A Novel Fault Diagnosis Method for Analog Circuits Based on Multi-Input Deep Residual Networks with an Improved Empirical Wavelet Transform
Analog circuits play an essential role in electronic systems. To strengthen the reliability of sophisticated electronic circuits, this paper proposes a novel analog circuit fault diagnosis method. Compared with traditional fault diagnosis, the fault diagnosis process in this paper uses a square wave...
Saved in:
Published in | Applied sciences Vol. 12; no. 3; p. 1675 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Analog circuits play an essential role in electronic systems. To strengthen the reliability of sophisticated electronic circuits, this paper proposes a novel analog circuit fault diagnosis method. Compared with traditional fault diagnosis, the fault diagnosis process in this paper uses a square wave as the stimulus of the circuit under test (CUT), which is beneficial for obtaining the response of the CUT with rich time and frequency domain information. The improved empirical wavelet transform (EWT), which can more accurately extract the amplitude modulated–frequency modulated (AM-FM) components, is used to preprocess the original response. Finally, based on the preprocessed data, a multi-input deep residual network (ResNet) is constructed for fault feature extraction and fault classification. The multi-input ResNet is a powerful approach for learning the fault characteristics of the CUT under different faults by learning the characteristics of the AM-FM components. The effectiveness of the method proposed in this paper is verified by comparing different fault diagnosis methods. |
---|---|
AbstractList | Analog circuits play an essential role in electronic systems. To strengthen the reliability of sophisticated electronic circuits, this paper proposes a novel analog circuit fault diagnosis method. Compared with traditional fault diagnosis, the fault diagnosis process in this paper uses a square wave as the stimulus of the circuit under test (CUT), which is beneficial for obtaining the response of the CUT with rich time and frequency domain information. The improved empirical wavelet transform (EWT), which can more accurately extract the amplitude modulated–frequency modulated (AM-FM) components, is used to preprocess the original response. Finally, based on the preprocessed data, a multi-input deep residual network (ResNet) is constructed for fault feature extraction and fault classification. The multi-input ResNet is a powerful approach for learning the fault characteristics of the CUT under different faults by learning the characteristics of the AM-FM components. The effectiveness of the method proposed in this paper is verified by comparing different fault diagnosis methods. |
Author | Wang, Junhai Zhou, Xiuyun Xie, Songlin Liu, Zhen Liu, Xuemei |
Author_xml | – sequence: 1 givenname: Zhen orcidid: 0000-0003-3406-0039 surname: Liu fullname: Liu, Zhen – sequence: 2 givenname: Xuemei surname: Liu fullname: Liu, Xuemei – sequence: 3 givenname: Songlin surname: Xie fullname: Xie, Songlin – sequence: 4 givenname: Junhai surname: Wang fullname: Wang, Junhai – sequence: 5 givenname: Xiuyun surname: Zhou fullname: Zhou, Xiuyun |
BookMark | eNptUUtv1DAQtlArUdqe-AOWOKKAHSd2clyWFlbqQ6qKOFoTe7z1ko2D7VDxG_jTGBakCjGXGY2-xzxekKMpTEjIS87eCNGztzDPvGaCS9U-Iyc1U7ISDVdHT-rn5DylHSvRc9FxdkJ-rOhN-IYjvYRlzPS9h-0Ukk_0GvNDsNSFSFcTjGFL1z6axedE30FCS8NErwvFV5tpXgoTcaZ3mLxdYKQ3mB9D_JLoo88PFCa62c-x-Fh6sZ999KZgPkPxxUzvI0yp-OzPyLGDMeH5n3xKPl1e3K8_Vle3Hzbr1VVlhGxypRgCQ9O6oe2McCiHjgspZQ2cO9kxVJ3r0RpVW-763irbNoPjzChUohedOCWbg64NsNNz9HuI33UAr383QtxqiNmbEbUdGuEAG-eGrulr0yEzrBFCNdKIltui9eqgVdb7umDKeheWWA6WdC2F5LVoZV1Q_IAyMaQU0WnjM2QfphzBj5oz_euF-skLC-f1P5y_k_4P_RP8j59c |
CitedBy_id | crossref_primary_10_3390_app121910106 crossref_primary_10_1016_j_heliyon_2024_e38064 crossref_primary_10_3390_electronics14030540 crossref_primary_10_1007_s00034_023_02392_5 crossref_primary_10_1088_1742_6596_2731_1_012031 crossref_primary_10_1007_s00034_024_02947_0 crossref_primary_10_1587_elex_21_20240633 crossref_primary_10_1007_s00034_024_02722_1 crossref_primary_10_1007_s00170_025_15087_9 crossref_primary_10_1016_j_aei_2023_102323 crossref_primary_10_1007_s00034_023_02524_x crossref_primary_10_1007_s00034_022_02262_6 crossref_primary_10_3390_s23187836 crossref_primary_10_1007_s00034_023_02526_9 crossref_primary_10_1007_s12206_023_0332_x crossref_primary_10_1109_ACCESS_2022_3221994 |
Cites_doi | 10.1007/s00034-013-9589-0 10.1007/s00034-013-9614-3 10.1109/TSP.2013.2265222 10.1109/CVPR.2016.90 10.1109/TIE.2020.3020252 10.2478/v10178-010-0046-0 10.1080/00207210801996139 10.1023/A:1011141724916 10.1109/54.386008 10.1109/TIM.2020.2969008 10.1078/1434-8411-54100231 10.1109/TCSI.2021.3076282 10.1007/s00521-021-05810-4 10.1016/j.neucom.2015.12.131 10.1109/TII.2017.2690940 10.1109/ACCESS.2018.2834540 10.1109/82.823545 10.1109/TIM.2007.904549 10.1109/ACCESS.2018.2823765 10.1109/TIE.2012.2224074 10.1016/j.aeue.2017.01.002 10.1109/PROC.1985.13281 10.1155/2016/7657054 10.1016/j.ymssp.2016.09.031 10.1587/elex.18.20210174 10.1109/TIM.2009.2025068 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app12031675 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_db43fae4ffb8492c8e0c0433746c351d 10_3390_app12031675 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c364t-70ea0ec5fb58c3fe6b8136662a11f680e78f9edc72d1f99d7d54bf10c7e739383 |
IEDL.DBID | BENPR |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:21:36 EDT 2025 Mon Jun 30 11:31:08 EDT 2025 Tue Jul 01 00:41:04 EDT 2025 Thu Apr 24 22:51:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-70ea0ec5fb58c3fe6b8136662a11f680e78f9edc72d1f99d7d54bf10c7e739383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3406-0039 |
OpenAccessLink | https://www.proquest.com/docview/2636123562?pq-origsite=%requestingapplication% |
PQID | 2636123562 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_db43fae4ffb8492c8e0c0433746c351d proquest_journals_2636123562 crossref_citationtrail_10_3390_app12031675 crossref_primary_10_3390_app12031675 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Long (ref_9) 2013; 32 Gilles (ref_15) 2013; 61 Slamani (ref_22) 1995; 12 Yuan (ref_8) 2010; 59 Cui (ref_7) 2010; 17 Yang (ref_13) 2021; 18 Chen (ref_27) 2016; 211 Deng (ref_16) 2018; 6 Gao (ref_28) 2021; 33 Zhang (ref_25) 2018; 6 Rao (ref_23) 2014; 4 He (ref_11) 2020; 69 Long (ref_21) 2013; 60 Tan (ref_6) 2008; 95 Bandler (ref_2) 1985; 73 Liu (ref_19) 2017; 13 Xiong (ref_10) 2016; 2016 Wu (ref_14) 2011; 1 Li (ref_17) 2017; 85 Binu (ref_1) 2017; 73 Aminian (ref_4) 2001; 17 ref_24 Mohsen (ref_18) 2004; 58 Gao (ref_26) 2021; 70 Aminian (ref_5) 2007; 56 Jia (ref_20) 2021; 68 Shi (ref_29) 2013; 32 Aminian (ref_3) 2000; 47 Ji (ref_12) 2021; 68 |
References_xml | – volume: 70 start-page: 1 year: 2021 ident: ref_26 article-title: A Novel Incipient Fault Diagnosis Method for Analog Circuits Based on GMKL-SVM and Wavelet Fusion Features publication-title: IEEE Trans. Instrum. Meas. – volume: 32 start-page: 2151 year: 2013 ident: ref_29 article-title: Diagnosis of Incipient Faults in Weak Nonlinear Analog Circuits publication-title: Circuits Syst. Signal Process. doi: 10.1007/s00034-013-9589-0 – volume: 32 start-page: 2683 year: 2013 ident: ref_9 article-title: Diagnostics of Analog Circuits Based on LS-SVM Using Time-Domain Features publication-title: Circuits Syst. Signal Process. doi: 10.1007/s00034-013-9614-3 – volume: 61 start-page: 3999 year: 2013 ident: ref_15 article-title: Empirical Wavelet Transform publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2265222 – ident: ref_24 doi: 10.1109/CVPR.2016.90 – volume: 68 start-page: 10087 year: 2021 ident: ref_20 article-title: A Deep Forest-Based Fault Diagnosis Scheme for Electronics-Rich Analog Circuit Systems publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.3020252 – volume: 17 start-page: 561 year: 2010 ident: ref_7 article-title: A Novel Approach of Analog Fault Classification Using a Support Vector Machines Classifier publication-title: Metrol. Meas. Syst. doi: 10.2478/v10178-010-0046-0 – volume: 95 start-page: 431 year: 2008 ident: ref_6 article-title: A novel method for fault diagnosis of analog circuits based on WP and GPNN publication-title: Int. J. Electron. doi: 10.1080/00207210801996139 – volume: 17 start-page: 29 year: 2001 ident: ref_4 article-title: Fault diagnosis of analog circuits using Bayesian neural networks with wavelet transform as preprocessor publication-title: J. Electron. Test. -Theory Appl. doi: 10.1023/A:1011141724916 – volume: 12 start-page: 70 year: 1995 ident: ref_22 article-title: Multifrequency Analysis of Faults in Analog Circuits publication-title: IEEE Des. Test Comput. doi: 10.1109/54.386008 – volume: 69 start-page: 6640 year: 2020 ident: ref_11 article-title: Generative Adversarial Networks With Comprehensive Wavelet Feature for Fault Diagnosis of Analog Circuits publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.2969008 – volume: 58 start-page: 212 year: 2004 ident: ref_18 article-title: Selection of Input Stimulus for Fault Diagnosis of Analog Circuits Using ARMA Model publication-title: AEU-Int. J. Electron. Commun. doi: 10.1078/1434-8411-54100231 – volume: 68 start-page: 2841 year: 2021 ident: ref_12 article-title: Soft Fault Diagnosis of Analog Circuits Based on a ResNet With Circuit Spectrum Map publication-title: IEEE Trans. Circuits Syst. I Regul. Pap. doi: 10.1109/TCSI.2021.3076282 – volume: 33 start-page: 10537 year: 2021 ident: ref_28 article-title: A novel fault diagnosis method for analog circuits with noise immunity and generalization ability publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-05810-4 – volume: 211 start-page: 202 year: 2016 ident: ref_27 article-title: An improved SVM classifier based on double chains quantum genetic algorithm and its application in analogue circuit diagnosis publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.12.131 – volume: 13 start-page: 1213 year: 2017 ident: ref_19 article-title: Capturing High-Discriminative Fault Features for Electronics-Rich Analog System via Deep Learning publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2017.2690940 – volume: 6 start-page: 35042 year: 2018 ident: ref_16 article-title: A Novel Fault Diagnosis Method Based on Integrating Empirical Wavelet Transform and Fuzzy Entropy for Motor Bearing publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2834540 – volume: 47 start-page: 151 year: 2000 ident: ref_3 article-title: Neural-network based analog-circuit fault diagnosis using wavelet transform as preprocessor publication-title: IEEE Trans. Circuits Syst. II-Analog Digit. Signal Process. doi: 10.1109/82.823545 – volume: 56 start-page: 1546 year: 2007 ident: ref_5 article-title: A Modular Fault-Diagnostic System for Analog Electronic Circuits Using Neural Networks With Wavelet Transform as a Preprocessor publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2007.904549 – volume: 6 start-page: 23053 year: 2018 ident: ref_25 article-title: Analog Circuit Incipient Fault Diagnosis Method Using DBN Based Features Extraction publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2823765 – volume: 4 start-page: 25 year: 2014 ident: ref_23 article-title: Optimized multi frequency approach to analog fault diagnosis using Monte Carlo analysis publication-title: Electr. Electron. Eng. – volume: 60 start-page: 5277 year: 2013 ident: ref_21 article-title: Diagnostics and Prognostics Method for Analog Electronic Circuits publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2012.2224074 – volume: 73 start-page: 68 year: 2017 ident: ref_1 article-title: A survey on fault diagnosis of analog circuits: Taxonomy and state of the art publication-title: AEU-Int. J. Electron. Commun. doi: 10.1016/j.aeue.2017.01.002 – volume: 73 start-page: 1279 year: 1985 ident: ref_2 article-title: Fault diagnosis of analog circuits publication-title: Proc. IEEE doi: 10.1109/PROC.1985.13281 – volume: 2016 start-page: 7657054 year: 2016 ident: ref_10 article-title: Fault Diagnosis for Analog Circuits by Using EEMD, Relative Entropy, and ELM publication-title: Comput. Intell. Neurosci. doi: 10.1155/2016/7657054 – volume: 85 start-page: 879 year: 2017 ident: ref_17 article-title: Succinct and fast empirical mode decomposition publication-title: Mech. Syst. Signal Proc. doi: 10.1016/j.ymssp.2016.09.031 – volume: 18 start-page: 20210174 year: 2021 ident: ref_13 article-title: Incipient fault diagnosis of analog circuits based on wavelet transform and improved deep convolutional neural network publication-title: IEICE Electron. Express doi: 10.1587/elex.18.20210174 – volume: 1 start-page: 1 year: 2011 ident: ref_14 article-title: Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method publication-title: Adv. Data Sci. Adapt. Anal. – volume: 59 start-page: 586 year: 2010 ident: ref_8 article-title: A New Neural-Network-Based Fault Diagnosis Approach for Analog Circuits by Using Kurtosis and Entropy as a Preprocessor publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2009.2025068 |
SSID | ssj0000913810 |
Score | 2.3006458 |
Snippet | Analog circuits play an essential role in electronic systems. To strengthen the reliability of sophisticated electronic circuits, this paper proposes a novel... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1675 |
SubjectTerms | Accuracy Algorithms analog circuit Artificial intelligence circuit under test (CUT) Circuits empirical wavelet transform (EWT) Fault diagnosis Methods multi-input deep residual network (ResNet) Neural networks Simulation Standard deviation Support vector machines Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Lb9QwEIAt1BMcEC0gFgqaQw-AFOHE72NbuipI3QNqRW-RH2O00pJdNVn-BH8a28lWi0DiwjWykygz9sw4M98QciK0tlI5U9VWhIoLSyvnRFNZ7nUwgQtFc3Hy1UJe3vDPt-J2r9VXzgkb8cDjh_sQHGfRIo_RaW4ar5H6DN1SXHom6pB332Tz9oKpsgebOqOrxoI8luL6_D-4bmiu-xa_maBC6v9jIy7WZf6EPJ7cQjgdX-eQPMDuiDzagwUekcNpGfbwdmJFv3tKfp7CYv0DVzC329UAH8fEuWUPV6UzNCSXFDJ3ZP0Nzpd3frscejhLhivAuoNSfFt96jbbNBNxA1-wL7VZsBiTw3vIx7RgOxjPHtK0i--bZaGKwFebe1YMcL1zfZ-Rm_nF9fllNfVXqDyTfKgURUvRi-iE9iyidLpmKZxpbF1HqSkqHQ0Gr5pQR2OCCoK7WFOvMHP0NHtODrp1hy8IxHQb4SlzJmiOXhqtpaQRKQbFUDQz8n73yVs_wcdzD4xVm4KQLJ92Tz4zcnI_eDMyN_4-7CzL7n5IBmWXC0l92kl92n-pz4wc7yTfTqu3bxvJMpUmuYYv_8czXpGHTS6aKLnex-RguNvi6-TKDO5N0dpfNUPzEA priority: 102 providerName: Directory of Open Access Journals |
Title | A Novel Fault Diagnosis Method for Analog Circuits Based on Multi-Input Deep Residual Networks with an Improved Empirical Wavelet Transform |
URI | https://www.proquest.com/docview/2636123562 https://doaj.org/article/db43fae4ffb8492c8e0c0433746c351d |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLfYdoEDYgNEYVTvsAMgRTjxR5wTWkfLQFqFpk3sFvlzqtQlpUn5J_insR23DIG4JnYOeX6ffu_3Q-iECSF5qaosl8xklEmcKcWKTFItTGUoK3EYTr6Y8_Nr-uWG3aSCW5faKrc2MRpq0-pQI39fcBKQQry7_rD6ngXWqHC7mig09tCBN8HCJ18Hk-n86-WuyhJQL0WOh8E84vP7cC-cFzjMf7M_XFFE7P_LIEcvM3uCHqfwEE4HeR6iB7Y5Qo_ugQYeocOkjh28SZjRb5-in6cwb3_YJczkZtnDx6GBbtHBRWSIBh-aQsAfaW_hbLHWm0XfwcQ7MANtA3EIN_vcrDZ-p7UruLRdnNGC-dAk3kEo14JsYKhB-G3Tu9UioovANxm4K3q42obAz9D1bHp1dp4lnoVME077rMRWYquZU0xo4ixXIic-rSlknjsusC2Fq6zRZWFyV1WmNIwql2Nd2oCnJ8hztN-0jX2BwPnPMI2JqoygVvNKCM6xs9iaklhWjNC77S-vdQIhD1wYy9onI0E-9T35jNDJbvFqwN7497JJkN1uSQDMjg_a9W2d9K82ihInLXVOCVoVWlisA3ZbSbkmLDcjdLyVfJ20uKt_n7mX_3_9Cj0swlhE7OY-Rvv9emNf-2ClV2O0J2afxulcjmPK_wtEj-1Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKOQAHRAuIoQXeoUiAFOF4SZwDQt2GGdqZA5qK3lLHSzXSkKSTDIjfwH_hN2JnGYpA3Hr1dvBb_fze9xDa40LIKM6SIJRcB4xLHGQZJ4FkSuhEMx5jX5w8mUajM_bxnJ9voJ99LYxPq-x1YqOodaF8jPwtiahHCnHm-n15FfiuUf53tW-h0bLFifn-zT3ZqnfjI0ffl4QMj2eHo6DrKhAoGrE6iLGR2ChuMy4UtSbKREidE09kGNpIYBMLmxitYqJDmyQ61pxlNsQqNh49TlB37i10m1GaeIkSww_rmI7H2BQhbssA3Tz2v9Ahwb7anP9h-Jr-AH-p_8amDR-g-50zCvst92yhDZNvo3vXIAq30VYn_BW86hCqXz9EP_ZhWnw1CxjK1aKGozZdb17BpOlHDc4RBo92UlzC4XypVvO6ggNnLjUUOTQlv8E4L1dupzElfDJVUxEG0zYlvQIfHAaZQxvxcNuOv5TzBssEPkvfKaOGWe9wP0JnN3L_j9FmXuTmCQLrjuEK0yzRghkVJUJEEbYGGx1Tw8kAvemvPFUd5LnvvLFI3dPH0ye9Rp8B2lsvLlukj38vO_C0Wy_x8NzNQLG8TDtpT3XGqJWGWZsJlhAlDFYeKS5mkaI81AO021M-7XRGlf7m8Kf_n36B7oxmk9P0dDw92UF3iS_IaPLId9FmvVyZZ85NqrPnDW8CurhpYfgFdUgnZg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwQLSA2FJgDkUCpKhObCfOAaFud1ddSqOqakVvwfGjWmlJ0k0WxG_gH_HrsPNYikDceo0fh8x4Zjye7xuE9hjnIoyy2PMFUx5lAntZxgJPUMlVrCiLsAMnnyTh0QX9cMkuN9DPHgvjyip7m9gYalVIlyPfD0LimEKsu943XVnE6Xj6vrz2XAcp99Lat9NoVeRYf_9mr2_Vu9nYyvpVEEwn54dHXtdhwJMkpLUXYS2wlsxkjEtidJhxn9iAPhC-b0KOdcRNrJWMAuWbOFaRYjQzPpaRdkxynNh976DNyN6K8ABtjibJ6dk6w-MYN7mPW1AgITF2b9J-gB32nP3hBptuAX85g8bDTR-iB11oCgetLm2hDZ1vo_s3CAu30VZnCip43fFVv3mEfhxAUnzVC5iK1aKGcVu8N6_gpOlODTYsBsd9UlzB4XwpV_O6gpF1ngqKHBoAsDfLy5VdqXUJZ7pq8GGQtAXqFbhUMYgc2vyHXTb5Us4bZhP4JFzfjBrO-_D7Mbq4FQk8QYO8yPVTBMZuwyQmWaw41TKMOQ9DbDTWKiKaBUP0tv_lqewI0F0fjkVqL0JOPukN-QzR3npy2fJ-_HvayMluPcWRdTcfiuVV2p39VGWUGKGpMRmncSC5xtLxxkU0lIT5aoh2e8mnnQWp0t_6vvP_4Zforj0I6cdZcvwM3QscOqMpKt9Fg3q50s9tzFRnLzrlBPT5ts_DL-R9LPg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Fault+Diagnosis+Method+for+Analog+Circuits+Based+on+Multi-Input+Deep+Residual+Networks+with+an+Improved+Empirical+Wavelet+Transform&rft.jtitle=Applied+sciences&rft.au=Liu%2C+Zhen&rft.au=Liu%2C+Xuemei&rft.au=Xie%2C+Songlin&rft.au=Wang%2C+Junhai&rft.date=2022-02-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=3&rft.spage=1675&rft_id=info:doi/10.3390%2Fapp12031675&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |