A Space-Time Periodic Task Model for Recommendation of Remote Sensing Images
With the rapid development of remote sensing technology, the quantity and variety of remote sensing images are growing so quickly that proactive and personalized access to data has become an inevitable trend. One of the active approaches is remote sensing image recommendation, which can offer relate...
Saved in:
Published in | ISPRS international journal of geo-information Vol. 7; no. 2; p. 40 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the rapid development of remote sensing technology, the quantity and variety of remote sensing images are growing so quickly that proactive and personalized access to data has become an inevitable trend. One of the active approaches is remote sensing image recommendation, which can offer related image products to users according to their preference. Although multiple studies on remote sensing retrieval and recommendation have been performed, most of these studies model the user profiles only from the perspective of spatial area or image features. In this paper, we propose a spatiotemporal recommendation method for remote sensing data based on the probabilistic latent topic model, which is named the Space-Time Periodic Task model (STPT). User retrieval behaviors of remote sensing images are represented as mixtures of latent tasks, which act as links between users and images. Each task is associated with the joint probability distribution of space, time and image characteristics. Meanwhile, the von Mises distribution is introduced to fit the distribution of tasks over time. Then, we adopt Gibbs sampling to learn the random variables and parameters and present the inference algorithm for our model. Experiments show that the proposed STPT model can improve the capability and efficiency of remote sensing image data services. |
---|---|
AbstractList | With the rapid development of remote sensing technology, the quantity and variety of remote sensing images are growing so quickly that proactive and personalized access to data has become an inevitable trend. One of the active approaches is remote sensing image recommendation, which can offer related image products to users according to their preference. Although multiple studies on remote sensing retrieval and recommendation have been performed, most of these studies model the user profiles only from the perspective of spatial area or image features. In this paper, we propose a spatiotemporal recommendation method for remote sensing data based on the probabilistic latent topic model, which is named the Space-Time Periodic Task model (STPT). User retrieval behaviors of remote sensing images are represented as mixtures of latent tasks, which act as links between users and images. Each task is associated with the joint probability distribution of space, time and image characteristics. Meanwhile, the von Mises distribution is introduced to fit the distribution of tasks over time. Then, we adopt Gibbs sampling to learn the random variables and parameters and present the inference algorithm for our model. Experiments show that the proposed STPT model can improve the capability and efficiency of remote sensing image data services. |
Author | Zhang, Xiuhong Liu, Jiping Chen, Di |
Author_xml | – sequence: 1 givenname: Xiuhong orcidid: 0000-0001-9379-2956 surname: Zhang fullname: Zhang, Xiuhong – sequence: 2 givenname: Di surname: Chen fullname: Chen, Di – sequence: 3 givenname: Jiping surname: Liu fullname: Liu, Jiping |
BookMark | eNpNUE1LAzEUDFLBWnvyDwQ8ymo2CZvmWIofhYpi6zlkk_eW1O6mJtuD_97VivguMwzDvGHOyaiLHRByWbIbITS7DdsmKMYZk-yEjDnnrNC6kqN__IxMc96y4XQpZpKNyWpO13vroNiEFugLpBB9cHRj8zt9ih52FGOir-Bi20LnbR9iRyMOSht7oGvocugaumxtA_mCnKLdZZj-4oS83d9tFo_F6vlhuZivCicq2ReV5KVUOENeWwRA7zhIgUJizWvFNGeIfsatm6mqAuHtQD1KYT3UWmMtJmR5zPXRbs0-hdamTxNtMD9CTI2xqQ9uBwZr4JXyaJFXEnipHTChlWJKcUTAIevqmLVP8eMAuTfbeEjdUN9wNtQsmdRicF0fXS7FnBPg39eSme_1zb_1xRcQT3lh |
CitedBy_id | crossref_primary_10_1016_j_cageo_2021_104935 crossref_primary_10_3390_s24041185 crossref_primary_10_3233_JIFS_233551 crossref_primary_10_1016_j_eswa_2023_121278 crossref_primary_10_3390_ijgi7040147 crossref_primary_10_3390_rs15102564 |
Cites_doi | 10.1145/2629461 10.1016/j.eswa.2005.06.003 10.1016/j.comcom.2009.11.024 10.1145/2663356 10.1002/aris.1440400115 10.1109/TGRS.2007.892007 10.1198/106186001317115045 10.1145/2786761 10.1109/TGRS.2006.871200 10.1016/j.ins.2010.07.024 10.1007/978-3-540-27814-6_63 10.1145/2876480.2876486 10.1016/j.ins.2014.10.006 10.1016/j.ins.2014.09.014 10.1016/S0034-4257(00)00202-9 10.1080/14498596.2012.759087 10.1109/TSC.2014.2355842 10.1016/j.jss.2013.12.030 10.1007/s12652-016-0346-7 10.1080/01431168908903939 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2018 |
Copyright_xml | – notice: Copyright MDPI AG 2018 |
DBID | AAYXX CITATION 7SC 7UA 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 H96 HCIFZ JQ2 KR7 L.G L6V L7M L~C L~D M7S P5Z P62 PCBAR PIMPY PQEST PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/ijgi7020040 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Visual Arts |
EISSN | 2220-9964 |
ExternalDocumentID | oai_doaj_org_article_fbe267dfaf264e219ce039770772ffef 10_3390_ijgi7020040 |
GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IPNFZ KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PIMPY PROAC PTHSS RIG ZBA 7SC 7UA 8FD ABUWG AZQEC C1K DWQXO F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c364t-642147f8f2bafeefdc2e43f34fb2b70920ffd82ac8766e3da2acdf43adeb99fb3 |
IEDL.DBID | 8FG |
ISSN | 2220-9964 |
IngestDate | Tue Oct 22 15:14:20 EDT 2024 Tue Nov 05 12:41:19 EST 2024 Fri Aug 23 03:28:03 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-642147f8f2bafeefdc2e43f34fb2b70920ffd82ac8766e3da2acdf43adeb99fb3 |
ORCID | 0000-0001-9379-2956 |
OpenAccessLink | https://www.proquest.com/docview/2014710493?pq-origsite=%requestingapplication% |
PQID | 2014710493 |
PQPubID | 2032387 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fbe267dfaf264e219ce039770772ffef proquest_journals_2014710493 crossref_primary_10_3390_ijgi7020040 |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | ISPRS international journal of geo-information |
PublicationYear | 2018 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref12 ref15 ref53 ref52 ref11 ref10 ref17 ref16 ref18 Razavian (ref51) 2011 Wu (ref5) 2005; 29 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 Matyas (ref8) 2009 McLoughlin (ref13) 2004 ref49 ref7 ref9 ref4 ref3 Manning (ref54) 2008 ref6 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref1 ref39 ref38 Campbell (ref2) 2011 Pirasteh (ref20) 2014 ref24 ref23 ref26 ref25 ref22 ref21 Blei (ref14) 2003; 3 Schafer (ref19) 2001 ref28 ref27 ref29 |
References_xml | – ident: ref37 – ident: ref1 – ident: ref35 doi: 10.1145/2629461 – ident: ref43 – volume: 3 start-page: 993 year: 2003 ident: ref14 article-title: Latent dirichlet allocation publication-title: J. Mach. Learn. Res. contributor: fullname: Blei – volume: 29 start-page: 757 year: 2005 ident: ref5 article-title: Modeling user multiple interests by an improved GCS approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.06.003 contributor: fullname: Wu – ident: ref23 doi: 10.1016/j.comcom.2009.11.024 – ident: ref44 doi: 10.1145/2663356 – ident: ref24 – start-page: 824 year: 2008 ident: ref54 contributor: fullname: Manning – year: 2011 ident: ref51 contributor: fullname: Razavian – ident: ref22 doi: 10.1002/aris.1440400115 – ident: ref53 – ident: ref6 doi: 10.1109/TGRS.2007.892007 – ident: ref11 – ident: ref17 – ident: ref34 – ident: ref50 doi: 10.1198/106186001317115045 – ident: ref30 – ident: ref46 doi: 10.1145/2786761 – ident: ref7 doi: 10.1109/TGRS.2006.871200 – ident: ref26 doi: 10.1016/j.ins.2010.07.024 – ident: ref36 – start-page: 535 year: 2004 ident: ref13 article-title: A knowledge management system for intelligent retrieval of geo-spatial imagery publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-540-27814-6_63 contributor: fullname: McLoughlin – ident: ref47 doi: 10.1145/2876480.2876486 – ident: ref40 – ident: ref4 doi: 10.1016/j.ins.2014.10.006 – ident: ref39 doi: 10.1016/j.ins.2014.09.014 – ident: ref16 – ident: ref12 – ident: ref48 doi: 10.1016/S0034-4257(00)00202-9 – start-page: 115 year: 2001 ident: ref19 article-title: E-commerce recommendation applications contributor: fullname: Schafer – ident: ref45 – ident: ref29 – ident: ref41 – ident: ref9 doi: 10.1080/14498596.2012.759087 – ident: ref27 doi: 10.1109/TSC.2014.2355842 – ident: ref25 – ident: ref32 – ident: ref15 – ident: ref38 doi: 10.1016/j.jss.2013.12.030 – year: 2011 ident: ref2 contributor: fullname: Campbell – start-page: 245 year: 2014 ident: ref20 contributor: fullname: Pirasteh – ident: ref28 – ident: ref42 – ident: ref21 – start-page: 122 year: 2009 ident: ref8 article-title: A spatial user similarity measure for geographic recommender systems contributor: fullname: Matyas – ident: ref33 doi: 10.1007/s12652-016-0346-7 – ident: ref49 – ident: ref3 doi: 10.1080/01431168908903939 – ident: ref52 – ident: ref18 – ident: ref10 – ident: ref31 |
SSID | ssj0000913840 |
Score | 2.1592917 |
Snippet | With the rapid development of remote sensing technology, the quantity and variety of remote sensing images are growing so quickly that proactive and... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 40 |
SubjectTerms | Data Detection Distribution Mathematical models Probability distribution Probability theory Profiles Random variables recommendation Recommender systems Remote sensing remote sensing images Retrieval Spacetime Spatial distribution Statistical analysis topic model user preference |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BSsNAEF2kF_UgWhWrVfbQa2iSTZPssYqliorQVnoLu9mZGrWpmPbg3zubpFLx4MVbWJYkzMzOvAc78xjrxMaL0zg1DngaiKCI1JGIygGqBibyNIpyXNP9QzicBLfT3nRD6sveCavGA1eG66IGP4wMKqTSDXS-rMAVgRaXYCEiYJl9XblBpsocLD1B1KVqyBPE67vZyyyLXBsT7o8SVE7q_5WIy-oy2Gd7NSzk_ep3DtgW5E22XSuUP3822e5TVqyqHcUhu-vzEZFdcGwHB3-kKFqYLOVjVbxyq272xgmLckst53OoZZP4AmmFPAN8ZG-t5zN-M6dsUhyxyeB6fDV0al0EJxVhsHRsb2oQYYy-VgiAJvUhECgC1L6OXOm7iCb2VUqZLgRhFD0aDIQyoKVELY5ZI1_kcMI4uTDEUEUyRRNEvomN30OMpGu00gbiFuusTZW8V-MvEqIN1qLJhkVb7NKa8XuLnVldLpAnk9qTyV-ebLH22glJfZCKhPAJlU-iMeL0P75xxnbojXF17brNGsuPFZwTqljqizKAvgA3Qc3c priority: 102 providerName: Directory of Open Access Journals |
Title | A Space-Time Periodic Task Model for Recommendation of Remote Sensing Images |
URI | https://www.proquest.com/docview/2014710493 https://doaj.org/article/fbe267dfaf264e219ce039770772ffef |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1Be4AeKiggFsrKh14jEjuNnRNqUZeCoKpoi3qL_DGzXWA3bbM98O87TrylqBK3xPFpxn5-z7HnAeyYUBhvfMiwcMgCRfmsJrIZ8moQdOFI9eWavh1Vh2fll_Pd87Th1qVjlStM7IE6tD7ukbNILxhHmc-qD5dXWXSNin9Xk4XGY1gvpNZRfJnJp7s9lljzkgXMcC1Psbp_P_s5nek8joz8n4Wor9f_AI77NWbyDDYTORR7QzafwyNcbMGT5FN-8WcLNn7MupuhR_cCvu6JE5a8mMV7HOKYx1IbZl6c2u6XiB5nvwUzUhEF5nyOyTxJtMQtnB8UJ_Hs-mIqPs8ZU7qXcDY5OP14mCV3hMyrqlxm8YZqqcmQdJYQKXiJpSJVkpNO57XMiYKR1jPeVaiC5cdApbIBXV2TU69gbdEu8DUITmRFldW1p1BqGUyQu0S6zoOzLqAZwc4qVM3lUASjYfEQI9rci-gI9mMY77rEytV9Q3s9bdJEaMihrHQgS0zFkPEyGpYxCc2Z5hMhjWB7lYQmTaeu-Zv8N____Bae8osZjlVvw9ry-gbfMWtYunE_NMawvn9wdPx93GvvWxgcxtw |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB5ROKQcENBWDY-yB65WHa_x44TSihAgICSSipu1j5mQQmLAyYF_z6y9oa0qcbN29zSz-8186535AA4z28lMZmyAHY1MUKQJciIVIEcDm3Y0ybpd0-VV0h_F57dHt_7CrfLPKpeYWAO1LY27I2eS3mEc5XxWHj8-BU41yv1d9RIaH2AtlhyrXaV47_TtjsX1vGQC05TlSWb33ye_x5M0dDsj_CcQ1f36_4PjOsb0NmHDJ4ei23hzC1Zwtg0tr1N-97IN678m1aJZUX2CQVfcMOXFwNVxiGveS6WdGDFU1b1wGmcPgjNS4QjmdIpePEmUxCPsHxQ37u36bCzOpowp1WcY9U6GP_uBV0cIjEzieeAqVOOUMoq0IkSyJsJYkoxJRzoN8ygkslmkDONdgtIq_rQUS2VR5zlp-QVWZ-UMv4JgRyaUqDQ3ZOM0spmNjojSPLRaaYtZGw6XpioemyYYBZMHZ9HiL4u24Ycz49sS17m6Hiifx4U_CAVpjJLUkiJOxZDx0gmWcRIacppPhNSGvaUTCn-cquKP83fenz6AVn94OSgGZ1cXu_CRJ7LmifUerM6fF7jPGcRcf6u3ySuOqscv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9xADLYoSJQeKspDbEthDlwjsplsMjkh-lgeBYTEQ9yiedjbLewGyHLg3-NJZikIiVs0mZPt-ewv8fgD2FKuq6yyLsKuQSYo0kYFkY6Qs4HLu4ZkM67p-CTbv0gPr3pXof-pDm2VU0xsgNpV1n8jZ5LeZRzlelZuU2iLOP3V37m9i7yClP_TGuQ0PsAcZ8XMx7zq7z1_b_HzL5nMtFf0JDP97eG_wTCPfZTEr5JSM7v_DTQ3-aa_CJ9DoSh2W89-gRkcL8HHoFn-93EJPl0O64d2R70MR7vijOkvRv5OhzjluKrc0IpzXV8Lr3d2I7g6FZ5sjkYYhJRERbzCvkJx5vvYxwNxMGJ8qVfgov_7_Od-FJQSIiuzdBL526ppTooSowmRnE0wlSRTMonJ4yKJiZxKtGXsy1A6zY-OUqkdmqIgI1dhdlyNcQ0EOzWjTOeFJZfmiVMu6RHlReyMNg5VB7ampipv24EYJRMJb9HyhUU78MOb8XmLn2LdLFT3gzIcipIMJlnuSBOXZcjY6cXLuCCNueQnQurA-tQJZThadfk_EL6-_3oT5jlCyqODkz_fYIHXVdttvQ6zk_sH_M7FxMRsNFHyBJ3Uy2c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Space-Time+Periodic+Task+Model+for+Recommendation+of+Remote+Sensing+Images&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Zhang%2C+Xiuhong&rft.au=Chen%2C+Di&rft.au=Liu%2C+Jiping&rft.date=2018-02-01&rft.pub=MDPI+AG&rft.eissn=2220-9964&rft.volume=7&rft.issue=2&rft.spage=40&rft_id=info:doi/10.3390%2Fijgi7020040&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon |