A Novel Fault Diagnosis Method for Analog Circuits Based on Multi-Input Deep Residual Networks with an Improved Empirical Wavelet Transform

Analog circuits play an essential role in electronic systems. To strengthen the reliability of sophisticated electronic circuits, this paper proposes a novel analog circuit fault diagnosis method. Compared with traditional fault diagnosis, the fault diagnosis process in this paper uses a square wave...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 12; no. 3; p. 1675
Main Authors Liu, Zhen, Liu, Xuemei, Xie, Songlin, Wang, Junhai, Zhou, Xiuyun
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Analog circuits play an essential role in electronic systems. To strengthen the reliability of sophisticated electronic circuits, this paper proposes a novel analog circuit fault diagnosis method. Compared with traditional fault diagnosis, the fault diagnosis process in this paper uses a square wave as the stimulus of the circuit under test (CUT), which is beneficial for obtaining the response of the CUT with rich time and frequency domain information. The improved empirical wavelet transform (EWT), which can more accurately extract the amplitude modulated–frequency modulated (AM-FM) components, is used to preprocess the original response. Finally, based on the preprocessed data, a multi-input deep residual network (ResNet) is constructed for fault feature extraction and fault classification. The multi-input ResNet is a powerful approach for learning the fault characteristics of the CUT under different faults by learning the characteristics of the AM-FM components. The effectiveness of the method proposed in this paper is verified by comparing different fault diagnosis methods.
AbstractList Analog circuits play an essential role in electronic systems. To strengthen the reliability of sophisticated electronic circuits, this paper proposes a novel analog circuit fault diagnosis method. Compared with traditional fault diagnosis, the fault diagnosis process in this paper uses a square wave as the stimulus of the circuit under test (CUT), which is beneficial for obtaining the response of the CUT with rich time and frequency domain information. The improved empirical wavelet transform (EWT), which can more accurately extract the amplitude modulated–frequency modulated (AM-FM) components, is used to preprocess the original response. Finally, based on the preprocessed data, a multi-input deep residual network (ResNet) is constructed for fault feature extraction and fault classification. The multi-input ResNet is a powerful approach for learning the fault characteristics of the CUT under different faults by learning the characteristics of the AM-FM components. The effectiveness of the method proposed in this paper is verified by comparing different fault diagnosis methods.
Author Wang, Junhai
Zhou, Xiuyun
Xie, Songlin
Liu, Zhen
Liu, Xuemei
Author_xml – sequence: 1
  givenname: Zhen
  orcidid: 0000-0003-3406-0039
  surname: Liu
  fullname: Liu, Zhen
– sequence: 2
  givenname: Xuemei
  surname: Liu
  fullname: Liu, Xuemei
– sequence: 3
  givenname: Songlin
  surname: Xie
  fullname: Xie, Songlin
– sequence: 4
  givenname: Junhai
  surname: Wang
  fullname: Wang, Junhai
– sequence: 5
  givenname: Xiuyun
  surname: Zhou
  fullname: Zhou, Xiuyun
BookMark eNptUUtv1DAQtlArUdqe-AOWOKKAHSd2clyWFlbqQ6qKOFoTe7z1ko2D7VDxG_jTGBakCjGXGY2-xzxekKMpTEjIS87eCNGztzDPvGaCS9U-Iyc1U7ISDVdHT-rn5DylHSvRc9FxdkJ-rOhN-IYjvYRlzPS9h-0Ukk_0GvNDsNSFSFcTjGFL1z6axedE30FCS8NErwvFV5tpXgoTcaZ3mLxdYKQ3mB9D_JLoo88PFCa62c-x-Fh6sZ999KZgPkPxxUzvI0yp-OzPyLGDMeH5n3xKPl1e3K8_Vle3Hzbr1VVlhGxypRgCQ9O6oe2McCiHjgspZQ2cO9kxVJ3r0RpVW-763irbNoPjzChUohedOCWbg64NsNNz9HuI33UAr383QtxqiNmbEbUdGuEAG-eGrulr0yEzrBFCNdKIltui9eqgVdb7umDKeheWWA6WdC2F5LVoZV1Q_IAyMaQU0WnjM2QfphzBj5oz_euF-skLC-f1P5y_k_4P_RP8j59c
CitedBy_id crossref_primary_10_3390_app121910106
crossref_primary_10_1016_j_heliyon_2024_e38064
crossref_primary_10_3390_electronics14030540
crossref_primary_10_1007_s00034_023_02392_5
crossref_primary_10_1088_1742_6596_2731_1_012031
crossref_primary_10_1007_s00034_024_02947_0
crossref_primary_10_1587_elex_21_20240633
crossref_primary_10_1007_s00034_024_02722_1
crossref_primary_10_1007_s00170_025_15087_9
crossref_primary_10_1016_j_aei_2023_102323
crossref_primary_10_1007_s00034_023_02524_x
crossref_primary_10_1007_s00034_022_02262_6
crossref_primary_10_3390_s23187836
crossref_primary_10_1007_s00034_023_02526_9
crossref_primary_10_1007_s12206_023_0332_x
crossref_primary_10_1109_ACCESS_2022_3221994
Cites_doi 10.1007/s00034-013-9589-0
10.1007/s00034-013-9614-3
10.1109/TSP.2013.2265222
10.1109/CVPR.2016.90
10.1109/TIE.2020.3020252
10.2478/v10178-010-0046-0
10.1080/00207210801996139
10.1023/A:1011141724916
10.1109/54.386008
10.1109/TIM.2020.2969008
10.1078/1434-8411-54100231
10.1109/TCSI.2021.3076282
10.1007/s00521-021-05810-4
10.1016/j.neucom.2015.12.131
10.1109/TII.2017.2690940
10.1109/ACCESS.2018.2834540
10.1109/82.823545
10.1109/TIM.2007.904549
10.1109/ACCESS.2018.2823765
10.1109/TIE.2012.2224074
10.1016/j.aeue.2017.01.002
10.1109/PROC.1985.13281
10.1155/2016/7657054
10.1016/j.ymssp.2016.09.031
10.1587/elex.18.20210174
10.1109/TIM.2009.2025068
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app12031675
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_db43fae4ffb8492c8e0c0433746c351d
10_3390_app12031675
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c364t-70ea0ec5fb58c3fe6b8136662a11f680e78f9edc72d1f99d7d54bf10c7e739383
IEDL.DBID BENPR
ISSN 2076-3417
IngestDate Wed Aug 27 01:21:36 EDT 2025
Mon Jun 30 11:31:08 EDT 2025
Tue Jul 01 00:41:04 EDT 2025
Thu Apr 24 22:51:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-70ea0ec5fb58c3fe6b8136662a11f680e78f9edc72d1f99d7d54bf10c7e739383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3406-0039
OpenAccessLink https://www.proquest.com/docview/2636123562?pq-origsite=%requestingapplication%
PQID 2636123562
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_db43fae4ffb8492c8e0c0433746c351d
proquest_journals_2636123562
crossref_citationtrail_10_3390_app12031675
crossref_primary_10_3390_app12031675
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Long (ref_9) 2013; 32
Gilles (ref_15) 2013; 61
Slamani (ref_22) 1995; 12
Yuan (ref_8) 2010; 59
Cui (ref_7) 2010; 17
Yang (ref_13) 2021; 18
Chen (ref_27) 2016; 211
Deng (ref_16) 2018; 6
Gao (ref_28) 2021; 33
Zhang (ref_25) 2018; 6
Rao (ref_23) 2014; 4
He (ref_11) 2020; 69
Long (ref_21) 2013; 60
Tan (ref_6) 2008; 95
Bandler (ref_2) 1985; 73
Liu (ref_19) 2017; 13
Xiong (ref_10) 2016; 2016
Wu (ref_14) 2011; 1
Li (ref_17) 2017; 85
Binu (ref_1) 2017; 73
Aminian (ref_4) 2001; 17
ref_24
Mohsen (ref_18) 2004; 58
Gao (ref_26) 2021; 70
Aminian (ref_5) 2007; 56
Jia (ref_20) 2021; 68
Shi (ref_29) 2013; 32
Aminian (ref_3) 2000; 47
Ji (ref_12) 2021; 68
References_xml – volume: 70
  start-page: 1
  year: 2021
  ident: ref_26
  article-title: A Novel Incipient Fault Diagnosis Method for Analog Circuits Based on GMKL-SVM and Wavelet Fusion Features
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 32
  start-page: 2151
  year: 2013
  ident: ref_29
  article-title: Diagnosis of Incipient Faults in Weak Nonlinear Analog Circuits
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-013-9589-0
– volume: 32
  start-page: 2683
  year: 2013
  ident: ref_9
  article-title: Diagnostics of Analog Circuits Based on LS-SVM Using Time-Domain Features
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-013-9614-3
– volume: 61
  start-page: 3999
  year: 2013
  ident: ref_15
  article-title: Empirical Wavelet Transform
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2265222
– ident: ref_24
  doi: 10.1109/CVPR.2016.90
– volume: 68
  start-page: 10087
  year: 2021
  ident: ref_20
  article-title: A Deep Forest-Based Fault Diagnosis Scheme for Electronics-Rich Analog Circuit Systems
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.3020252
– volume: 17
  start-page: 561
  year: 2010
  ident: ref_7
  article-title: A Novel Approach of Analog Fault Classification Using a Support Vector Machines Classifier
  publication-title: Metrol. Meas. Syst.
  doi: 10.2478/v10178-010-0046-0
– volume: 95
  start-page: 431
  year: 2008
  ident: ref_6
  article-title: A novel method for fault diagnosis of analog circuits based on WP and GPNN
  publication-title: Int. J. Electron.
  doi: 10.1080/00207210801996139
– volume: 17
  start-page: 29
  year: 2001
  ident: ref_4
  article-title: Fault diagnosis of analog circuits using Bayesian neural networks with wavelet transform as preprocessor
  publication-title: J. Electron. Test. -Theory Appl.
  doi: 10.1023/A:1011141724916
– volume: 12
  start-page: 70
  year: 1995
  ident: ref_22
  article-title: Multifrequency Analysis of Faults in Analog Circuits
  publication-title: IEEE Des. Test Comput.
  doi: 10.1109/54.386008
– volume: 69
  start-page: 6640
  year: 2020
  ident: ref_11
  article-title: Generative Adversarial Networks With Comprehensive Wavelet Feature for Fault Diagnosis of Analog Circuits
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.2969008
– volume: 58
  start-page: 212
  year: 2004
  ident: ref_18
  article-title: Selection of Input Stimulus for Fault Diagnosis of Analog Circuits Using ARMA Model
  publication-title: AEU-Int. J. Electron. Commun.
  doi: 10.1078/1434-8411-54100231
– volume: 68
  start-page: 2841
  year: 2021
  ident: ref_12
  article-title: Soft Fault Diagnosis of Analog Circuits Based on a ResNet With Circuit Spectrum Map
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
  doi: 10.1109/TCSI.2021.3076282
– volume: 33
  start-page: 10537
  year: 2021
  ident: ref_28
  article-title: A novel fault diagnosis method for analog circuits with noise immunity and generalization ability
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-05810-4
– volume: 211
  start-page: 202
  year: 2016
  ident: ref_27
  article-title: An improved SVM classifier based on double chains quantum genetic algorithm and its application in analogue circuit diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.12.131
– volume: 13
  start-page: 1213
  year: 2017
  ident: ref_19
  article-title: Capturing High-Discriminative Fault Features for Electronics-Rich Analog System via Deep Learning
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2017.2690940
– volume: 6
  start-page: 35042
  year: 2018
  ident: ref_16
  article-title: A Novel Fault Diagnosis Method Based on Integrating Empirical Wavelet Transform and Fuzzy Entropy for Motor Bearing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2834540
– volume: 47
  start-page: 151
  year: 2000
  ident: ref_3
  article-title: Neural-network based analog-circuit fault diagnosis using wavelet transform as preprocessor
  publication-title: IEEE Trans. Circuits Syst. II-Analog Digit. Signal Process.
  doi: 10.1109/82.823545
– volume: 56
  start-page: 1546
  year: 2007
  ident: ref_5
  article-title: A Modular Fault-Diagnostic System for Analog Electronic Circuits Using Neural Networks With Wavelet Transform as a Preprocessor
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2007.904549
– volume: 6
  start-page: 23053
  year: 2018
  ident: ref_25
  article-title: Analog Circuit Incipient Fault Diagnosis Method Using DBN Based Features Extraction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2823765
– volume: 4
  start-page: 25
  year: 2014
  ident: ref_23
  article-title: Optimized multi frequency approach to analog fault diagnosis using Monte Carlo analysis
  publication-title: Electr. Electron. Eng.
– volume: 60
  start-page: 5277
  year: 2013
  ident: ref_21
  article-title: Diagnostics and Prognostics Method for Analog Electronic Circuits
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2012.2224074
– volume: 73
  start-page: 68
  year: 2017
  ident: ref_1
  article-title: A survey on fault diagnosis of analog circuits: Taxonomy and state of the art
  publication-title: AEU-Int. J. Electron. Commun.
  doi: 10.1016/j.aeue.2017.01.002
– volume: 73
  start-page: 1279
  year: 1985
  ident: ref_2
  article-title: Fault diagnosis of analog circuits
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1985.13281
– volume: 2016
  start-page: 7657054
  year: 2016
  ident: ref_10
  article-title: Fault Diagnosis for Analog Circuits by Using EEMD, Relative Entropy, and ELM
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2016/7657054
– volume: 85
  start-page: 879
  year: 2017
  ident: ref_17
  article-title: Succinct and fast empirical mode decomposition
  publication-title: Mech. Syst. Signal Proc.
  doi: 10.1016/j.ymssp.2016.09.031
– volume: 18
  start-page: 20210174
  year: 2021
  ident: ref_13
  article-title: Incipient fault diagnosis of analog circuits based on wavelet transform and improved deep convolutional neural network
  publication-title: IEICE Electron. Express
  doi: 10.1587/elex.18.20210174
– volume: 1
  start-page: 1
  year: 2011
  ident: ref_14
  article-title: Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method
  publication-title: Adv. Data Sci. Adapt. Anal.
– volume: 59
  start-page: 586
  year: 2010
  ident: ref_8
  article-title: A New Neural-Network-Based Fault Diagnosis Approach for Analog Circuits by Using Kurtosis and Entropy as a Preprocessor
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2009.2025068
SSID ssj0000913810
Score 2.3006458
Snippet Analog circuits play an essential role in electronic systems. To strengthen the reliability of sophisticated electronic circuits, this paper proposes a novel...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1675
SubjectTerms Accuracy
Algorithms
analog circuit
Artificial intelligence
circuit under test (CUT)
Circuits
empirical wavelet transform (EWT)
Fault diagnosis
Methods
multi-input deep residual network (ResNet)
Neural networks
Simulation
Standard deviation
Support vector machines
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Lb9QwEIAt1BMcEC0gFgqaQw-AFOHE72NbuipI3QNqRW-RH2O00pJdNVn-BH8a28lWi0DiwjWykygz9sw4M98QciK0tlI5U9VWhIoLSyvnRFNZ7nUwgQtFc3Hy1UJe3vDPt-J2r9VXzgkb8cDjh_sQHGfRIo_RaW4ar5H6DN1SXHom6pB332Tz9oKpsgebOqOrxoI8luL6_D-4bmiu-xa_maBC6v9jIy7WZf6EPJ7cQjgdX-eQPMDuiDzagwUekcNpGfbwdmJFv3tKfp7CYv0DVzC329UAH8fEuWUPV6UzNCSXFDJ3ZP0Nzpd3frscejhLhivAuoNSfFt96jbbNBNxA1-wL7VZsBiTw3vIx7RgOxjPHtK0i--bZaGKwFebe1YMcL1zfZ-Rm_nF9fllNfVXqDyTfKgURUvRi-iE9iyidLpmKZxpbF1HqSkqHQ0Gr5pQR2OCCoK7WFOvMHP0NHtODrp1hy8IxHQb4SlzJmiOXhqtpaQRKQbFUDQz8n73yVs_wcdzD4xVm4KQLJ92Tz4zcnI_eDMyN_4-7CzL7n5IBmWXC0l92kl92n-pz4wc7yTfTqu3bxvJMpUmuYYv_8czXpGHTS6aKLnex-RguNvi6-TKDO5N0dpfNUPzEA
  priority: 102
  providerName: Directory of Open Access Journals
Title A Novel Fault Diagnosis Method for Analog Circuits Based on Multi-Input Deep Residual Networks with an Improved Empirical Wavelet Transform
URI https://www.proquest.com/docview/2636123562
https://doaj.org/article/db43fae4ffb8492c8e0c0433746c351d
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLfYdoEDYgNEYVTvsAMgRTjxR5wTWkfLQFqFpk3sFvlzqtQlpUn5J_insR23DIG4JnYOeX6ffu_3Q-iECSF5qaosl8xklEmcKcWKTFItTGUoK3EYTr6Y8_Nr-uWG3aSCW5faKrc2MRpq0-pQI39fcBKQQry7_rD6ngXWqHC7mig09tCBN8HCJ18Hk-n86-WuyhJQL0WOh8E84vP7cC-cFzjMf7M_XFFE7P_LIEcvM3uCHqfwEE4HeR6iB7Y5Qo_ugQYeocOkjh28SZjRb5-in6cwb3_YJczkZtnDx6GBbtHBRWSIBh-aQsAfaW_hbLHWm0XfwcQ7MANtA3EIN_vcrDZ-p7UruLRdnNGC-dAk3kEo14JsYKhB-G3Tu9UioovANxm4K3q42obAz9D1bHp1dp4lnoVME077rMRWYquZU0xo4ixXIic-rSlknjsusC2Fq6zRZWFyV1WmNIwql2Nd2oCnJ8hztN-0jX2BwPnPMI2JqoygVvNKCM6xs9iaklhWjNC77S-vdQIhD1wYy9onI0E-9T35jNDJbvFqwN7497JJkN1uSQDMjg_a9W2d9K82ihInLXVOCVoVWlisA3ZbSbkmLDcjdLyVfJ20uKt_n7mX_3_9Cj0swlhE7OY-Rvv9emNf-2ClV2O0J2afxulcjmPK_wtEj-1Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKOQAHRAuIoQXeoUiAFOF4SZwDQt2GGdqZA5qK3lLHSzXSkKSTDIjfwH_hN2JnGYpA3Hr1dvBb_fze9xDa40LIKM6SIJRcB4xLHGQZJ4FkSuhEMx5jX5w8mUajM_bxnJ9voJ99LYxPq-x1YqOodaF8jPwtiahHCnHm-n15FfiuUf53tW-h0bLFifn-zT3ZqnfjI0ffl4QMj2eHo6DrKhAoGrE6iLGR2ChuMy4UtSbKREidE09kGNpIYBMLmxitYqJDmyQ61pxlNsQqNh49TlB37i10m1GaeIkSww_rmI7H2BQhbssA3Tz2v9Ahwb7anP9h-Jr-AH-p_8amDR-g-50zCvst92yhDZNvo3vXIAq30VYn_BW86hCqXz9EP_ZhWnw1CxjK1aKGozZdb17BpOlHDc4RBo92UlzC4XypVvO6ggNnLjUUOTQlv8E4L1dupzElfDJVUxEG0zYlvQIfHAaZQxvxcNuOv5TzBssEPkvfKaOGWe9wP0JnN3L_j9FmXuTmCQLrjuEK0yzRghkVJUJEEbYGGx1Tw8kAvemvPFUd5LnvvLFI3dPH0ye9Rp8B2lsvLlukj38vO_C0Wy_x8NzNQLG8TDtpT3XGqJWGWZsJlhAlDFYeKS5mkaI81AO021M-7XRGlf7m8Kf_n36B7oxmk9P0dDw92UF3iS_IaPLId9FmvVyZZ85NqrPnDW8CurhpYfgFdUgnZg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwQLSA2FJgDkUCpKhObCfOAaFud1ddSqOqakVvwfGjWmlJ0k0WxG_gH_HrsPNYikDceo0fh8x4Zjye7xuE9hjnIoyy2PMFUx5lAntZxgJPUMlVrCiLsAMnnyTh0QX9cMkuN9DPHgvjyip7m9gYalVIlyPfD0LimEKsu943XVnE6Xj6vrz2XAcp99Lat9NoVeRYf_9mr2_Vu9nYyvpVEEwn54dHXtdhwJMkpLUXYS2wlsxkjEtidJhxn9iAPhC-b0KOdcRNrJWMAuWbOFaRYjQzPpaRdkxynNh976DNyN6K8ABtjibJ6dk6w-MYN7mPW1AgITF2b9J-gB32nP3hBptuAX85g8bDTR-iB11oCgetLm2hDZ1vo_s3CAu30VZnCip43fFVv3mEfhxAUnzVC5iK1aKGcVu8N6_gpOlODTYsBsd9UlzB4XwpV_O6gpF1ngqKHBoAsDfLy5VdqXUJZ7pq8GGQtAXqFbhUMYgc2vyHXTb5Us4bZhP4JFzfjBrO-_D7Mbq4FQk8QYO8yPVTBMZuwyQmWaw41TKMOQ9DbDTWKiKaBUP0tv_lqewI0F0fjkVqL0JOPukN-QzR3npy2fJ-_HvayMluPcWRdTcfiuVV2p39VGWUGKGpMRmncSC5xtLxxkU0lIT5aoh2e8mnnQWp0t_6vvP_4Zforj0I6cdZcvwM3QscOqMpKt9Fg3q50s9tzFRnLzrlBPT5ts_DL-R9LPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Fault+Diagnosis+Method+for+Analog+Circuits+Based+on+Multi-Input+Deep+Residual+Networks+with+an+Improved+Empirical+Wavelet+Transform&rft.jtitle=Applied+sciences&rft.au=Liu%2C+Zhen&rft.au=Liu%2C+Xuemei&rft.au=Xie%2C+Songlin&rft.au=Wang%2C+Junhai&rft.date=2022-02-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=3&rft.spage=1675&rft_id=info:doi/10.3390%2Fapp12031675&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon