A Two-Phase Deep Learning-Based Recommender System: Enhanced by a Data Quality Inspector
Research regarding collaborative filtering recommenders has grown fast lately. However, little attention has been paid to discuss how the input data quality impacts the result. Indeed, some review-rating pairs that a user gave to an item are inconsistent and express a different opinion, making the r...
Saved in:
Published in | Applied sciences Vol. 11; no. 20; p. 9667 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Research regarding collaborative filtering recommenders has grown fast lately. However, little attention has been paid to discuss how the input data quality impacts the result. Indeed, some review-rating pairs that a user gave to an item are inconsistent and express a different opinion, making the recommendation result biased. To solve the above drawback, this study proposes a two-phase deep learning-based recommender system. Firstly, a sentiment predictor of textual reviews is created, serving as the quality inspector that cleans and improves the input for a recommender. To build accurate predictors, this phase tries and compares a set of deep learning-based algorithms. Secondly, besides only exploiting the consistent review-rating pairs generated by the quality inspector, this phase builds deep learning-based recommender engines. The experiments on a real-world dataset showed the proposed data quality inspector, based on textual reviews, improves the overall performance of recommenders. On average, applying deep learning-based quality inspectors result in an above 6% improvement in RMSE, and more than a 2% boost in F1 score, and accuracy. This is robust evidence to prove the importance of the input data cleaning process in this field. Moreover, empirical evidence indicates the deep learning approach is suitable for modeling the sentiment predictor, and the core recommendation process, clearly outperforming the traditional machine learning methods. |
---|---|
AbstractList | Featured ApplicationEnhances the performance, specifically the accuracy, of a collaborative filtering-based recommender system, by exploiting textual data and filtering the initial input.AbstractResearch regarding collaborative filtering recommenders has grown fast lately. However, little attention has been paid to discuss how the input data quality impacts the result. Indeed, some review-rating pairs that a user gave to an item are inconsistent and express a different opinion, making the recommendation result biased. To solve the above drawback, this study proposes a two-phase deep learning-based recommender system. Firstly, a sentiment predictor of textual reviews is created, serving as the quality inspector that cleans and improves the input for a recommender. To build accurate predictors, this phase tries and compares a set of deep learning-based algorithms. Secondly, besides only exploiting the consistent review-rating pairs generated by the quality inspector, this phase builds deep learning-based recommender engines. The experiments on a real-world dataset showed the proposed data quality inspector, based on textual reviews, improves the overall performance of recommenders. On average, applying deep learning-based quality inspectors result in an above 6% improvement in RMSE, and more than a 2% boost in F1 score, and accuracy. This is robust evidence to prove the importance of the input data cleaning process in this field. Moreover, empirical evidence indicates the deep learning approach is suitable for modeling the sentiment predictor, and the core recommendation process, clearly outperforming the traditional machine learning methods. Research regarding collaborative filtering recommenders has grown fast lately. However, little attention has been paid to discuss how the input data quality impacts the result. Indeed, some review-rating pairs that a user gave to an item are inconsistent and express a different opinion, making the recommendation result biased. To solve the above drawback, this study proposes a two-phase deep learning-based recommender system. Firstly, a sentiment predictor of textual reviews is created, serving as the quality inspector that cleans and improves the input for a recommender. To build accurate predictors, this phase tries and compares a set of deep learning-based algorithms. Secondly, besides only exploiting the consistent review-rating pairs generated by the quality inspector, this phase builds deep learning-based recommender engines. The experiments on a real-world dataset showed the proposed data quality inspector, based on textual reviews, improves the overall performance of recommenders. On average, applying deep learning-based quality inspectors result in an above 6% improvement in RMSE, and more than a 2% boost in F1 score, and accuracy. This is robust evidence to prove the importance of the input data cleaning process in this field. Moreover, empirical evidence indicates the deep learning approach is suitable for modeling the sentiment predictor, and the core recommendation process, clearly outperforming the traditional machine learning methods. |
Author | Tsai, Chieh-Yuan Lemus Leiva, William Li, Meng-Lin |
Author_xml | – sequence: 1 givenname: William surname: Lemus Leiva fullname: Lemus Leiva, William – sequence: 2 givenname: Meng-Lin surname: Li fullname: Li, Meng-Lin – sequence: 3 givenname: Chieh-Yuan orcidid: 0000-0002-1016-9614 surname: Tsai fullname: Tsai, Chieh-Yuan |
BookMark | eNptUU1rHDEMNSGFpmlO_QOGHMs0lj1jz_aWJmmzsNCPpNCb0fgjmWXXntpewv77erMhhBLpIPH09CSkd-QwxOAI-QDskxAzdobTBMDZTEp1QI44U7IRLajDF_lbcpLzklWbgeiBHZE_5_T2ITY_7jE7euncRBcOUxjDXfOlQpb-ciau1y5Yl-jNNhe3_kyvwj0GU4vDliK9xIL05wZXY9nSeciTMyWm9-SNx1V2J0_xmPz-enV7cd0svn-bX5wvGiNkWxppABjv64adANUqEOBazzrkgx-4AonWSMO9x3bn3FtjTC1YLwbseiOOyXyvayMu9ZTGNaatjjjqRyCmO42pjGbltOQCPErWKTDtYN0wCNt7xQewM8XFTut0rzWl-HfjctHLuEmhrq9517cCZL1cZX3cs0yKOSfnn6cC07tP6BefqGz4j23GgmWMoSQcV6_2_AOdWIwF |
CitedBy_id | crossref_primary_10_3390_app12041840 crossref_primary_10_1109_ACCESS_2023_3323353 crossref_primary_10_3390_electronics13214331 crossref_primary_10_3390_app14209271 crossref_primary_10_1080_10916466_2022_2098327 |
Cites_doi | 10.1145/3240117.3240120 10.1007/s10115-020-01528-2 10.1609/aaai.v32i1.11884 10.1016/j.cosrev.2016.05.002 10.18653/v1/D19-1018 10.1145/3109859.3109890 10.3115/v1/D14-1181 10.1109/78.650093 10.1109/WI-IAT.2010.87 10.1016/j.eswa.2012.02.038 10.3115/v1/P15-1061 10.1016/j.eswa.2016.09.040 10.1016/j.knosys.2013.03.012 10.3390/app11094243 10.1145/3308560.3316601 10.1162/neco.1997.9.8.1735 10.1145/3038912.3052569 10.1007/s10115-020-01483-y 10.1080/02650487.2019.1617651 10.1145/2988450.2988453 10.1109/TCSS.2020.2993585 10.1007/s10462-018-9654-y 10.20944/preprints202107.0070.v1 10.1145/2806416.2806578 10.1109/MIS.2013.30 10.1145/2740908.2742726 10.18653/v1/N16-1174 10.3390/s21041381 10.1145/2365952.2365978 10.1016/j.jbi.2018.09.011 10.1155/2009/421425 10.1109/5.726791 10.1007/978-3-319-16528-8_35 10.1007/s11257-015-9155-5 10.1007/978-3-642-38844-6_1 10.1109/BigData.Congress.2014.59 10.1109/ISET.2016.12 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
DOI | 10.3390/app11209667 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_6231fa60571c4bdebb3d8f72b1d9723c 10_3390_app11209667 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c364t-6c11028207531747131e4f05a2bfb2716adc6c2ffa4a4a42fdcccb27df3ba58c3 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:29:54 EDT 2025 Mon Jun 30 11:15:46 EDT 2025 Thu Apr 24 23:11:04 EDT 2025 Tue Jul 01 00:51:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-6c11028207531747131e4f05a2bfb2716adc6c2ffa4a4a42fdcccb27df3ba58c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1016-9614 |
OpenAccessLink | https://doaj.org/article/6231fa60571c4bdebb3d8f72b1d9723c |
PQID | 2584316000 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6231fa60571c4bdebb3d8f72b1d9723c proquest_journals_2584316000 crossref_primary_10_3390_app11209667 crossref_citationtrail_10_3390_app11209667 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 LeCun (ref_52) 1998; 86 ref_57 ref_56 ref_55 Hochreiter (ref_49) 1997; 9 ref_54 ref_53 Zhang (ref_37) 2013; 4 Kumar (ref_33) 2020; 7 ref_19 ref_18 ref_17 Wei (ref_45) 2017; 69 Bobadilla (ref_10) 2013; 46 ref_16 ref_15 Devipriya (ref_24) 2020; 9 ref_25 ref_23 Su (ref_34) 2009; 2009 Elahi (ref_13) 2016; 20 ref_21 ref_20 Zdziebko (ref_2) 2015; 354 Cambria (ref_22) 2013; 28 ref_29 ref_27 ref_26 Park (ref_7) 2012; 39 Garcia (ref_47) 2020; 12035 Batmaz (ref_14) 2019; 52 Schuster (ref_51) 1997; 45 ref_36 ref_35 ref_32 ref_31 ref_30 Morisio (ref_1) 2017; 21 ref_39 ref_38 Kumar (ref_12) 2016; 9 Maslowska (ref_5) 2020; 39 Chen (ref_11) 2015; 25 Zhang (ref_28) 2018; 87 Roozbahani (ref_9) 2020; 62 ref_46 ref_44 ref_43 ref_42 ref_41 ref_40 ref_3 Liu (ref_8) 2021; 63 ref_48 ref_4 ref_6 |
References_xml | – ident: ref_35 doi: 10.1145/3240117.3240120 – volume: 63 start-page: 621 year: 2021 ident: ref_8 article-title: A hybrid neural network approach to combine textual information and rating information for item recommendation publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-020-01528-2 – ident: ref_32 – ident: ref_55 – ident: ref_20 doi: 10.1609/aaai.v32i1.11884 – volume: 20 start-page: 29 year: 2016 ident: ref_13 article-title: A survey of active learning in collaborative filtering recommender systems publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2016.05.002 – volume: 12035 start-page: 234 year: 2020 ident: ref_47 article-title: TransRev: Modeling reviews as translations from users to items publication-title: Adv. Inf. Retr. – ident: ref_57 doi: 10.18653/v1/D19-1018 – ident: ref_39 – ident: ref_46 doi: 10.1145/3109859.3109890 – ident: ref_23 – ident: ref_25 doi: 10.3115/v1/D14-1181 – volume: 45 start-page: 2673 year: 1997 ident: ref_51 article-title: Bidirectional recurrent neural networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.650093 – ident: ref_38 doi: 10.1109/WI-IAT.2010.87 – volume: 39 start-page: 10059 year: 2012 ident: ref_7 article-title: A literature review and classification of recommender systems research publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.02.038 – ident: ref_27 doi: 10.3115/v1/P15-1061 – volume: 69 start-page: 29 year: 2017 ident: ref_45 article-title: Collaborative filtering and deep learning based recommendation system for cold start items publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.09.040 – ident: ref_31 – ident: ref_56 – volume: 46 start-page: 109 year: 2013 ident: ref_10 article-title: Recommender systems survey publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2013.03.012 – ident: ref_4 doi: 10.3390/app11094243 – ident: ref_42 doi: 10.1145/3308560.3316601 – ident: ref_48 – volume: 9 start-page: 1735 year: 1997 ident: ref_49 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: ref_41 – ident: ref_21 doi: 10.1145/3038912.3052569 – volume: 62 start-page: 3837 year: 2020 ident: ref_9 article-title: A systematic survey on collaborator finding systems in scientific social networks publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-020-01483-y – volume: 9 start-page: 3812 year: 2020 ident: ref_24 article-title: Deep learning sentiment analysis for recommendations in social applications publication-title: Int. J. Sci. Technol. Res. – volume: 39 start-page: 282 year: 2020 ident: ref_5 article-title: How consumers attend to online reviews: An eye-tracking and network analysis approach publication-title: Int. J. Advert. doi: 10.1080/02650487.2019.1617651 – ident: ref_19 doi: 10.1145/2988450.2988453 – volume: 7 start-page: 915 year: 2020 ident: ref_33 article-title: Movie recommendation system using sentiment analysis from microblogging data publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2020.2993585 – ident: ref_53 – volume: 52 start-page: 1 year: 2019 ident: ref_14 article-title: A review on deep learning for recommender systems: Challenges and remedies publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-018-9654-y – ident: ref_3 – ident: ref_17 doi: 10.20944/preprints202107.0070.v1 – volume: 4 start-page: 1 year: 2013 ident: ref_37 article-title: Generating virtual ratings from Chinese reviews to augment online recommendations publication-title: Trans. Intell. Syst. Technol. – ident: ref_43 doi: 10.1145/2806416.2806578 – volume: 28 start-page: 15 year: 2013 ident: ref_22 article-title: New avenues in opinion mining and sentiment analysis publication-title: IEEE Intell. Syst. doi: 10.1109/MIS.2013.30 – ident: ref_18 doi: 10.1145/2740908.2742726 – ident: ref_30 doi: 10.18653/v1/N16-1174 – ident: ref_40 – ident: ref_6 doi: 10.3390/s21041381 – ident: ref_15 doi: 10.1145/2365952.2365978 – volume: 21 start-page: 487 year: 2017 ident: ref_1 article-title: Hybrid recommender systems: A systematic literature review publication-title: Intell. Data Anal. – volume: 87 start-page: 21 year: 2018 ident: ref_28 article-title: Factorization machines and deep views-based co-training for improving answer quality prediction in online health expert question-answering services publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2018.09.011 – volume: 2009 start-page: 1 year: 2009 ident: ref_34 article-title: A survey of collaborative filtering techniques publication-title: Adv. Artif. Intell. doi: 10.1155/2009/421425 – volume: 86 start-page: 2278 year: 1998 ident: ref_52 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 9 start-page: 1 year: 2016 ident: ref_12 article-title: Approaches, issues and challenges in recommender systems: A systematic review publication-title: Indian J. Sci. Technol. – volume: 354 start-page: 375 year: 2015 ident: ref_2 article-title: Monitoring human website interactions for online stores publication-title: Adv. Intell. Syst. Comput. doi: 10.1007/978-3-319-16528-8_35 – ident: ref_50 – volume: 25 start-page: 99 year: 2015 ident: ref_11 article-title: Recommender systems based on user reviews: The state of the art publication-title: User Model. User-Adapt. Interact. doi: 10.1007/s11257-015-9155-5 – ident: ref_16 doi: 10.1007/978-3-642-38844-6_1 – ident: ref_29 – ident: ref_54 – ident: ref_26 doi: 10.1109/BigData.Congress.2014.59 – ident: ref_36 – ident: ref_44 doi: 10.1109/ISET.2016.12 |
SSID | ssj0000913810 |
Score | 2.2438788 |
Snippet | Research regarding collaborative filtering recommenders has grown fast lately. However, little attention has been paid to discuss how the input data quality... Featured ApplicationEnhances the performance, specifically the accuracy, of a collaborative filtering-based recommender system, by exploiting textual data and... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 9667 |
SubjectTerms | Accuracy Algorithms Collaboration collaborative filtering data quality Deep learning Information overload Natural language Neural networks Ratings & rankings recommendation system Recommender systems Sentiment analysis text classification |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB7RcGkPqNBWDQXkA4e2ktXY633ApSIQBJWKUAVSbis_4QC7IQmq-PfMeJ2ABEK-2T6NPS-P5_sAdo22KlfScSoycSWV4aYiFFGvhStyu9d1eP89K04u1Z9xPk4PbrP0rXJhE6Ohdq2lN_JfEj1lJtA9D35P7jixRlF1NVFovINVNMFV1YPV4ejs_N_ylYVQLysx6BrzMszvqS4sqF-0iMzyT64oIva_MMjRyxx_hLUUHrKD7jzXYcU3G_DhGWjgBqwndZyx7wkz-scnGB-wi_8tP79Gp8SOvJ-wBJx6xYc45Rilmbe3kTeOdSjl-2zUXMf6PzMPTLMjPdesg9R4YKdNbMFsp5_h8nh0cXjCE2kCt1mh5rywgmIGiaEAhgboejLhVRjkWppgJGZH2tnCyhC0oiGDs9bigguZ0Xllsy_Qa9rGfwUWXDYwFjNVwlwTVaVL7_ZsGVCkqgy67MPPhfxqmxDFidjipsbMgoRdPxN2H3aXmycdkMbr24Z0EMsthH4dJ9rpVZ2UqcaQTQSNiVgprDLOG5O5KpTSCEckarYPW4tjrJNKzuqnC7T59vI3eC_p40r8sbcFvfn03m9j5DE3O-l6PQK6zdc8 priority: 102 providerName: ProQuest |
Title | A Two-Phase Deep Learning-Based Recommender System: Enhanced by a Data Quality Inspector |
URI | https://www.proquest.com/docview/2584316000 https://doaj.org/article/6231fa60571c4bdebb3d8f72b1d9723c |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwNBDA5aL3oQn1gfZQ4eVFjszM4-6s1q6wMUEYXelnnag25FK9J_bzK7akHBi-xtNrBLJpN8YZIvALtaGZlIYSO6ZIqkkDrSObGIOsVtmphO1eF9dZ2e38vLQTKYGvVFNWEVPXCluEMMz9wrBN0ZN1Jbp3Vsc58JzS0NzDLkfTHmTSVTwQd3OFFXVQ15Meb1dB_MqU80DRPlv0NQYOr_4YhDdOkvwWINC9lx9TvLMOPKFViYIgtcgeX6GL6yvZoren8VBsfs7n0U3QwxGLFT555ZTZj6EHVxyTJKL5-ewrw4VrGTH7FeOQz3_kxPmGKnaqxYRaUxYRdlaL0cvazBfb93d3Ie1cMSIhOnchylhhNWEAgBEBJgyIm5k76dKKG9FpgVKWtSI7xXkh7hrTEGX1gfa5XkJl6HRjkq3QYwb-O2NpihEtcaz3OVOdsxmUeVysyrrAkHn_orTM0kTgMtHgvMKEjZxZSym7D7JfxcEWj8LtaljfgSIdbrsIC2UNS2UPxlC03Y_tzGoj6Kr4VAiBVzxHXtzf_4xhbMCyprCfV829AYv7y5HcQlY92C2bx_1oK5bu_65rYVDPIDDfjhVg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOiBYQoQV8KBIgrVh7vY8iIdSShoQ-xCGVctv62R7obpoEVflT_EZmvLtpJRC3am-2tYfxeD6P7fk-gB2tjEylsBFdMkVSSB3pglhEneI2S81uU-F9fJINT-X3STpZg99dLQw9q-xiYgjUtjZ0Rv5RIFImHOE5_jK9ikg1im5XOwmNxi0O3fIaU7b551Ef5_etEIOD8ddh1KoKRCbJ5CLKDCdQFYiViJ0YmxPupI9TJbTXAtMHZU1mhPdK0ie8NcZgh_WJVmlhEvzvPbgvE0RyqkwffFud6RDHZsHjpgwQ-2O6heZUnZoFHfsb4Av6AH-F_4BpgyfwuN2Msr3GezZgzVWb8OgWReEmbLSLf87etQzV75_CZI-Nr-voxwVCIOs7N2UtTet5tI9NllFSe3kZVOpYw4n-iR1UF-G1AdNLplhfLRRrCDyWbFSFgs969gxO78SYz2G9qiv3Api3SawN5sXE8MaLQuXO7prco0ll7lXegw-d_UrT8peTjMbPEvMYMnZ5y9g92FkNnja0Hf8etk8TsRpCXNuhoZ6dl-3SLXGDyL3CtC_nRmrrtE5s4XOhuSXJNtOD7W4ayzYAzMsbd335_-438GA4Pj4qj0Ynh1vwUNCTmfBWcBvWF7Nf7hXueRb6dXA0Bmd37dl_AMrwE2M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLSASCmwhyIBklXvw48gIdSQRA2FKEKtlJvZZ3ugdpoEVflr_Dp27HVaCcSt8m298mF2PN_O7sz3ARwoqUUimInwkikSTKhI5cgiaiU1aaJ7TYf3t0l6fCa-zJLZFvxue2GwrLKNiXWgNpXGM_JD5pGSUw_P8aELZRHTwejT_CpCBSm8aW3lNBoXObHra5--LT-OB36t3zA2Gp5-Po6CwkCkeSpWUaopAizzuOlx1MdpTq1wcSKZcor5VEIanWrmnBT4MGe01v6FcVzJJNfcf_cebGeYFXVguz-cTL9vTniQcTOncdMUyHkvxjtpir2qaa1qfwODtVrAX2BQI9zoMTwKW1Ny1PjSDmzZchce3iIs3IWdEAqW5G3gq373BGZH5PS6iqYXHhDJwNo5CaSt51HfDxmCKe7lZa1ZRxqG9A9kWF7UtQdErYkkA7mSpKHzWJNxWbd_VouncHYn5nwGnbIq7XMgzvBYaZ8lI98bzXOZWdPTmfMmFZmTWRfet_YrdGAzR1GNn4XPatDYxS1jd-FgM3nekHj8e1ofF2IzBZm364FqcV6EH7nw20XqpE8CM6qFMlYpbnKXMUUNCrjpLuy3y1iEcLAsbpx37_-vX8N979XF1_Hk5AU8YFg_UxcO7kNntfhlX_oN0Eq9Cp5G4MddO_cfFWUY9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Two-Phase+Deep+Learning-Based+Recommender+System%3A+Enhanced+by+a+Data+Quality+Inspector&rft.jtitle=Applied+sciences&rft.au=William+Lemus+Leiva&rft.au=Meng-Lin+Li&rft.au=Chieh-Yuan+Tsai&rft.date=2021-10-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=20&rft.spage=9667&rft_id=info:doi/10.3390%2Fapp11209667&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6231fa60571c4bdebb3d8f72b1d9723c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |