_primary_10_7554_eLife_53839 crossref_primary_10_3390_cancers12030683 crossref_primary_10_1016_j_xcrm_2023_101133 crossref_primary_10_1136_jitc_2020_001580 crossref_primary_10_3389_fimmu_2022_835762 crossref_primary_10_1136_jitc_2023_006930 crossref_primary_10_3390_cells10040808 crossref_primary_10_1136_jitc_2020_000691 crossref_primary_10_1136_jitc_2020_002232 crossref_primary_10_1007_s00262_024_03838_8 crossref_primary_10_1089_crispr_2021_0133 crossref_primary_10_1158_2326_6066_CIR_21_0269 crossref_primary_10_3389_fphar_2025_1493346 crossref_primary_10_1002_cyto_a_24241 crossref_primary_10_1016_j_ccell_2020_07_013 crossref_primary_10_1136_jitc_2023_008759 crossref_primary_10_1016_j_gpb_2021_02_004 crossref_primary_10_1158_2326_6066_CIR_23_0577 crossref_primary_10_1186_s12943_023_01735_9 crossref_primary_10_1126_sciadv_adf3700 crossref_primary_10_1093_immadv_ltac005 crossref_primary_10_1136_jitc_2021_004190 crossref_primary_10_1007_s11864_022_01036_1 |
Cites_doi | 10.1084/jem.20091918 10.1126/science.aaa4967 10.1073/pnas.1115050108 10.1016/j.ymthe.2004.04.007 10.1158/2159-8290.CD-12-0383 10.1073/pnas.092154599 10.1038/77778 10.1111/j.1600-065X.1996.tb00700.x 10.1158/1078-0432.CCR-13-3017 10.1084/jem.20030323 10.1097/CJI.0000000000000216 10.1158/1078-0432.CCR-11-0503 10.1182/blood-2009-03-211714 10.1200/JCO.2010.32.2537 10.1073/pnas.0500600102 10.1158/0008-5472.CAN-04-1621 10.1126/science.1129003 10.1038/nm882 10.1158/2326-6066.CIR-16-0148 10.1097/CJI.0b013e31827806e6 10.1172/JCI32446 10.4049/jimmunol.1302391 10.1046/j.1365-2249.2002.02015.x 10.1200/JCO.2006.07.1100 10.4049/jimmunol.1102609 10.4049/jimmunol.177.9.6548 10.1038/nature13954 10.1016/j.ejca.2008.10.026 10.1158/1078-0432.CCR-13-0458 10.1158/1078-0432.CCR-15-1070 10.1084/jem.20030590 10.1158/0008-5472.CAN-08-3289 10.1074/jbc.M309128200 10.1158/1078-0432.CCR-14-2708 10.1158/2159-8290.CD-17-1417 10.1038/nm1312 10.1182/blood.V95.10.3011 10.1182/blood.V96.3.878 10.1038/s41586-018-0178-z 10.1182/blood-2006-07-034066 10.1038/nri3158 10.1111/j.0105-2896.2006.00391.x 10.1158/1078-0432.CCR-05-0136 10.1073/pnas.242600099 10.1007/s00262-014-1568-1 10.1038/bmt.2015.74 10.1016/S0065-230X(06)95001-5 |
ContentType | Journal Article |
Copyright | 2018 American Association for Cancer Research. |
Copyright_xml | – notice: 2018 American Association for Cancer Research. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1158/1078-0432.CCR-18-3496 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1557-3265 |
EndPage | 2108 |
ExternalDocumentID | PMC6445780 30573690 10_1158_1078_0432_CCR_18_3496 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: T32 CA009120 – fundername: NCI NIH HHS grantid: P30 CA016042 – fundername: NIAID NIH HHS grantid: P30 AI028697 – fundername: NCI NIH HHS grantid: R35 CA197633 – fundername: NCI NIH HHS grantid: P01 CA168585 – fundername: NICHD NIH HHS grantid: K12 HD000850 |
GroupedDBID | --- 18M 29B 2FS 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BR6 BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P QTD RCR RHI RNS SJN TR2 W2D W8F WOQ YKV CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c364t-71db4b3c0deaa02d5dd0a79df052dcf6a4785f2cae7a6c57425dbd56a907fa6d3 |
ISSN | 1078-0432 1557-3265 |
IngestDate | Thu Aug 21 18:41:39 EDT 2025 Fri Jul 11 03:19:08 EDT 2025 Mon Jul 21 06:06:43 EDT 2025 Tue Jul 01 01:30:21 EDT 2025 Thu Apr 24 22:53:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | 2018 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c364t-71db4b3c0deaa02d5dd0a79df052dcf6a4785f2cae7a6c57425dbd56a907fa6d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 30573690 |
PQID | 2159984440 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6445780 proquest_miscellaneous_2159984440 pubmed_primary_30573690 crossref_primary_10_1158_1078_0432_CCR_18_3496 crossref_citationtrail_10_1158_1078_0432_CCR_18_3496 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Clinical cancer research |
PublicationTitleAlternate | Clin Cancer Res |
PublicationYear | 2019 |
References | Brenchley (2022061101211301700_bib41) 2002; 130 Anandasabapathy (2022061101211301700_bib35) 2015; 50 Yang (2022061101211301700_bib48) 2005; 102 Johnson (2022061101211301700_bib4) 2009; 114 Figlin (2022061101211301700_bib19) 1997; 1 Borrello (2022061101211301700_bib12) 2000; 95 Zhang (2022061101211301700_bib30) 2005; 11 John (2022061101211301700_bib45) 2013; 19 Mackensen (2022061101211301700_bib16) 2006; 24 Yang (2022061101211301700_bib47) 2002; 99 Hartmann (2022061101211301700_bib24) 2018 Maraskovsky (2022061101211301700_bib32) 2000; 96 Cui (2022061101211301700_bib13) 2003; 9 Mujib (2022061101211301700_bib44) 2012; 188 Ding (2022061101211301700_bib33) 2014; 192 Gnjatic (2022061101211301700_bib9) 2006; 95 Ma (2022061101211301700_bib42) 2013; 3 Comin-Anduix (2022061101211301700_bib21) 2006; 12 Marrack (2022061101211301700_bib40) 2000; 1 Johnson (2022061101211301700_bib5) 2006; 177 June (2022061101211301700_bib29) 2007; 117 Rosenberg (2022061101211301700_bib1) 2015; 348 Klebanoff (2022061101211301700_bib36) 2006; 211 Chodon (2022061101211301700_bib6) 2014; 20 Nowicki (2022061101211301700_bib14) 2018; 41 Moon (2022061101211301700_bib46) 2016; 22 Overwijk (2022061101211301700_bib10) 2003; 198 Tumeh (2022061101211301700_bib22) 2014; 515 Eisenhauer (2022061101211301700_bib20) 2009; 45 Swindle (2022061101211301700_bib27) 2004; 279 Robbins (2022061101211301700_bib7) 2011; 29 June (2022061101211301700_bib2) 2014; 63 Gattinoni (2022061101211301700_bib17) 2006; 108 Swain (2022061101211301700_bib39) 1996; 150 Fraietta (2022061101211301700_bib43) 2018; 558 Vatakis (2022061101211301700_bib49) 2011; 108 Yee (2022061101211301700_bib15) 2002; 99 Nowicki (2022061101211301700_bib23) 2017; 5 Quezada (2022061101211301700_bib18) 2010; 207 Karsunky (2022061101211301700_bib31) 2003; 198 D'Angelo (2022061101211301700_bib26) 2018; 8 Morgan (2022061101211301700_bib3) 2006; 314 Robbins (2022061101211301700_bib8) 2015; 21 Klebanoff (2022061101211301700_bib38) 2012; 35 Lou (2022061101211301700_bib11) 2004; 64 Maecker (2022061101211301700_bib25) 2012; 12 Curran (2022061101211301700_bib34) 2009; 69 Yao (2022061101211301700_bib28) 2004; 10 Klebanoff (2022061101211301700_bib37) 2011; 17 |
References_xml | – volume: 207 start-page: 637 year: 2010 ident: 2022061101211301700_bib18 article-title: Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts publication-title: J Exp Med doi: 10.1084/jem.20091918 – volume: 348 start-page: 62 year: 2015 ident: 2022061101211301700_bib1 article-title: Adoptive cell transfer as personalized immunotherapy for human cancer publication-title: Science doi: 10.1126/science.aaa4967 – volume: 108 start-page: E1408 year: 2011 ident: 2022061101211301700_bib49 article-title: Antitumor activity from antigen-specific CD8 T cells generated in vivo from genetically engineered human hematopoietic stem cells publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1115050108 – volume: 10 start-page: 27 year: 2004 ident: 2022061101211301700_bib28 article-title: Retrovirus silencing, variegation, extinction, and memory are controlled by a dynamic interplay of multiple epigenetic modifications publication-title: Mol Ther doi: 10.1016/j.ymthe.2004.04.007 – volume: 3 start-page: 418 year: 2013 ident: 2022061101211301700_bib42 article-title: Multifunctional T-cell analyses to study response and progression in adoptive cell transfer immunotherapy publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-12-0383 – volume: 99 start-page: 6204 year: 2002 ident: 2022061101211301700_bib47 article-title: Generation of functional antigen-specific T cells in defined genetic backgrounds by retrovirus-mediated expression of TCR cDNAs in hematopoietic precursor cells publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.092154599 – volume: 1 start-page: 107 year: 2000 ident: 2022061101211301700_bib40 article-title: Homeostasis of alpha beta TCR+ T cells publication-title: Nat Immunol doi: 10.1038/77778 – volume: 150 start-page: 143 year: 1996 ident: 2022061101211301700_bib39 article-title: From naive to memory T cells publication-title: Immunol Rev doi: 10.1111/j.1600-065X.1996.tb00700.x – volume: 20 start-page: 2457 year: 2014 ident: 2022061101211301700_bib6 article-title: Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-13-3017 – volume: 198 start-page: 305 year: 2003 ident: 2022061101211301700_bib31 article-title: Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo publication-title: J Exp Med doi: 10.1084/jem.20030323 – volume: 41 start-page: 248 year: 2018 ident: 2022061101211301700_bib14 article-title: Characterization of postinfusion phenotypic differences in fresh versus cryopreserved TCR engineered adoptive cell therapy products publication-title: J Immunother doi: 10.1097/CJI.0000000000000216 – volume: 17 start-page: 5343 year: 2011 ident: 2022061101211301700_bib37 article-title: Determinants of successful CD8+ T-cell adoptive immunotherapy for large established tumors in mice publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-11-0503 – volume: 114 start-page: 535 year: 2009 ident: 2022061101211301700_bib4 article-title: Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen publication-title: Blood doi: 10.1182/blood-2009-03-211714 – volume: 29 start-page: 917 year: 2011 ident: 2022061101211301700_bib7 article-title: Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1 publication-title: J Clin Oncol doi: 10.1200/JCO.2010.32.2537 – year: 2018 ident: 2022061101211301700_bib24 article-title: Comprehensive immune monitoring of clinical trials to advance human immunotherapy publication-title: bioRxiv – volume: 102 start-page: 4518 year: 2005 ident: 2022061101211301700_bib48 article-title: Long-term in vivo provision of antigen-specific T cell immunity by programming hematopoietic stem cells publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0500600102 – volume: 64 start-page: 6783 year: 2004 ident: 2022061101211301700_bib11 article-title: Dendritic cells strongly boost the antitumor activity of adoptively transferred T cells in vivo publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-1621 – volume: 314 start-page: 126 year: 2006 ident: 2022061101211301700_bib3 article-title: Cancer regression in patients after transfer of genetically engineered lymphocytes publication-title: Science doi: 10.1126/science.1129003 – volume: 9 start-page: 952 year: 2003 ident: 2022061101211301700_bib13 article-title: Immunotherapy of established tumors using bone marrow transplantation with antigen gene–modified hematopoietic stem cells publication-title: Nat Med doi: 10.1038/nm882 – volume: 5 start-page: 118 year: 2017 ident: 2022061101211301700_bib23 article-title: Infiltration of CD8 T cells and expression of PD-1 and PD-L1 in synovial sarcoma publication-title: Cancer Immunol Res doi: 10.1158/2326-6066.CIR-16-0148 – volume: 35 start-page: 651 year: 2012 ident: 2022061101211301700_bib38 article-title: Sorting through subsets: which T-cell populations mediate highly effective adoptive immunotherapy? publication-title: J Immunother doi: 10.1097/CJI.0b013e31827806e6 – volume: 117 start-page: 1466 year: 2007 ident: 2022061101211301700_bib29 article-title: Adoptive T cell therapy for cancer in the clinic publication-title: J Clin Invest doi: 10.1172/JCI32446 – volume: 192 start-page: 1982 year: 2014 ident: 2022061101211301700_bib33 article-title: FLT3-ligand treatment of humanized mice results in the generation of large numbers of CD141+ and CD1c+ dendritic cells in vivo publication-title: J Immunol doi: 10.4049/jimmunol.1302391 – volume: 130 start-page: 432 year: 2002 ident: 2022061101211301700_bib41 article-title: Expansion of activated human naive T-cells precedes effector function publication-title: Clin Exp Immunol doi: 10.1046/j.1365-2249.2002.02015.x – volume: 24 start-page: 5060 year: 2006 ident: 2022061101211301700_bib16 article-title: Phase I study of adoptive T-cell therapy using antigen-specific CD8+ T cells for the treatment of patients with metastatic melanoma publication-title: J Clin Oncol doi: 10.1200/JCO.2006.07.1100 – volume: 188 start-page: 3745 year: 2012 ident: 2022061101211301700_bib44 article-title: Antigen-independent induction of Tim-3 expression on human T cells by the common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 is associated with proliferation and is dependent on the phosphoinositide 3-kinase pathway publication-title: J Immunol doi: 10.4049/jimmunol.1102609 – volume: 177 start-page: 6548 year: 2006 ident: 2022061101211301700_bib5 article-title: Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes publication-title: J Immunol doi: 10.4049/jimmunol.177.9.6548 – volume: 515 start-page: 568 year: 2014 ident: 2022061101211301700_bib22 article-title: PD-1 blockade induces responses by inhibiting adaptive immune resistance publication-title: Nature doi: 10.1038/nature13954 – volume: 45 start-page: 228 year: 2009 ident: 2022061101211301700_bib20 article-title: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) publication-title: Eur J Cancer doi: 10.1016/j.ejca.2008.10.026 – volume: 19 start-page: 5636 year: 2013 ident: 2022061101211301700_bib45 article-title: Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-13-0458 – volume: 22 start-page: 436 year: 2016 ident: 2022061101211301700_bib46 article-title: Blockade of programmed death 1 augments the ability of human T cells engineered to target NY-ESO-1 to control tumor growth after adoptive transfer publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-15-1070 – volume: 198 start-page: 569 year: 2003 ident: 2022061101211301700_bib10 article-title: Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells publication-title: J Exp Med doi: 10.1084/jem.20030590 – volume: 69 start-page: 7747 year: 2009 ident: 2022061101211301700_bib34 article-title: Tumor vaccines expressing flt3 ligand synergize with ctla-4 blockade to reject preimplanted tumors publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-3289 – volume: 279 start-page: 34 year: 2004 ident: 2022061101211301700_bib27 article-title: Mutation of CpGs in the murine stem cell virus retroviral vector long terminal repeat represses silencing in embryonic stem cells publication-title: J Biol Chem doi: 10.1074/jbc.M309128200 – volume: 21 start-page: 1019 year: 2015 ident: 2022061101211301700_bib8 article-title: A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-14-2708 – volume: 8 start-page: 944 year: 2018 ident: 2022061101211301700_bib26 article-title: Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1 (c259)T cells in synovial sarcoma publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-17-1417 – volume: 11 start-page: 1238 year: 2005 ident: 2022061101211301700_bib30 article-title: Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+ CD25+ regulatory T cells publication-title: Nat Med doi: 10.1038/nm1312 – volume: 95 start-page: 3011 year: 2000 ident: 2022061101211301700_bib12 article-title: Sustaining the graft-versus-tumor effect through posttransplant immunization with granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing tumor vaccines publication-title: Blood doi: 10.1182/blood.V95.10.3011 – volume: 1 start-page: S92 year: 1997 ident: 2022061101211301700_bib19 article-title: Interleukin-2-based immunotherapy for the treatment of metastatic renal cell carcinoma: an analysis of 203 consecutively treated patients publication-title: Cancer J Sci Am – volume: 96 start-page: 878 year: 2000 ident: 2022061101211301700_bib32 article-title: In vivo generation of human dendritic cell subsets by Flt3 ligand publication-title: Blood doi: 10.1182/blood.V96.3.878 – volume: 558 start-page: 307 year: 2018 ident: 2022061101211301700_bib43 article-title: Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells publication-title: Nature doi: 10.1038/s41586-018-0178-z – volume: 108 start-page: 3818 year: 2006 ident: 2022061101211301700_bib17 article-title: CTLA-4 dysregulation of self/tumor-reactive CD8+ T-cell function is CD4+ T-cell dependent publication-title: Blood doi: 10.1182/blood-2006-07-034066 – volume: 12 start-page: 191 year: 2012 ident: 2022061101211301700_bib25 article-title: Standardizing immunophenotyping for the Human Immunology Project publication-title: Nat Rev Immunol doi: 10.1038/nri3158 – volume: 211 start-page: 214 year: 2006 ident: 2022061101211301700_bib36 article-title: CD8+ T-cell memory in tumor immunology and immunotherapy publication-title: Immunol Rev doi: 10.1111/j.0105-2896.2006.00391.x – volume: 12 start-page: 107 year: 2006 ident: 2022061101211301700_bib21 article-title: Definition of an immunologic response using the major histocompatibility complex tetramer and enzyme-linked immunospot assays publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-05-0136 – volume: 99 start-page: 16168 year: 2002 ident: 2022061101211301700_bib15 article-title: Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.242600099 – volume: 63 start-page: 969 year: 2014 ident: 2022061101211301700_bib2 article-title: Engineered T cells for cancer therapy publication-title: Cancer Immunol Immunother doi: 10.1007/s00262-014-1568-1 – volume: 50 start-page: 924 year: 2015 ident: 2022061101211301700_bib35 article-title: Efficacy and safety of CDX-301, recombinant human Flt3L, at expanding dendritic cells and hematopoietic stem cells in healthy human volunteers publication-title: Bone Marrow Transplant doi: 10.1038/bmt.2015.74 – volume: 95 start-page: 1 year: 2006 ident: 2022061101211301700_bib9 article-title: NY-ESO-1: review of an immunogenic tumor antigen publication-title: Adv Cancer Res doi: 10.1016/S0065-230X(06)95001-5 |
SSID | ssj0014104 |
Score | 2.535215 |
Snippet | Transgenic adoptive cell therapy (ACT) targeting the tumor antigen NY-ESO-1 can be effective for the treatment of sarcoma and melanoma. Preclinical models have... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2096 |
SubjectTerms | Adoptive Transfer - methods Adult Animals Antineoplastic Agents, Immunological - pharmacology Cancer Vaccines - immunology Cell Line, Tumor Combined Modality Therapy CTLA-4 Antigen - antagonists & inhibitors Dendritic Cells - immunology Dendritic Cells - metabolism Female Gene Knock-In Techniques Humans Immunotherapy Ipilimumab - pharmacology Lymphocytes - immunology Lymphocytes - metabolism Male Mice Middle Aged Molecular Targeted Therapy Neoplasms - immunology Neoplasms - pathology Neoplasms - therapy Phenotype Pilot Projects Receptors, Antigen, T-Cell - genetics Receptors, Antigen, T-Cell - metabolism Young Adult |
Title | A Pilot Trial of the Combination of Transgenic NY-ESO-1–reactive Adoptive Cellular Therapy with Dendritic Cell Vaccination with or without Ipilimumab |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30573690 https://www.proquest.com/docview/2159984440 https://pubmed.ncbi.nlm.nih.gov/PMC6445780 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6FIlV9QdwNlxaJt8jBdnZ9PKZpUQukoJKi8mStvRthKbGj4LzwP_gj_EJmdtdHmiKOF8fy2mMr3-fdmfEchLxKEVbOUicIZOowLoUT44snPRnDfAkmhY_JydPz4PSSvb3iV73ez07U0qZKh9n3G_NK_gdVOAa4YpbsPyDbCIUDsA_4whYQhu1fYTwefMwXZTWY6dYb9ms_vOFg7TaaoF6MQEKeDc6_OCefPoA1B4qinuawwdJK70zUYqEDUmemyoDxzx6rQupWCHp88FlkWS1Zj5dr_YuhzWerfJEvN0uRdtXdSZ13mSG51gNbWqh1QZfYyT03kUqqxK4nrS_2CDMRK2cqSu3kPlImjc5GIyiYpZz3YqMd-wJzMXLRctR6wS-wkxJuus4NL-7ExJj52MUCwGy0NWGbTGlLzLA7-7qmO-7ussAj7aGwwoaTyYXjRQ4Wy--eD-iulporI6wTGZhGptfqcddDt8htH0wT7JpxfPau-XLFPN2ysrmXzRqDJ3h94_0PyH4tcVs12rF3roftdvSg2V1yxxowdGzYeI_0VHGf7E9tiMYD8mNMNSmpJiUt5xRISTukxEMtKekOKWlNSlqTklpSUiQbbUipx2mHlGa8XFNLStqS8iG5fHMym5w6tveHk40CVjmhJ1OWjjJXKiFcX3IpXRHGcu5yX2bzQLAw4nM_EyoUQcZDWHpkKnkgYjeci0COHpG9oizUIaHCF0JEIohSsL6FDEGqD8aa5FGcKsbCPmH1355ktjA-9mdZJNpA5lGCwCUIXALAJV6UIHB9MmwuW5nKMH-64GWNaQJzOH6YE4UqN98SULvjOGKMuX3y2GDciKzJ0SfhFvrNCVgffnukyL_qOvFg6sB67D75rcyn5KB96Z6RvWq9Uc9Bx67SF5rUvwCBS9D3 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Pilot+Trial+of+the+Combination+of+Transgenic+NY-ESO-1-reactive+Adoptive+Cellular+Therapy+with+Dendritic+Cell+Vaccination+with+or+without+Ipilimumab&rft.jtitle=Clinical+cancer+research&rft.au=Nowicki%2C+Theodore+S&rft.au=Berent-Maoz%2C+Beata&rft.au=Cheung-Lau%2C+Gardenia&rft.au=Huang%2C+Rong+Rong&rft.date=2019-04-01&rft.issn=1078-0432&rft.volume=25&rft.issue=7&rft.spage=2096&rft_id=info:doi/10.1158%2F1078-0432.CCR-18-3496&rft_id=info%3Apmid%2F30573690&rft.externalDocID=30573690 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon |