Ultra-Low Resonant Piezoelectric MEMS Energy Harvester With High Power Density
We demonstrate a microscale vibration energy harvester exhibiting an ultra-low resonance frequency and high power density. A spiral shaped microelectromechanical system (MEMS) energy harvester was designed to harvest ambient vibrations at a low frequency (<;200 Hz) and acceleration (<;0.25 g)....
Saved in:
Published in | Journal of microelectromechanical systems Vol. 26; no. 6; pp. 1226 - 1234 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We demonstrate a microscale vibration energy harvester exhibiting an ultra-low resonance frequency and high power density. A spiral shaped microelectromechanical system (MEMS) energy harvester was designed to harvest ambient vibrations at a low frequency (<;200 Hz) and acceleration (<;0.25 g). High quality Pb(Zr 0.48 Ti 0.52 )O 3 (PZT) film with 1.8 μm-thickness exhibiting remanent polarization of 36.2 μC/cm 2 and longitudinal piezoelectric constant of 155 pm/V was synthesized to achieve high efficiency mechanical to electrical conversion. The experimental results demonstrate an ultra-low natural frequency of 48 Hz for MEMS harvester. This is one of the lowest resonance frequency reported for the piezoelectric MEMS energy harvester. Further, the position of the natural frequency was controlled by modulating the number of spiral turns and weight of the proof mass. The vibration mode shape and stress distribution were validated through a finite element analysis. The maximum output power of 23.3 nW was obtained from the five turns spiral MEMS energy harvester excited at 0.25 g acceleration and 68Hz. The normalized area and the volumetric energy density were measured to be 5.04 × 10 -4 μW/mm 2 · g 2 · Hz and 4.92 × 10 -2 μW/mm 3 · g 2 · Hz, respectively. |
---|---|
AbstractList | We demonstrate a microscale vibration energy harvester exhibiting an ultra-low resonance frequency and high power density. A spiral shaped microelectromechanical system (MEMS) energy harvester was designed to harvest ambient vibrations at a low frequency (<;200 Hz) and acceleration (<;0.25 g). High quality Pb(Zr 0.48 Ti 0.52 )O 3 (PZT) film with 1.8 μm-thickness exhibiting remanent polarization of 36.2 μC/cm 2 and longitudinal piezoelectric constant of 155 pm/V was synthesized to achieve high efficiency mechanical to electrical conversion. The experimental results demonstrate an ultra-low natural frequency of 48 Hz for MEMS harvester. This is one of the lowest resonance frequency reported for the piezoelectric MEMS energy harvester. Further, the position of the natural frequency was controlled by modulating the number of spiral turns and weight of the proof mass. The vibration mode shape and stress distribution were validated through a finite element analysis. The maximum output power of 23.3 nW was obtained from the five turns spiral MEMS energy harvester excited at 0.25 g acceleration and 68Hz. The normalized area and the volumetric energy density were measured to be 5.04 × 10 -4 μW/mm 2 · g 2 · Hz and 4.92 × 10 -2 μW/mm 3 · g 2 · Hz, respectively. Not provided. |
Author | Hyun-Cheol Song Min-Gyu Kang Priya, Shashank Chong-Yun Kang Reynolds, William T. Kumar, Prashant Dae-Yong Jeong Maurya, Deepam |
Author_xml | – sequence: 1 surname: Hyun-Cheol Song fullname: Hyun-Cheol Song organization: Center for Energy Harvesting Mater. & Syst., Virginia Tech, Blacksburg, VA, USA – sequence: 2 givenname: Prashant surname: Kumar fullname: Kumar, Prashant organization: Center for Energy Harvesting Mater. & Syst., Virginia Tech, Blacksburg, VA, USA – sequence: 3 givenname: Deepam surname: Maurya fullname: Maurya, Deepam organization: Center for Energy Harvesting Mater. & Syst., Virginia Tech, Blacksburg, VA, USA – sequence: 4 surname: Min-Gyu Kang fullname: Min-Gyu Kang organization: Center for Energy Harvesting Mater. & Syst., Virginia Tech, Blacksburg, VA, USA – sequence: 5 givenname: William T. surname: Reynolds fullname: Reynolds, William T. organization: Dept. of Mater. Sci. & Eng., Virginia Tech, Blacksburg, VA, USA – sequence: 6 surname: Dae-Yong Jeong fullname: Dae-Yong Jeong organization: Dept. of Mater. Sci. Eng., Inha Univ., Incheon, South Korea – sequence: 7 surname: Chong-Yun Kang fullname: Chong-Yun Kang email: cykang@kist.re.kr organization: Center for Electron. Mater., Korea Inst. of Sci. Technol., Seoul, South Korea – sequence: 8 givenname: Shashank surname: Priya fullname: Priya, Shashank email: spriya@vt.edu organization: Center for Energy Harvesting Mater. & Syst., Virginia Tech, Blacksburg, VA, USA |
BackLink | https://www.osti.gov/biblio/1541454$$D View this record in Osti.gov |
BookMark | eNp9kMFKAzEQhoMoaNUX0MvifWsmm90kR6nVKq0WtXhcsnG2jdREkmCpT-_WigcPnmYG5v9m-Hpk13mHhJwA7QNQdX47GU4e-4yC6DPBpGSwQw5AccgplHK362kpcgGl2Ce9GF8pBc5ldUDuZssUdD72q-wBo3fapWxq8dPjEk0K1mQbcjZ0GObrbKTDB8aEIXu2aZGN7HyRTf2qmy_RRZvWR2Sv1cuIxz_1kMyuhk-DUT6-v74ZXIxzU1Q85ZVSwBqJxrRGNsBLVpiCaihKVXHWiuqFty3o0mClpJRCmxfRNKwpKhCqVKo4JGdbro_J1tHYhGZhvHPd0zWUvEPyboltl0zwMQZs6_dg33RY10Drjbb6W1u90Vb_aOtC8k-og-tkves82eX_0dNt1CLi7y1JacWAFV86hnwU |
CODEN | JMIYET |
CitedBy_id | crossref_primary_10_1016_j_mtener_2021_100848 crossref_primary_10_1016_j_comnet_2021_108433 crossref_primary_10_1002_pen_25132 crossref_primary_10_1016_j_sna_2019_06_034 crossref_primary_10_1109_JSEN_2023_3253176 crossref_primary_10_1007_s13369_021_05829_8 crossref_primary_10_1039_D0EE03911J crossref_primary_10_1109_JSEN_2023_3235198 crossref_primary_10_1016_j_enconman_2021_114175 crossref_primary_10_1109_JSEN_2024_3418770 crossref_primary_10_1007_s00542_020_05130_y crossref_primary_10_1016_j_matpr_2020_10_534 crossref_primary_10_3390_mi11010080 crossref_primary_10_1007_s00542_019_04653_3 crossref_primary_10_1109_TIA_2022_3160144 crossref_primary_10_1007_s12633_021_01298_8 crossref_primary_10_1016_j_apenergy_2022_120129 crossref_primary_10_1109_TBCAS_2019_2942261 crossref_primary_10_1016_j_apmt_2024_102092 crossref_primary_10_1088_1361_665X_ad3bfe crossref_primary_10_1109_JMEMS_2019_2942291 crossref_primary_10_1088_1361_665X_ac9102 crossref_primary_10_1088_1361_6439_ac2e46 crossref_primary_10_1007_s00542_020_04783_z crossref_primary_10_1016_j_nanoen_2020_104986 crossref_primary_10_1088_1361_6439_ad0de8 crossref_primary_10_3390_electronics12010045 crossref_primary_10_1088_2631_8695_ad8c13 crossref_primary_10_1177_09544089241290635 crossref_primary_10_3390_s24134367 crossref_primary_10_3390_nano12172960 crossref_primary_10_1016_j_apenergy_2018_04_054 crossref_primary_10_1016_j_nanoen_2019_04_097 crossref_primary_10_1007_s42417_021_00304_y crossref_primary_10_1016_j_enconman_2022_116332 crossref_primary_10_3390_app14010156 crossref_primary_10_1007_s00542_018_04291_1 crossref_primary_10_1016_j_seta_2020_100881 crossref_primary_10_1109_MIE_2020_2978219 crossref_primary_10_1109_JSEN_2022_3204719 crossref_primary_10_1080_15397734_2024_2330652 crossref_primary_10_1016_j_micpro_2022_104692 crossref_primary_10_3390_s19092170 crossref_primary_10_1109_TCSI_2019_2941737 crossref_primary_10_1177_1045389X20966058 crossref_primary_10_1063_5_0054004 crossref_primary_10_1109_TUFFC_2020_3002917 crossref_primary_10_1088_1361_665X_ab19d2 crossref_primary_10_1016_j_enconman_2022_116585 crossref_primary_10_1155_2022_3342449 crossref_primary_10_1002_advs_202205179 crossref_primary_10_3390_s20205828 crossref_primary_10_1038_s41378_023_00500_8 crossref_primary_10_1088_1361_665X_ad1c40 crossref_primary_10_1016_j_joule_2018_03_011 crossref_primary_10_1016_j_euromechsol_2022_104800 crossref_primary_10_1080_15376494_2022_2031357 crossref_primary_10_1007_s00542_023_05440_x crossref_primary_10_1088_1361_6439_aab514 crossref_primary_10_1109_JSEN_2021_3102537 crossref_primary_10_1088_1361_665X_ad254f crossref_primary_10_1088_1361_665X_acb1e3 crossref_primary_10_1002_aesr_202400116 crossref_primary_10_1002_er_5816 crossref_primary_10_1002_tee_23736 crossref_primary_10_1016_j_ceramint_2022_01_123 crossref_primary_10_1109_JMEMS_2018_2875788 crossref_primary_10_1002_adma_202002208 crossref_primary_10_1016_j_pmatsci_2023_101184 crossref_primary_10_1002_smll_201702091 crossref_primary_10_1016_j_mtcomm_2023_105541 crossref_primary_10_1149_2162_8777_ac9335 crossref_primary_10_1063_5_0072596 crossref_primary_10_1109_JMEMS_2019_2920213 crossref_primary_10_1515_ehs_2022_0159 crossref_primary_10_1007_s00339_020_3299_9 crossref_primary_10_1088_1361_6439_ab2371 crossref_primary_10_3390_mi11110963 crossref_primary_10_1088_1361_665X_ad9e5a crossref_primary_10_1002_ente_202402193 crossref_primary_10_1109_TUFFC_2020_2967842 crossref_primary_10_1016_j_ymssp_2019_06_032 crossref_primary_10_1016_j_aeue_2019_05_040 crossref_primary_10_1109_JMEMS_2019_2921649 crossref_primary_10_1142_S1758825122500338 crossref_primary_10_1021_acsami_7b16973 crossref_primary_10_3390_en15197271 crossref_primary_10_3390_machines10090803 crossref_primary_10_3390_en11071850 crossref_primary_10_1109_TIA_2022_3209955 crossref_primary_10_1016_j_sna_2021_112743 crossref_primary_10_1109_JSEN_2019_2904025 crossref_primary_10_1109_TMECH_2019_2939748 crossref_primary_10_1002_tee_24116 crossref_primary_10_1063_5_0060948 crossref_primary_10_1002_admt_202101347 crossref_primary_10_1016_j_enconman_2023_117774 crossref_primary_10_1007_s11277_020_07910_1 crossref_primary_10_1080_02564602_2020_1799876 crossref_primary_10_1016_j_apor_2022_103296 crossref_primary_10_1142_S0218126624503006 crossref_primary_10_1155_2023_5568046 |
Cites_doi | 10.1016/j.tsf.2007.08.039 10.1063/1.1516857 10.1007/s10832-006-6287-3 10.1007/978-0-387-76464-1 10.1007/s00542-012-1424-1 10.3390/s141224305 10.1016/j.nanoen.2011.09.001 10.1109/MEMSYS.2011.5734377 10.1109/JSSC.2012.2221233 10.1016/S0924-4247(03)00234-6 10.1016/j.sna.2012.07.002 10.1038/nmat3946 10.1063/1.357693 10.1016/j.nanoen.2012.02.001 10.1080/10584580590964574 10.1109/JMEMS.2010.2067431 10.1016/j.sna.2004.12.032 10.1109/JSSC.2014.2325574 10.1016/j.sna.2014.12.005 10.1016/j.sna.2012.03.003 10.1016/j.renene.2013.06.031 10.1016/j.mejo.2007.12.017 10.1109/JSSC.2009.2014205 10.1088/0960-1317/22/9/094007 10.1016/j.enconman.2010.07.024 10.1080/00150199208230018 10.1088/0960-1317/19/3/035001 10.1088/0964-1726/13/5/018 10.1016/j.mejo.2006.07.023 10.1088/0960-1317/17/7/007 10.1063/1.3629551 10.1109/ISSCC.2011.5746332 10.1109/CICC.2014.6946046 10.1016/j.proche.2009.07.297 10.1002/9781119991151 10.1063/1.1487901 10.1109/ICSENS.2011.6127020 10.1088/0960-1317/6/1/002 10.1016/j.sna.2007.11.005 10.1016/j.sna.2010.06.028 10.1088/0960-1317/20/10/104001 10.1109/VLSIC.2014.6858425 10.1016/S0140-3664(02)00248-7 10.1557/mrs.2012.275 10.1080/00150190600691353 10.1088/0960-1317/18/5/055017 10.4313/TEEM.2011.12.5.222 |
ContentType | Journal Article |
CorporateAuthor | Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States) |
CorporateAuthor_xml | – name: Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States) |
DBID | 97E RIA RIE AAYXX CITATION OTOTI |
DOI | 10.1109/JMEMS.2017.2728821 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1941-0158 |
EndPage | 1234 |
ExternalDocumentID | 1541454 10_1109_JMEMS_2017_2728821 8006212 |
Genre | orig-research |
GrantInformation_xml | – fundername: ONR for U.S.–Korea collaboration funderid: 10.13039/100000006 – fundername: Air Force Office of Scientific Research (AFOSR) grantid: FA9550-14-1-0376 funderid: 10.13039/100000181 – fundername: NSF grantid: DMR-15-06218 funderid: 10.13039/100000001 – fundername: Office of Naval Research (ONR) grantid: N00014-14-1-0158 funderid: 10.13039/100000006 – fundername: Energy Technology Development Project (KETEP) Grant through the Ministry of Trade Industry and Energy Republic of Korea (Piezoelectric Energy Harvester Development and Demonstration for scavenging Energy from Road Traffic System) grantid: 20142020103970 – fundername: National Science Foundation (NSF) CREST Program funderid: 10.13039/100000001 – fundername: Department of Energy Program grantid: DE-FG02-06ER46290 |
GroupedDBID | -~X .DC 0R~ 29L 4.4 5GY 5VS 6IK 97E 9M8 AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 TWZ VH1 XWC AAYXX CITATION RIG ABPTK OTOTI |
ID | FETCH-LOGICAL-c364t-69912b8eccfc8b14523c30a1359642f76d4ff1a5ce698887acd7bb2b361795993 |
IEDL.DBID | RIE |
ISSN | 1057-7157 |
IngestDate | Fri May 19 02:14:25 EDT 2023 Tue Jul 01 01:45:07 EDT 2025 Thu Apr 24 23:00:50 EDT 2025 Tue Aug 26 17:01:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-69912b8eccfc8b14523c30a1359642f76d4ff1a5ce698887acd7bb2b361795993 |
Notes | USDOE Office of Science (SC) FG02-06ER46290 |
ORCID | 0000-0001-5563-9088 0000000155639088 |
PageCount | 9 |
ParticipantIDs | osti_scitechconnect_1541454 crossref_primary_10_1109_JMEMS_2017_2728821 crossref_citationtrail_10_1109_JMEMS_2017_2728821 ieee_primary_8006212 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-01 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of microelectromechanical systems |
PublicationTitleAbbrev | JMEMS |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref17 ref16 yoon (ref29) 2010 ref19 ref18 jaffe (ref37) 1971 ref51 ref50 aktakka (ref40) 2012 ref45 ref48 ref47 ref41 dang (ref4) 2012 ref44 ref43 ref49 ref8 ref7 ref9 ref3 ref6 ref5 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 hirasawa (ref46) 2010 ref22 ref21 durou (ref42) 2010 ref28 ref27 |
References_xml | – ident: ref32 doi: 10.1016/j.tsf.2007.08.039 – ident: ref35 doi: 10.1063/1.1516857 – ident: ref28 doi: 10.1007/s10832-006-6287-3 – ident: ref20 doi: 10.1007/978-0-387-76464-1 – ident: ref53 doi: 10.1007/s00542-012-1424-1 – start-page: 19 year: 2010 ident: ref42 article-title: Micromachined bulk PZT piezoelectric vibration harvester to improve effectiveness over low amplitude and low frequency vibrations publication-title: Proc Power MEMS – ident: ref10 doi: 10.3390/s141224305 – ident: ref22 doi: 10.1016/j.nanoen.2011.09.001 – ident: ref47 doi: 10.1109/MEMSYS.2011.5734377 – ident: ref6 doi: 10.1109/JSSC.2012.2221233 – ident: ref33 doi: 10.1016/S0924-4247(03)00234-6 – ident: ref41 doi: 10.1016/j.sna.2012.07.002 – ident: ref11 doi: 10.1038/nmat3946 – ident: ref36 doi: 10.1063/1.357693 – ident: ref23 doi: 10.1016/j.nanoen.2012.02.001 – ident: ref15 doi: 10.1080/10584580590964574 – ident: ref50 doi: 10.1109/JMEMS.2010.2067431 – ident: ref24 doi: 10.1016/j.sna.2004.12.032 – ident: ref1 doi: 10.1109/JSSC.2014.2325574 – year: 2010 ident: ref29 article-title: High efficiency piezoelectric energy harvester having spiral structure – ident: ref9 doi: 10.1016/j.sna.2014.12.005 – ident: ref52 doi: 10.1016/j.sna.2012.03.003 – ident: ref12 doi: 10.1016/j.renene.2013.06.031 – ident: ref16 doi: 10.1016/j.mejo.2007.12.017 – ident: ref5 doi: 10.1109/JSSC.2009.2014205 – ident: ref51 doi: 10.1088/0960-1317/22/9/094007 – ident: ref18 doi: 10.1016/j.enconman.2010.07.024 – ident: ref31 doi: 10.1080/00150199208230018 – ident: ref14 doi: 10.1088/0960-1317/19/3/035001 – ident: ref19 doi: 10.1088/0964-1726/13/5/018 – ident: ref44 doi: 10.1016/j.mejo.2006.07.023 – ident: ref13 doi: 10.1088/0960-1317/17/7/007 – ident: ref45 doi: 10.1063/1.3629551 – ident: ref2 doi: 10.1109/ISSCC.2011.5746332 – ident: ref8 doi: 10.1109/CICC.2014.6946046 – ident: ref49 doi: 10.1016/j.proche.2009.07.297 – ident: ref21 doi: 10.1002/9781119991151 – ident: ref38 doi: 10.1063/1.1487901 – ident: ref3 doi: 10.1109/ICSENS.2011.6127020 – ident: ref39 doi: 10.1088/0960-1317/6/1/002 – ident: ref17 doi: 10.1016/j.sna.2007.11.005 – start-page: 1 year: 2012 ident: ref4 article-title: A low power wireless signal transmitter for biomedical micro-sensors publication-title: Proc ASEE North Central Sec Conf – ident: ref48 doi: 10.1016/j.sna.2010.06.028 – ident: ref43 doi: 10.1088/0960-1317/20/10/104001 – ident: ref7 doi: 10.1109/VLSIC.2014.6858425 – year: 2012 ident: ref40 article-title: Integration of bulk piezoelectric materials into microsystems – ident: ref26 doi: 10.1016/S0140-3664(02)00248-7 – ident: ref27 doi: 10.1557/mrs.2012.275 – ident: ref34 doi: 10.1080/00150190600691353 – ident: ref25 doi: 10.1088/0960-1317/18/5/055017 – start-page: 211 year: 2010 ident: ref46 article-title: Design and fabrication of piezoelectric aluminum nitride corrugated beam energy harvester publication-title: Proc Power MEMS – ident: ref30 doi: 10.4313/TEEM.2011.12.5.222 – year: 1971 ident: ref37 publication-title: Piezoelectric Ceramics |
SSID | ssj0014486 |
Score | 2.5612063 |
Snippet | We demonstrate a microscale vibration energy harvester exhibiting an ultra-low resonance frequency and high power density. A spiral shaped... Not provided. |
SourceID | osti crossref ieee |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 1226 |
SubjectTerms | Electrodes Energy harvesting Engineering Instruments & Instrumentation low resonance frequency Micromechanical devices Nanoscale devices Physics piezoelectric film Piezoresistive devices Resonant frequency Science & Technology - Other Topics spiral structure Vibrations |
Title | Ultra-Low Resonant Piezoelectric MEMS Energy Harvester With High Power Density |
URI | https://ieeexplore.ieee.org/document/8006212 https://www.osti.gov/biblio/1541454 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8QwEB10QdCD3-L6RQ7etGvTNk1zFF0RcUXQRW-lSVNcXLaiXcT99c6k3UVFxFN7aEqaScmb5M17AIdhYiRXwnhB7kuyMFNekuvQC2yeZLElBOvUPm_iy3509Sge5-B4VgtjrXXkM9uhW3eWn5dmTFtlJwlV_JGl8DwmbnWt1uzEANMMV0mE-MOTXMhpgYyvTq563d4dsbhkJ5ABQkr-bRFyrip4KfGf-rK2XKxAb9qrmlLy3BlXumMmPwQb_9vtVVhuQCY7rWfFGszZ0TosfZEeXIcFR_00bxtw0x9Wr5l3Xb4z2ssnYgy7HdhJWTvkDAyjD2NdVyTIyEvIiSuwh0H1xIgmwm7JaY2dExW--tiE_kX3_uzSa1wWPBPGUeXFiBADnWAoC5NoHmFmakI_46FQmJsUMs6jouCZMDZWmC7LzORS60CHiH2UQHizBa1RObLbwHiR8TzBrC7CRd8XOqHCVSUKiTjLN0K1gU-HPTWNBDk5YQxTl4r4KnWhSilUaROqNhzN2rzUAhx_Pr1B4z97shn6NuxSdFNEFSSNa4hDZKqUkwe6iHZ-b7QLi_TqmruyB63qdWz3EYFU-sBNvU81QNNk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT-MwEB0hEII98I22fPqwtyUlTuI4PiIoKtBWSEsFtyh2HFGBGgSpVsuvZ8ZJKxYhxCk52IrjsTVv7DfzAH6FiZFcCeMFuS9Jwkx5Sa5DL7B5ksWWEKyr9jmIu8Po8k7czcHRLBfGWuvIZ7ZNr-4uPy_NhI7KjhPK-CNJ4QX0-4LX2VqzOwMMNFwuESIQT3Ihpykyvjq-7Hf6f4jHJduBDBBU8v_ckNNVwUeJu-qddzlfhf50XDWp5KE9qXTbvH4o2fjdga_BSgMz2Um9LtZhzo434Me74oMbsOjIn-ZlEwbDx-o583rlX0an-USNYdcj-1rWGjkjw-jHWMelCTJSE3LlFdjtqLpnRBRh16S1xs6IDF_924LheefmtOs1OgueCeOo8mLEiIFO0JiFSTSPMDY1oZ_xUCiMTgoZ51FR8EwYGysMmGVmcql1oENEP0ogwNmG-XE5tj-B8SLjeYJxXYRu3xc6odRVJQqJSMs3QrWAT6c9NU0RctLCeExdMOKr1JkqJVOljala8HvW56kuwfFl602a_1nLZupbsEvWTRFXUHFcQywiU6WcVNBFtPN5p0NY6t70e2nvYnC1C8v0mZrJsgfz1fPE7iMeqfSBW4ZvapzWrQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-Low+Resonant+Piezoelectric+MEMS+Energy+Harvester+With+High+Power+Density&rft.jtitle=Journal+of+microelectromechanical+systems&rft.au=Hyun-Cheol+Song&rft.au=Kumar%2C+Prashant&rft.au=Maurya%2C+Deepam&rft.au=Min-Gyu+Kang&rft.date=2017-12-01&rft.pub=IEEE&rft.issn=1057-7157&rft.volume=26&rft.issue=6&rft.spage=1226&rft.epage=1234&rft_id=info:doi/10.1109%2FJMEMS.2017.2728821&rft.externalDocID=8006212 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7157&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7157&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7157&client=summon |