A Two-Phase Deep Learning-Based Recommender System: Enhanced by a Data Quality Inspector

Research regarding collaborative filtering recommenders has grown fast lately. However, little attention has been paid to discuss how the input data quality impacts the result. Indeed, some review-rating pairs that a user gave to an item are inconsistent and express a different opinion, making the r...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 11; no. 20; p. 9667
Main Authors Lemus Leiva, William, Li, Meng-Lin, Tsai, Chieh-Yuan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Research regarding collaborative filtering recommenders has grown fast lately. However, little attention has been paid to discuss how the input data quality impacts the result. Indeed, some review-rating pairs that a user gave to an item are inconsistent and express a different opinion, making the recommendation result biased. To solve the above drawback, this study proposes a two-phase deep learning-based recommender system. Firstly, a sentiment predictor of textual reviews is created, serving as the quality inspector that cleans and improves the input for a recommender. To build accurate predictors, this phase tries and compares a set of deep learning-based algorithms. Secondly, besides only exploiting the consistent review-rating pairs generated by the quality inspector, this phase builds deep learning-based recommender engines. The experiments on a real-world dataset showed the proposed data quality inspector, based on textual reviews, improves the overall performance of recommenders. On average, applying deep learning-based quality inspectors result in an above 6% improvement in RMSE, and more than a 2% boost in F1 score, and accuracy. This is robust evidence to prove the importance of the input data cleaning process in this field. Moreover, empirical evidence indicates the deep learning approach is suitable for modeling the sentiment predictor, and the core recommendation process, clearly outperforming the traditional machine learning methods.
AbstractList Featured ApplicationEnhances the performance, specifically the accuracy, of a collaborative filtering-based recommender system, by exploiting textual data and filtering the initial input.AbstractResearch regarding collaborative filtering recommenders has grown fast lately. However, little attention has been paid to discuss how the input data quality impacts the result. Indeed, some review-rating pairs that a user gave to an item are inconsistent and express a different opinion, making the recommendation result biased. To solve the above drawback, this study proposes a two-phase deep learning-based recommender system. Firstly, a sentiment predictor of textual reviews is created, serving as the quality inspector that cleans and improves the input for a recommender. To build accurate predictors, this phase tries and compares a set of deep learning-based algorithms. Secondly, besides only exploiting the consistent review-rating pairs generated by the quality inspector, this phase builds deep learning-based recommender engines. The experiments on a real-world dataset showed the proposed data quality inspector, based on textual reviews, improves the overall performance of recommenders. On average, applying deep learning-based quality inspectors result in an above 6% improvement in RMSE, and more than a 2% boost in F1 score, and accuracy. This is robust evidence to prove the importance of the input data cleaning process in this field. Moreover, empirical evidence indicates the deep learning approach is suitable for modeling the sentiment predictor, and the core recommendation process, clearly outperforming the traditional machine learning methods.
Research regarding collaborative filtering recommenders has grown fast lately. However, little attention has been paid to discuss how the input data quality impacts the result. Indeed, some review-rating pairs that a user gave to an item are inconsistent and express a different opinion, making the recommendation result biased. To solve the above drawback, this study proposes a two-phase deep learning-based recommender system. Firstly, a sentiment predictor of textual reviews is created, serving as the quality inspector that cleans and improves the input for a recommender. To build accurate predictors, this phase tries and compares a set of deep learning-based algorithms. Secondly, besides only exploiting the consistent review-rating pairs generated by the quality inspector, this phase builds deep learning-based recommender engines. The experiments on a real-world dataset showed the proposed data quality inspector, based on textual reviews, improves the overall performance of recommenders. On average, applying deep learning-based quality inspectors result in an above 6% improvement in RMSE, and more than a 2% boost in F1 score, and accuracy. This is robust evidence to prove the importance of the input data cleaning process in this field. Moreover, empirical evidence indicates the deep learning approach is suitable for modeling the sentiment predictor, and the core recommendation process, clearly outperforming the traditional machine learning methods.
Author Tsai, Chieh-Yuan
Lemus Leiva, William
Li, Meng-Lin
Author_xml – sequence: 1
  givenname: William
  surname: Lemus Leiva
  fullname: Lemus Leiva, William
– sequence: 2
  givenname: Meng-Lin
  surname: Li
  fullname: Li, Meng-Lin
– sequence: 3
  givenname: Chieh-Yuan
  orcidid: 0000-0002-1016-9614
  surname: Tsai
  fullname: Tsai, Chieh-Yuan
BookMark eNptUU1rHDEMNSGFpmlO_QOGHMs0lj1jz_aWJmmzsNCPpNCb0fgjmWXXntpewv77erMhhBLpIPH09CSkd-QwxOAI-QDskxAzdobTBMDZTEp1QI44U7IRLajDF_lbcpLzklWbgeiBHZE_5_T2ITY_7jE7euncRBcOUxjDXfOlQpb-ciau1y5Yl-jNNhe3_kyvwj0GU4vDliK9xIL05wZXY9nSeciTMyWm9-SNx1V2J0_xmPz-enV7cd0svn-bX5wvGiNkWxppABjv64adANUqEOBazzrkgx-4AonWSMO9x3bn3FtjTC1YLwbseiOOyXyvayMu9ZTGNaatjjjqRyCmO42pjGbltOQCPErWKTDtYN0wCNt7xQewM8XFTut0rzWl-HfjctHLuEmhrq9517cCZL1cZX3cs0yKOSfnn6cC07tP6BefqGz4j23GgmWMoSQcV6_2_AOdWIwF
CitedBy_id crossref_primary_10_3390_app12041840
crossref_primary_10_1109_ACCESS_2023_3323353
crossref_primary_10_3390_electronics13214331
crossref_primary_10_3390_app14209271
crossref_primary_10_1080_10916466_2022_2098327
Cites_doi 10.1145/3240117.3240120
10.1007/s10115-020-01528-2
10.1609/aaai.v32i1.11884
10.1016/j.cosrev.2016.05.002
10.18653/v1/D19-1018
10.1145/3109859.3109890
10.3115/v1/D14-1181
10.1109/78.650093
10.1109/WI-IAT.2010.87
10.1016/j.eswa.2012.02.038
10.3115/v1/P15-1061
10.1016/j.eswa.2016.09.040
10.1016/j.knosys.2013.03.012
10.3390/app11094243
10.1145/3308560.3316601
10.1162/neco.1997.9.8.1735
10.1145/3038912.3052569
10.1007/s10115-020-01483-y
10.1080/02650487.2019.1617651
10.1145/2988450.2988453
10.1109/TCSS.2020.2993585
10.1007/s10462-018-9654-y
10.20944/preprints202107.0070.v1
10.1145/2806416.2806578
10.1109/MIS.2013.30
10.1145/2740908.2742726
10.18653/v1/N16-1174
10.3390/s21041381
10.1145/2365952.2365978
10.1016/j.jbi.2018.09.011
10.1155/2009/421425
10.1109/5.726791
10.1007/978-3-319-16528-8_35
10.1007/s11257-015-9155-5
10.1007/978-3-642-38844-6_1
10.1109/BigData.Congress.2014.59
10.1109/ISET.2016.12
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app11209667
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_6231fa60571c4bdebb3d8f72b1d9723c
10_3390_app11209667
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c364t-6c11028207531747131e4f05a2bfb2716adc6c2ffa4a4a42fdcccb27df3ba58c3
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:29:54 EDT 2025
Mon Jun 30 11:15:46 EDT 2025
Thu Apr 24 23:11:04 EDT 2025
Tue Jul 01 00:51:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-6c11028207531747131e4f05a2bfb2716adc6c2ffa4a4a42fdcccb27df3ba58c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1016-9614
OpenAccessLink https://doaj.org/article/6231fa60571c4bdebb3d8f72b1d9723c
PQID 2584316000
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_6231fa60571c4bdebb3d8f72b1d9723c
proquest_journals_2584316000
crossref_primary_10_3390_app11209667
crossref_citationtrail_10_3390_app11209667
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
LeCun (ref_52) 1998; 86
ref_57
ref_56
ref_55
Hochreiter (ref_49) 1997; 9
ref_54
ref_53
Zhang (ref_37) 2013; 4
Kumar (ref_33) 2020; 7
ref_19
ref_18
ref_17
Wei (ref_45) 2017; 69
Bobadilla (ref_10) 2013; 46
ref_16
ref_15
Devipriya (ref_24) 2020; 9
ref_25
ref_23
Su (ref_34) 2009; 2009
Elahi (ref_13) 2016; 20
ref_21
ref_20
Zdziebko (ref_2) 2015; 354
Cambria (ref_22) 2013; 28
ref_29
ref_27
ref_26
Park (ref_7) 2012; 39
Garcia (ref_47) 2020; 12035
Batmaz (ref_14) 2019; 52
Schuster (ref_51) 1997; 45
ref_36
ref_35
ref_32
ref_31
ref_30
Morisio (ref_1) 2017; 21
ref_39
ref_38
Kumar (ref_12) 2016; 9
Maslowska (ref_5) 2020; 39
Chen (ref_11) 2015; 25
Zhang (ref_28) 2018; 87
Roozbahani (ref_9) 2020; 62
ref_46
ref_44
ref_43
ref_42
ref_41
ref_40
ref_3
Liu (ref_8) 2021; 63
ref_48
ref_4
ref_6
References_xml – ident: ref_35
  doi: 10.1145/3240117.3240120
– volume: 63
  start-page: 621
  year: 2021
  ident: ref_8
  article-title: A hybrid neural network approach to combine textual information and rating information for item recommendation
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-020-01528-2
– ident: ref_32
– ident: ref_55
– ident: ref_20
  doi: 10.1609/aaai.v32i1.11884
– volume: 20
  start-page: 29
  year: 2016
  ident: ref_13
  article-title: A survey of active learning in collaborative filtering recommender systems
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2016.05.002
– volume: 12035
  start-page: 234
  year: 2020
  ident: ref_47
  article-title: TransRev: Modeling reviews as translations from users to items
  publication-title: Adv. Inf. Retr.
– ident: ref_57
  doi: 10.18653/v1/D19-1018
– ident: ref_39
– ident: ref_46
  doi: 10.1145/3109859.3109890
– ident: ref_23
– ident: ref_25
  doi: 10.3115/v1/D14-1181
– volume: 45
  start-page: 2673
  year: 1997
  ident: ref_51
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.650093
– ident: ref_38
  doi: 10.1109/WI-IAT.2010.87
– volume: 39
  start-page: 10059
  year: 2012
  ident: ref_7
  article-title: A literature review and classification of recommender systems research
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.02.038
– ident: ref_27
  doi: 10.3115/v1/P15-1061
– volume: 69
  start-page: 29
  year: 2017
  ident: ref_45
  article-title: Collaborative filtering and deep learning based recommendation system for cold start items
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.09.040
– ident: ref_31
– ident: ref_56
– volume: 46
  start-page: 109
  year: 2013
  ident: ref_10
  article-title: Recommender systems survey
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2013.03.012
– ident: ref_4
  doi: 10.3390/app11094243
– ident: ref_42
  doi: 10.1145/3308560.3316601
– ident: ref_48
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_49
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_41
– ident: ref_21
  doi: 10.1145/3038912.3052569
– volume: 62
  start-page: 3837
  year: 2020
  ident: ref_9
  article-title: A systematic survey on collaborator finding systems in scientific social networks
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-020-01483-y
– volume: 9
  start-page: 3812
  year: 2020
  ident: ref_24
  article-title: Deep learning sentiment analysis for recommendations in social applications
  publication-title: Int. J. Sci. Technol. Res.
– volume: 39
  start-page: 282
  year: 2020
  ident: ref_5
  article-title: How consumers attend to online reviews: An eye-tracking and network analysis approach
  publication-title: Int. J. Advert.
  doi: 10.1080/02650487.2019.1617651
– ident: ref_19
  doi: 10.1145/2988450.2988453
– volume: 7
  start-page: 915
  year: 2020
  ident: ref_33
  article-title: Movie recommendation system using sentiment analysis from microblogging data
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2020.2993585
– ident: ref_53
– volume: 52
  start-page: 1
  year: 2019
  ident: ref_14
  article-title: A review on deep learning for recommender systems: Challenges and remedies
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-018-9654-y
– ident: ref_3
– ident: ref_17
  doi: 10.20944/preprints202107.0070.v1
– volume: 4
  start-page: 1
  year: 2013
  ident: ref_37
  article-title: Generating virtual ratings from Chinese reviews to augment online recommendations
  publication-title: Trans. Intell. Syst. Technol.
– ident: ref_43
  doi: 10.1145/2806416.2806578
– volume: 28
  start-page: 15
  year: 2013
  ident: ref_22
  article-title: New avenues in opinion mining and sentiment analysis
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2013.30
– ident: ref_18
  doi: 10.1145/2740908.2742726
– ident: ref_30
  doi: 10.18653/v1/N16-1174
– ident: ref_40
– ident: ref_6
  doi: 10.3390/s21041381
– ident: ref_15
  doi: 10.1145/2365952.2365978
– volume: 21
  start-page: 487
  year: 2017
  ident: ref_1
  article-title: Hybrid recommender systems: A systematic literature review
  publication-title: Intell. Data Anal.
– volume: 87
  start-page: 21
  year: 2018
  ident: ref_28
  article-title: Factorization machines and deep views-based co-training for improving answer quality prediction in online health expert question-answering services
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2018.09.011
– volume: 2009
  start-page: 1
  year: 2009
  ident: ref_34
  article-title: A survey of collaborative filtering techniques
  publication-title: Adv. Artif. Intell.
  doi: 10.1155/2009/421425
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_52
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 9
  start-page: 1
  year: 2016
  ident: ref_12
  article-title: Approaches, issues and challenges in recommender systems: A systematic review
  publication-title: Indian J. Sci. Technol.
– volume: 354
  start-page: 375
  year: 2015
  ident: ref_2
  article-title: Monitoring human website interactions for online stores
  publication-title: Adv. Intell. Syst. Comput.
  doi: 10.1007/978-3-319-16528-8_35
– ident: ref_50
– volume: 25
  start-page: 99
  year: 2015
  ident: ref_11
  article-title: Recommender systems based on user reviews: The state of the art
  publication-title: User Model. User-Adapt. Interact.
  doi: 10.1007/s11257-015-9155-5
– ident: ref_16
  doi: 10.1007/978-3-642-38844-6_1
– ident: ref_29
– ident: ref_54
– ident: ref_26
  doi: 10.1109/BigData.Congress.2014.59
– ident: ref_36
– ident: ref_44
  doi: 10.1109/ISET.2016.12
SSID ssj0000913810
Score 2.2438788
Snippet Research regarding collaborative filtering recommenders has grown fast lately. However, little attention has been paid to discuss how the input data quality...
Featured ApplicationEnhances the performance, specifically the accuracy, of a collaborative filtering-based recommender system, by exploiting textual data and...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 9667
SubjectTerms Accuracy
Algorithms
Collaboration
collaborative filtering
data quality
Deep learning
Information overload
Natural language
Neural networks
Ratings & rankings
recommendation system
Recommender systems
Sentiment analysis
text classification
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB7RcGkPqNBWDQXkA4e2ktXY633ApSIQBJWKUAVSbis_4QC7IQmq-PfMeJ2ABEK-2T6NPS-P5_sAdo22KlfScSoycSWV4aYiFFGvhStyu9d1eP89K04u1Z9xPk4PbrP0rXJhE6Ohdq2lN_JfEj1lJtA9D35P7jixRlF1NVFovINVNMFV1YPV4ejs_N_ylYVQLysx6BrzMszvqS4sqF-0iMzyT64oIva_MMjRyxx_hLUUHrKD7jzXYcU3G_DhGWjgBqwndZyx7wkz-scnGB-wi_8tP79Gp8SOvJ-wBJx6xYc45Rilmbe3kTeOdSjl-2zUXMf6PzMPTLMjPdesg9R4YKdNbMFsp5_h8nh0cXjCE2kCt1mh5rywgmIGiaEAhgboejLhVRjkWppgJGZH2tnCyhC0oiGDs9bigguZ0Xllsy_Qa9rGfwUWXDYwFjNVwlwTVaVL7_ZsGVCkqgy67MPPhfxqmxDFidjipsbMgoRdPxN2H3aXmycdkMbr24Z0EMsthH4dJ9rpVZ2UqcaQTQSNiVgprDLOG5O5KpTSCEckarYPW4tjrJNKzuqnC7T59vI3eC_p40r8sbcFvfn03m9j5DE3O-l6PQK6zdc8
  priority: 102
  providerName: ProQuest
Title A Two-Phase Deep Learning-Based Recommender System: Enhanced by a Data Quality Inspector
URI https://www.proquest.com/docview/2584316000
https://doaj.org/article/6231fa60571c4bdebb3d8f72b1d9723c
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwNBDA5aL3oQn1gfZQ4eVFjszM4-6s1q6wMUEYXelnnag25FK9J_bzK7akHBi-xtNrBLJpN8YZIvALtaGZlIYSO6ZIqkkDrSObGIOsVtmphO1eF9dZ2e38vLQTKYGvVFNWEVPXCluEMMz9wrBN0ZN1Jbp3Vsc58JzS0NzDLkfTHmTSVTwQd3OFFXVQ15Meb1dB_MqU80DRPlv0NQYOr_4YhDdOkvwWINC9lx9TvLMOPKFViYIgtcgeX6GL6yvZoren8VBsfs7n0U3QwxGLFT555ZTZj6EHVxyTJKL5-ewrw4VrGTH7FeOQz3_kxPmGKnaqxYRaUxYRdlaL0cvazBfb93d3Ie1cMSIhOnchylhhNWEAgBEBJgyIm5k76dKKG9FpgVKWtSI7xXkh7hrTEGX1gfa5XkJl6HRjkq3QYwb-O2NpihEtcaz3OVOdsxmUeVysyrrAkHn_orTM0kTgMtHgvMKEjZxZSym7D7JfxcEWj8LtaljfgSIdbrsIC2UNS2UPxlC03Y_tzGoj6Kr4VAiBVzxHXtzf_4xhbMCyprCfV829AYv7y5HcQlY92C2bx_1oK5bu_65rYVDPIDDfjhVg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOiBYQoQV8KBIgrVh7vY8iIdSShoQ-xCGVctv62R7obpoEVflT_EZmvLtpJRC3am-2tYfxeD6P7fk-gB2tjEylsBFdMkVSSB3pglhEneI2S81uU-F9fJINT-X3STpZg99dLQw9q-xiYgjUtjZ0Rv5RIFImHOE5_jK9ikg1im5XOwmNxi0O3fIaU7b551Ef5_etEIOD8ddh1KoKRCbJ5CLKDCdQFYiViJ0YmxPupI9TJbTXAtMHZU1mhPdK0ie8NcZgh_WJVmlhEvzvPbgvE0RyqkwffFud6RDHZsHjpgwQ-2O6heZUnZoFHfsb4Av6AH-F_4BpgyfwuN2Msr3GezZgzVWb8OgWReEmbLSLf87etQzV75_CZI-Nr-voxwVCIOs7N2UtTet5tI9NllFSe3kZVOpYw4n-iR1UF-G1AdNLplhfLRRrCDyWbFSFgs969gxO78SYz2G9qiv3Api3SawN5sXE8MaLQuXO7prco0ll7lXegw-d_UrT8peTjMbPEvMYMnZ5y9g92FkNnja0Hf8etk8TsRpCXNuhoZ6dl-3SLXGDyL3CtC_nRmrrtE5s4XOhuSXJNtOD7W4ayzYAzMsbd335_-438GA4Pj4qj0Ynh1vwUNCTmfBWcBvWF7Nf7hXueRb6dXA0Bmd37dl_AMrwE2M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLSASCmwhyIBklXvw48gIdSQRA2FKEKtlJvZZ3ugdpoEVflr_Dp27HVaCcSt8m298mF2PN_O7sz3ARwoqUUimInwkikSTKhI5cgiaiU1aaJ7TYf3t0l6fCa-zJLZFvxue2GwrLKNiXWgNpXGM_JD5pGSUw_P8aELZRHTwejT_CpCBSm8aW3lNBoXObHra5--LT-OB36t3zA2Gp5-Po6CwkCkeSpWUaopAizzuOlx1MdpTq1wcSKZcor5VEIanWrmnBT4MGe01v6FcVzJJNfcf_cebGeYFXVguz-cTL9vTniQcTOncdMUyHkvxjtpir2qaa1qfwODtVrAX2BQI9zoMTwKW1Ny1PjSDmzZchce3iIs3IWdEAqW5G3gq373BGZH5PS6iqYXHhDJwNo5CaSt51HfDxmCKe7lZa1ZRxqG9A9kWF7UtQdErYkkA7mSpKHzWJNxWbd_VouncHYn5nwGnbIq7XMgzvBYaZ8lI98bzXOZWdPTmfMmFZmTWRfet_YrdGAzR1GNn4XPatDYxS1jd-FgM3nekHj8e1ofF2IzBZm364FqcV6EH7nw20XqpE8CM6qFMlYpbnKXMUUNCrjpLuy3y1iEcLAsbpx37_-vX8N979XF1_Hk5AU8YFg_UxcO7kNntfhlX_oN0Eq9Cp5G4MddO_cfFWUY9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Two-Phase+Deep+Learning-Based+Recommender+System%3A+Enhanced+by+a+Data+Quality+Inspector&rft.jtitle=Applied+sciences&rft.au=William+Lemus+Leiva&rft.au=Meng-Lin+Li&rft.au=Chieh-Yuan+Tsai&rft.date=2021-10-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=20&rft.spage=9667&rft_id=info:doi/10.3390%2Fapp11209667&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6231fa60571c4bdebb3d8f72b1d9723c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon