Simulation Analysis of Cement-Stabilized Macadam Compaction Processing Based on the Discrete Element Method
The mechanical properties of cement-stabilized macadam (CSM) base mixture are closely related to its forming process. Although the present study investigates the macroscopic effects of molding on cement-stabilized macadam, mesoscopic research analyses of the internal composition’s structural charact...
Saved in:
Published in | Applied sciences Vol. 12; no. 17; p. 8505 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The mechanical properties of cement-stabilized macadam (CSM) base mixture are closely related to its forming process. Although the present study investigates the macroscopic effects of molding on cement-stabilized macadam, mesoscopic research analyses of the internal composition’s structural characteristics and change trends after molding lack sufficient intuitiveness. In this study, we built three-dimensional models of cement-stabilized macadam for heavy compaction molding and vibration molding tests based on the discrete element theory. The effects of different molding methods on cement-stabilized macadam’s internal structure were revealed from the mesoscopic perspective by tracking changes in porosity, coordination number, force chain development and internal particle position during the simulation molding process. The simulation results show that (1) the first 10 compactions had a significant influence on the molding effect, and specimens’ height and porosity decreased the fastest; (2) after the simulation experiments, the average coordination number of particles in the vibration molding specimen was 2.3% higher than that of the heavy compaction molding specimen; (3) after the simulation experiments, the vibration molding specimen’s porosity was 2.5% lower than that of the heavy compaction molding specimen; and (4) the vibration molding specimen’s particle distribution was more uniform, whereas the heavy compaction molding specimen’s particle distribution was dense at the top and sparse at the bottom. Overall, the effect of vibration molding is superior to that of heavy compaction molding. |
---|---|
AbstractList | The mechanical properties of cement-stabilized macadam (CSM) base mixture are closely related to its forming process. Although the present study investigates the macroscopic effects of molding on cement-stabilized macadam, mesoscopic research analyses of the internal composition’s structural characteristics and change trends after molding lack sufficient intuitiveness. In this study, we built three-dimensional models of cement-stabilized macadam for heavy compaction molding and vibration molding tests based on the discrete element theory. The effects of different molding methods on cement-stabilized macadam’s internal structure were revealed from the mesoscopic perspective by tracking changes in porosity, coordination number, force chain development and internal particle position during the simulation molding process. The simulation results show that (1) the first 10 compactions had a significant influence on the molding effect, and specimens’ height and porosity decreased the fastest; (2) after the simulation experiments, the average coordination number of particles in the vibration molding specimen was 2.3% higher than that of the heavy compaction molding specimen; (3) after the simulation experiments, the vibration molding specimen’s porosity was 2.5% lower than that of the heavy compaction molding specimen; and (4) the vibration molding specimen’s particle distribution was more uniform, whereas the heavy compaction molding specimen’s particle distribution was dense at the top and sparse at the bottom. Overall, the effect of vibration molding is superior to that of heavy compaction molding. |
Author | Bi, Haipeng Liang, Chunyu Liu, Feng Yan, Xili Zhang, Hao |
Author_xml | – sequence: 1 givenname: Chunyu surname: Liang fullname: Liang, Chunyu – sequence: 2 givenname: Hao surname: Zhang fullname: Zhang, Hao – sequence: 3 givenname: Feng surname: Liu fullname: Liu, Feng – sequence: 4 givenname: Xili surname: Yan fullname: Yan, Xili – sequence: 5 givenname: Haipeng orcidid: 0000-0002-6283-441X surname: Bi fullname: Bi, Haipeng |
BookMark | eNpNkU1PHDEMhqMKpFLKqX8gUo_VlGTyNXOkWwpIoCLRniNP4kC2M5Npkj3QX99ht6rwxdar149l-x05mtOMhHzg7LMQPTuHZeEtN51i6g05aZnRjZDcHL2q35KzUrZsjZ6LjrMT8ushTrsRakwzvZhhfC6x0BToBieca_NQYYhj_IOe3oEDDxPdpGkBt2-4z8lhKXF-pF-grJ5Vq09Iv8biMlakl-MeQ--wPiX_nhwHGAue_cun5Oe3yx-b6-b2-9XN5uK2cULL2mgvcN1H44CsFUErLsGgaDVg71THle87bLULctAYPIRW9dp4YSQ44TkTp-TmwPUJtnbJcYL8bBNEuxdSfrSQa3QjWhWM8X5A2Skpe-EHIUUHRgQMCMjVyvp4YC05_d5hqXabdnk9VLGtMVxLqVq-uj4dXC6nUjKG_1M5sy_Psa-eI_4Cf5-D8w |
CitedBy_id | crossref_primary_10_1007_s40996_024_01424_7 crossref_primary_10_3390_min12111428 |
Cites_doi | 10.1139/t06-102 10.1061/(ASCE)MT.1943-5533.0000323 10.1016/j.conbuildmat.2006.05.049 10.1016/j.conbuildmat.2013.07.017 10.1016/j.conbuildmat.2018.08.133 10.1016/j.enggeo.2020.105830 10.1016/j.conbuildmat.2022.126313 10.1617/s11527-013-0084-7 10.1016/j.conbuildmat.2020.118765 10.1016/j.powtec.2021.05.088 10.1016/j.conbuildmat.2019.117478 10.1016/j.engstruct.2021.113510 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PIMPY PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app12178505 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Academic ProQuest Central China |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_5f77ddbe4854493db3438a73fefeae15 10_3390_app12178505 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARAPS ARCSS ATCPS BBNVY BCNDV BENPR BHPHI BKSAR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ HCIFZ IAO ITC K6- K6V K7- KB. KC. KQ8 L6V LK5 LK8 M0K M7P M7R M7S MODMG M~E N95 OK1 P62 PATMY PCBAR PDBOC PIMPY PROAC PYCSY RIG TUS ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c364t-6d3e3906ebe023f6514a7e326ae9c5815d98e26cf4b6efdaf25967d374ac3d103 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Tue Oct 22 15:10:49 EDT 2024 Mon Oct 28 09:20:04 EDT 2024 Wed Aug 07 13:54:07 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-6d3e3906ebe023f6514a7e326ae9c5815d98e26cf4b6efdaf25967d374ac3d103 |
ORCID | 0000-0002-6283-441X |
OpenAccessLink | https://doaj.org/article/5f77ddbe4854493db3438a73fefeae15 |
PQID | 2771644521 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5f77ddbe4854493db3438a73fefeae15 proquest_journals_2771644521 crossref_primary_10_3390_app12178505 |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Qian (ref_20) 2020; 235 Jayasinghe (ref_1) 2007; 21 Kang (ref_38) 2021; 390 Hong (ref_14) 2014; 33 Jiang (ref_19) 2013; 48 Yan (ref_7) 2019; 32 Mechtcherine (ref_21) 2013; 47 Sun (ref_36) 2009; 30 ref_30 Du (ref_34) 2012; 11 Wang (ref_4) 2011; 23 Sun (ref_35) 2008; 38 ref_16 Jiang (ref_11) 2012; 8 Shi (ref_32) 2018; 39 Jiang (ref_2) 2010; 30 Wang (ref_15) 2012; 44 Liu (ref_37) 2022; 323 ref_25 Jiang (ref_10) 2009; 31 ref_24 Yang (ref_12) 2013; 36 Meng (ref_23) 2007; 1 Gong (ref_18) 2018; 189 Chakrabarti (ref_3) 2007; 44 Li (ref_13) 2015; 34 Liu (ref_17) 2020; 249 Cornejo (ref_31) 2022; 251 ref_29 ref_28 Spagnoli (ref_33) 2020; 278 Wang (ref_22) 2018; 27 ref_27 ref_26 ref_9 ref_5 ref_6 Wang (ref_8) 2007; 24 |
References_xml | – ident: ref_28 – volume: 44 start-page: 231 year: 2007 ident: ref_3 article-title: Direct tensile failure of cementitiously stabilized crushed rock materials publication-title: Can. Geotech. J. doi: 10.1139/t06-102 contributor: fullname: Chakrabarti – ident: ref_9 – ident: ref_30 – volume: 39 start-page: 43 year: 2018 ident: ref_32 article-title: Numerical simulation technology and application with Particle flow Code (PFC5.0) publication-title: Rock Soil Mech contributor: fullname: Shi – ident: ref_5 – ident: ref_24 – ident: ref_26 – volume: 30 start-page: 83 year: 2009 ident: ref_36 article-title: Skeletal and force chain networks in granular systems publication-title: Geotechnics contributor: fullname: Sun – volume: 27 start-page: 66 year: 2018 ident: ref_22 article-title: Three-dimensional discrete element analysis of vibratory compaction characteristics of soil-rock mixture publication-title: J. Henan Urban Constr. Inst. contributor: fullname: Wang – volume: 8 start-page: 45 year: 2012 ident: ref_11 article-title: Influence of forming method on physical and mechanical properties of cement stabilized aggregates publication-title: Highw. Transp. Technol. Appl. Technol. Ed. contributor: fullname: Jiang – volume: 23 start-page: 1483 year: 2011 ident: ref_4 article-title: Influence of laboratory compaction methods on shear performance of graded crushed stone publication-title: ASCE J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0000323 contributor: fullname: Wang – ident: ref_16 – volume: 21 start-page: 1971 year: 2007 ident: ref_1 article-title: Compressive strength characteristics of cement stabilized rammed earth walls publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2006.05.049 contributor: fullname: Jayasinghe – volume: 48 start-page: 508 year: 2013 ident: ref_19 article-title: An investigation of mechanical behavior of cement-stabilized crushed rock material using different compaction methods publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.07.017 contributor: fullname: Jiang – volume: 36 start-page: 67 year: 2013 ident: ref_12 article-title: Relationship and mechanism analysis of compressive strength of cement stabilized aggregates under vibration and static compression molding methods publication-title: Heilongjiang Transp. Sci. Technol. contributor: fullname: Yang – volume: 33 start-page: 63 year: 2014 ident: ref_14 article-title: Comparative Experiment on Vibrating Compaction and Modified Proctor Compaction of Silt Cement-Stabilized Gravel Aggregate publication-title: J. Chongqing Jiaotong Univ. Nat. Sci. Ed. contributor: fullname: Hong – volume: 24 start-page: 30 year: 2007 ident: ref_8 article-title: Test Research on Influential Factor for Shrinkage Performance of CementOtreated Macadam Base publication-title: J. Highw. Transp. Res. Dev. contributor: fullname: Wang – volume: 34 start-page: 1 year: 2015 ident: ref_13 article-title: Influence on Mechanical Performance of Cement Stabilized Macadam Base Molded by Different Methods publication-title: J. Lanzhou Jiaotong Univ. contributor: fullname: Li – volume: 189 start-page: 338 year: 2018 ident: ref_18 article-title: Using discrete element models to track movement of coarse aggregates during compaction of asphalt mixture publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.08.133 contributor: fullname: Gong – volume: 278 start-page: 105830 year: 2020 ident: ref_33 article-title: An overview on the compaction characteristics of soils by laboratory tests publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2020.105830 contributor: fullname: Spagnoli – volume: 30 start-page: 1 year: 2010 ident: ref_2 article-title: Influence factors of strength properties of cement stabilization of crushed aggregate publication-title: J. Chang. Univ. contributor: fullname: Jiang – volume: 44 start-page: 70 year: 2012 ident: ref_15 article-title: Relationship on index of physics and mechanics cement-stabilized aggregates between vibrating and static compacting methods publication-title: J. Harbin Inst. Technol. contributor: fullname: Wang – ident: ref_6 – volume: 31 start-page: 52 year: 2009 ident: ref_10 article-title: Research on Strength Properties of Cement Stabilization of Crushed Aggregate publication-title: J. Wuhan Univ. Technol. contributor: fullname: Jiang – ident: ref_25 – ident: ref_29 – ident: ref_27 – volume: 323 start-page: 126313 year: 2022 ident: ref_37 article-title: Asphalt mixture skeleton main force chains composition criteria and characteristics evaluation based on discrete element methods publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.126313 contributor: fullname: Liu – volume: 47 start-page: 615 year: 2013 ident: ref_21 article-title: Simulation of fresh concrete flow using Discrete Element Method (DEM): Theory and applications publication-title: Mater. Struct. doi: 10.1617/s11527-013-0084-7 contributor: fullname: Mechtcherine – volume: 1 start-page: 21 year: 2007 ident: ref_23 article-title: Study and Comparison of CementOstabilized Aggregate Mixture with Static Pressure Method and Vibration Method publication-title: Highw. Traffic Technol. contributor: fullname: Meng – volume: 11 start-page: 98 year: 2012 ident: ref_34 article-title: Experimental study on maximum dry density and compactness of coarse grained soil mixture publication-title: Railw. Eng. contributor: fullname: Du – volume: 249 start-page: 118765 year: 2020 ident: ref_17 article-title: Movement and embedding characteristics of interlayer aggregates during roller-compacted concrete compaction process using discrete element simulation publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118765 contributor: fullname: Liu – volume: 38 start-page: 87 year: 2008 ident: ref_35 article-title: Review of particle flow dynamics and its discrete model publication-title: Adv. Mech. contributor: fullname: Sun – volume: 32 start-page: 29 year: 2019 ident: ref_7 article-title: Elastoplastic Characteristics of Cement-stabilized Aggregate Bases publication-title: Chin. J. Highw. Transp. contributor: fullname: Yan – volume: 390 start-page: 464 year: 2021 ident: ref_38 article-title: Simulation of force chains and particle breakage of granular material by numerical manifold method publication-title: Powder Technol. doi: 10.1016/j.powtec.2021.05.088 contributor: fullname: Kang – volume: 235 start-page: 117478 year: 2020 ident: ref_20 article-title: Compaction process tracking for asphalt mixture using discrete element method publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117478 contributor: fullname: Qian – volume: 251 start-page: 113510 year: 2022 ident: ref_31 article-title: Combination of the finite element method and particle-based methods for predicting the failure of reinforced concrete structures under extreme water forces publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2021.113510 contributor: fullname: Cornejo |
SSID | ssj0000913810 |
Score | 2.2908807 |
Snippet | The mechanical properties of cement-stabilized macadam (CSM) base mixture are closely related to its forming process. Although the present study investigates... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 8505 |
SubjectTerms | Aggregates Asphalt pavements Cement cement-stabilized macadam Compaction Composite materials Concrete Coordination numbers Discrete element method discrete elements forming method Mechanical properties Moisture content Molding (process) particle displacement Particle size Porosity Roads & highways Simulation Simulation analysis Test methods Vibration Vibration effects |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5aL3oQ6wPf5OBBD8HdJJvdPYnVFhEq4gO8LXlMRKSt2nrx1ztJUy0IXrNLsjuTzHwzmQchR1ygVpK1ZboCx2SdGVZLqJj0BveXEbY0wQ_Zv1FXj_L6qXhKDrdxCqucycQoqN3IBh_5KS8Dspeobc7e3lnoGhVuV1MLjUWyxNFS4C2y1One3N79eFlC1csqz6aJeQLt-3AvnPPQkj40rJtTRbFi_x-BHLVMb42sJnhIz6f8bJMFGK6TlbmigeuknY7jmB6nmtEnG-T1_mWQGnHRWZ0ROvL0Inr_GELKEAT7BY72tdVOD2gUBDGpgaZkAZyddlCpOYpjiAvp5QvKFATVtDuNMaf92G56kzz2ug8XVyz1UWBWKDlhygnAX1fIL9TQXiFG0iUgbtNQ26LKC1dXwJX10ijwTns0iVTpRCm1FS7PxBZpDUdD2CYUP9BCbngtQzazRvM5y3yB_IbCeF6pHXI0I2nzNi2X0aCZESjfzFF-h3QCuX9eCTWu48Do47lJR6YpfFk6Z0BWhZS1cAaXqXQpPHjQkOMk-zNmNengjZvfbbL7_-M9ssxDJkMMF9snrcnHJxwgvpiYw7SJvgEo29Eo priority: 102 providerName: ProQuest |
Title | Simulation Analysis of Cement-Stabilized Macadam Compaction Processing Based on the Discrete Element Method |
URI | https://www.proquest.com/docview/2771644521 https://doaj.org/article/5f77ddbe4854493db3438a73fefeae15 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7xWGBAUECUR-WhAwwRSew48UhLC0JqhXhIbJEdnyWEWhCUhV_P2UlRJAYWVitynDv77jvn7juAfsrJKwlVRbpAGwkVm0gJLCLhDO0vw6vc-HvIyVReP4qbp-yp1erL54TV9MC14M4zl-fWGhRFJoTi1tDkhc65Q4cak5q9NFatYCrYYJV46qq6II9TXO__Byepb0XvG9W1XFBg6v9liIN3GW_DVgML2UW9nB1YwXkHNltkgR3YaY7hBzttuKLPduHl_nnWNOBiS34R9urYMNz6RQQlffLrF1o20ZW2esaCAQjFDKwpEqDZ2YCcmWU0RniQXT6TLSEwzUZ1bjmbhDbTe_A4Hj0Mr6Omf0JUcSkWkbQc6dMl6Yk8s5OEjXSOhNc0qiorksyqAlNZOWEkOqsdhUIytzwXuuI2ifk-rM1f53gAjBZYYWJSJXwVs6awOY5dRqrAzLi0kF3oL0VavtU0GSWFF17yZUvyXRh4cf884rmtwwBpvGw0Xv6l8S4cL5VVNgfuo0xzH_gJAiOH__GOI9hIfZ1DSCY7hrXF-yeeEPpYmB6sFuOrHqwPRtPbu17Ydt-alNvM |
link.rule.ids | 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELZ4DMCAeIry9NABBoskdpxkQrxKeZQFkNgiP84IIdpCy8Kv5-y6pRISqxPZyZ199935HoQ0M45aSVSGqRIsE1WiWSWgZMJp3F-am0J7P2TnXrafxM1z_hwdboMYVjmWiUFQ257xPvLjrPDIXqC2Oel_MN81yt-uxhYas2RecFQ0PlO8dTXxsfial2WajNLyOFr3_lY4zXxDet-ubkoRhXr9f8Rx0DGtFbIcwSE9HXFzlcxAd40sTZUMXCOr8TAO6GGsGH20Tt4eXt9jGy46rjJCe46eB98fQ0DpQ2C_wdKOMsqqdxrEQEhpoDFVAGenZ6jSLMUxRIX04hUlCkJqejmKMKed0Gx6gzy1Lh_P2yx2UWCGSzFk0nLAX5fILdTPTiJCUgUgalNQmbxMc1uVkEnjhJbgrHJoEMnC8kIow22a8E0y1-11YYtQ_EADqc4q4XOZFRrPSeJy5Dbk2mWlbJDmmKR1f1Qso0Yjw1O-nqJ8g5x5ck9e8RWuw0Dv86WOB6bOXVFYq0GUuRAVtxqXKVXBHThQkOIku2Nm1fHYDerfTbL9_-MDstB-7NzVd9f3tztkMfM5DSFwbJfMDT-_YA-RxlDvh-30A5me0rM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFLcYSGgcprUbAgbDBw7sYJHEju2cJiiUwlaExJC4Rf54RgjRAi0X_vo9uy6rhLRrEjnJ-_w9-30Qsldx9Eqiccxo8Ew0hWWNAM1EsChfljtl4z7k8EIOrsX5TX2T858mOa1ybhOTofZjF_fIDyoVkb1Ab3MQclrE5XH_5-MTixOk4klrHqfxgaygV1RRSXX_9G2_Jfa_1GUxK9HjGOnHE-KyisPp4-i6BaeUeve_M83J3_Q_k08ZKNLDGWc7ZAlGXbK20D6wSzpZMSd0P3eP_vGF3F_dPeSRXHTecYSOA-2lfUCG4DKmw76Cp0PjjDcPNJmEVN5Ac9kArk6P0L15itcQIdLjO7QuCK_pySzbnA7T4Omv5Lp_8qc3YHmiAnNciimTngP-ukTOoa8OEtGSUYAIzkDjal3WvtFQSReElRC8CRgcSeW5EsZxXxZ8nSyPxiPYIBQ_0EFpq0bEumaDgXRRhBo5D7UNlZabZG9O0vZx1jijxYAjUr5doPwmOYrkfnskdrtOF8bPt21WnrYOSnlvQehaiIZ7i6_RRvEAAQyUuMj2nFltVsFJ-09gtv5_e5esoiS1v88ufn0jH6tY3pByyLbJ8vT5BXYQdEzt9yRNfwFFB9bo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+Analysis+of+Cement-Stabilized+Macadam+Compaction+Processing+Based+on+the+Discrete+Element+Method&rft.jtitle=Applied+sciences&rft.au=Chunyu+Liang&rft.au=Hao+Zhang&rft.au=Feng+Liu&rft.au=Xili+Yan&rft.date=2022-09-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=17&rft.spage=8505&rft_id=info:doi/10.3390%2Fapp12178505&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5f77ddbe4854493db3438a73fefeae15 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |