A Space-Time Periodic Task Model for Recommendation of Remote Sensing Images

With the rapid development of remote sensing technology, the quantity and variety of remote sensing images are growing so quickly that proactive and personalized access to data has become an inevitable trend. One of the active approaches is remote sensing image recommendation, which can offer relate...

Full description

Saved in:
Bibliographic Details
Published inISPRS international journal of geo-information Vol. 7; no. 2; p. 40
Main Authors Zhang, Xiuhong, Chen, Di, Liu, Jiping
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the rapid development of remote sensing technology, the quantity and variety of remote sensing images are growing so quickly that proactive and personalized access to data has become an inevitable trend. One of the active approaches is remote sensing image recommendation, which can offer related image products to users according to their preference. Although multiple studies on remote sensing retrieval and recommendation have been performed, most of these studies model the user profiles only from the perspective of spatial area or image features. In this paper, we propose a spatiotemporal recommendation method for remote sensing data based on the probabilistic latent topic model, which is named the Space-Time Periodic Task model (STPT). User retrieval behaviors of remote sensing images are represented as mixtures of latent tasks, which act as links between users and images. Each task is associated with the joint probability distribution of space, time and image characteristics. Meanwhile, the von Mises distribution is introduced to fit the distribution of tasks over time. Then, we adopt Gibbs sampling to learn the random variables and parameters and present the inference algorithm for our model. Experiments show that the proposed STPT model can improve the capability and efficiency of remote sensing image data services.
AbstractList With the rapid development of remote sensing technology, the quantity and variety of remote sensing images are growing so quickly that proactive and personalized access to data has become an inevitable trend. One of the active approaches is remote sensing image recommendation, which can offer related image products to users according to their preference. Although multiple studies on remote sensing retrieval and recommendation have been performed, most of these studies model the user profiles only from the perspective of spatial area or image features. In this paper, we propose a spatiotemporal recommendation method for remote sensing data based on the probabilistic latent topic model, which is named the Space-Time Periodic Task model (STPT). User retrieval behaviors of remote sensing images are represented as mixtures of latent tasks, which act as links between users and images. Each task is associated with the joint probability distribution of space, time and image characteristics. Meanwhile, the von Mises distribution is introduced to fit the distribution of tasks over time. Then, we adopt Gibbs sampling to learn the random variables and parameters and present the inference algorithm for our model. Experiments show that the proposed STPT model can improve the capability and efficiency of remote sensing image data services.
Author Zhang, Xiuhong
Liu, Jiping
Chen, Di
Author_xml – sequence: 1
  givenname: Xiuhong
  orcidid: 0000-0001-9379-2956
  surname: Zhang
  fullname: Zhang, Xiuhong
– sequence: 2
  givenname: Di
  surname: Chen
  fullname: Chen, Di
– sequence: 3
  givenname: Jiping
  surname: Liu
  fullname: Liu, Jiping
BookMark eNpNUE1LAzEUDFLBWnvyDwQ8ymo2CZvmWIofhYpi6zlkk_eW1O6mJtuD_97VivguMwzDvGHOyaiLHRByWbIbITS7DdsmKMYZk-yEjDnnrNC6kqN__IxMc96y4XQpZpKNyWpO13vroNiEFugLpBB9cHRj8zt9ih52FGOir-Bi20LnbR9iRyMOSht7oGvocugaumxtA_mCnKLdZZj-4oS83d9tFo_F6vlhuZivCicq2ReV5KVUOENeWwRA7zhIgUJizWvFNGeIfsatm6mqAuHtQD1KYT3UWmMtJmR5zPXRbs0-hdamTxNtMD9CTI2xqQ9uBwZr4JXyaJFXEnipHTChlWJKcUTAIevqmLVP8eMAuTfbeEjdUN9wNtQsmdRicF0fXS7FnBPg39eSme_1zb_1xRcQT3lh
CitedBy_id crossref_primary_10_1016_j_cageo_2021_104935
crossref_primary_10_3390_s24041185
crossref_primary_10_3233_JIFS_233551
crossref_primary_10_1016_j_eswa_2023_121278
crossref_primary_10_3390_ijgi7040147
crossref_primary_10_3390_rs15102564
Cites_doi 10.1145/2629461
10.1016/j.eswa.2005.06.003
10.1016/j.comcom.2009.11.024
10.1145/2663356
10.1002/aris.1440400115
10.1109/TGRS.2007.892007
10.1198/106186001317115045
10.1145/2786761
10.1109/TGRS.2006.871200
10.1016/j.ins.2010.07.024
10.1007/978-3-540-27814-6_63
10.1145/2876480.2876486
10.1016/j.ins.2014.10.006
10.1016/j.ins.2014.09.014
10.1016/S0034-4257(00)00202-9
10.1080/14498596.2012.759087
10.1109/TSC.2014.2355842
10.1016/j.jss.2013.12.030
10.1007/s12652-016-0346-7
10.1080/01431168908903939
ContentType Journal Article
Copyright Copyright MDPI AG 2018
Copyright_xml – notice: Copyright MDPI AG 2018
DBID AAYXX
CITATION
7SC
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
H96
HCIFZ
JQ2
KR7
L.G
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/ijgi7020040
DatabaseName CrossRef
Computer and Information Systems Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Visual Arts
EISSN 2220-9964
ExternalDocumentID oai_doaj_org_article_fbe267dfaf264e219ce039770772ffef
10_3390_ijgi7020040
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IPNFZ
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PIMPY
PROAC
PTHSS
RIG
ZBA
7SC
7UA
8FD
ABUWG
AZQEC
C1K
DWQXO
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c364t-642147f8f2bafeefdc2e43f34fb2b70920ffd82ac8766e3da2acdf43adeb99fb3
IEDL.DBID 8FG
ISSN 2220-9964
IngestDate Tue Oct 22 15:14:20 EDT 2024
Tue Nov 05 12:41:19 EST 2024
Fri Aug 23 03:28:03 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-642147f8f2bafeefdc2e43f34fb2b70920ffd82ac8766e3da2acdf43adeb99fb3
ORCID 0000-0001-9379-2956
OpenAccessLink https://www.proquest.com/docview/2014710493?pq-origsite=%requestingapplication%
PQID 2014710493
PQPubID 2032387
ParticipantIDs doaj_primary_oai_doaj_org_article_fbe267dfaf264e219ce039770772ffef
proquest_journals_2014710493
crossref_primary_10_3390_ijgi7020040
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle ISPRS international journal of geo-information
PublicationYear 2018
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref12
ref15
ref53
ref52
ref11
ref10
ref17
ref16
ref18
Razavian (ref51) 2011
Wu (ref5) 2005; 29
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Matyas (ref8) 2009
McLoughlin (ref13) 2004
ref49
ref7
ref9
ref4
ref3
Manning (ref54) 2008
ref6
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref1
ref39
ref38
Campbell (ref2) 2011
Pirasteh (ref20) 2014
ref24
ref23
ref26
ref25
ref22
ref21
Blei (ref14) 2003; 3
Schafer (ref19) 2001
ref28
ref27
ref29
References_xml – ident: ref37
– ident: ref1
– ident: ref35
  doi: 10.1145/2629461
– ident: ref43
– volume: 3
  start-page: 993
  year: 2003
  ident: ref14
  article-title: Latent dirichlet allocation
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Blei
– volume: 29
  start-page: 757
  year: 2005
  ident: ref5
  article-title: Modeling user multiple interests by an improved GCS approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.06.003
  contributor:
    fullname: Wu
– ident: ref23
  doi: 10.1016/j.comcom.2009.11.024
– ident: ref44
  doi: 10.1145/2663356
– ident: ref24
– start-page: 824
  year: 2008
  ident: ref54
  contributor:
    fullname: Manning
– year: 2011
  ident: ref51
  contributor:
    fullname: Razavian
– ident: ref22
  doi: 10.1002/aris.1440400115
– ident: ref53
– ident: ref6
  doi: 10.1109/TGRS.2007.892007
– ident: ref11
– ident: ref17
– ident: ref34
– ident: ref50
  doi: 10.1198/106186001317115045
– ident: ref30
– ident: ref46
  doi: 10.1145/2786761
– ident: ref7
  doi: 10.1109/TGRS.2006.871200
– ident: ref26
  doi: 10.1016/j.ins.2010.07.024
– ident: ref36
– start-page: 535
  year: 2004
  ident: ref13
  article-title: A knowledge management system for intelligent retrieval of geo-spatial imagery
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-540-27814-6_63
  contributor:
    fullname: McLoughlin
– ident: ref47
  doi: 10.1145/2876480.2876486
– ident: ref40
– ident: ref4
  doi: 10.1016/j.ins.2014.10.006
– ident: ref39
  doi: 10.1016/j.ins.2014.09.014
– ident: ref16
– ident: ref12
– ident: ref48
  doi: 10.1016/S0034-4257(00)00202-9
– start-page: 115
  year: 2001
  ident: ref19
  article-title: E-commerce recommendation applications
  contributor:
    fullname: Schafer
– ident: ref45
– ident: ref29
– ident: ref41
– ident: ref9
  doi: 10.1080/14498596.2012.759087
– ident: ref27
  doi: 10.1109/TSC.2014.2355842
– ident: ref25
– ident: ref32
– ident: ref15
– ident: ref38
  doi: 10.1016/j.jss.2013.12.030
– year: 2011
  ident: ref2
  contributor:
    fullname: Campbell
– start-page: 245
  year: 2014
  ident: ref20
  contributor:
    fullname: Pirasteh
– ident: ref28
– ident: ref42
– ident: ref21
– start-page: 122
  year: 2009
  ident: ref8
  article-title: A spatial user similarity measure for geographic recommender systems
  contributor:
    fullname: Matyas
– ident: ref33
  doi: 10.1007/s12652-016-0346-7
– ident: ref49
– ident: ref3
  doi: 10.1080/01431168908903939
– ident: ref52
– ident: ref18
– ident: ref10
– ident: ref31
SSID ssj0000913840
Score 2.1592917
Snippet With the rapid development of remote sensing technology, the quantity and variety of remote sensing images are growing so quickly that proactive and...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 40
SubjectTerms Data
Detection
Distribution
Mathematical models
Probability distribution
Probability theory
Profiles
Random variables
recommendation
Recommender systems
Remote sensing
remote sensing images
Retrieval
Spacetime
Spatial distribution
Statistical analysis
topic model
user preference
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BSsNAEF2kF_UgWhWrVfbQa2iSTZPssYqliorQVnoLu9mZGrWpmPbg3zubpFLx4MVbWJYkzMzOvAc78xjrxMaL0zg1DngaiKCI1JGIygGqBibyNIpyXNP9QzicBLfT3nRD6sveCavGA1eG66IGP4wMKqTSDXS-rMAVgRaXYCEiYJl9XblBpsocLD1B1KVqyBPE67vZyyyLXBsT7o8SVE7q_5WIy-oy2Gd7NSzk_ep3DtgW5E22XSuUP3822e5TVqyqHcUhu-vzEZFdcGwHB3-kKFqYLOVjVbxyq272xgmLckst53OoZZP4AmmFPAN8ZG-t5zN-M6dsUhyxyeB6fDV0al0EJxVhsHRsb2oQYYy-VgiAJvUhECgC1L6OXOm7iCb2VUqZLgRhFD0aDIQyoKVELY5ZI1_kcMI4uTDEUEUyRRNEvomN30OMpGu00gbiFuusTZW8V-MvEqIN1qLJhkVb7NKa8XuLnVldLpAnk9qTyV-ebLH22glJfZCKhPAJlU-iMeL0P75xxnbojXF17brNGsuPFZwTqljqizKAvgA3Qc3c
  priority: 102
  providerName: Directory of Open Access Journals
Title A Space-Time Periodic Task Model for Recommendation of Remote Sensing Images
URI https://www.proquest.com/docview/2014710493
https://doaj.org/article/fbe267dfaf264e219ce039770772ffef
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1Be4AeKiggFsrKh14jEjuNnRNqUZeCoKpoi3qL_DGzXWA3bbM98O87TrylqBK3xPFpxn5-z7HnAeyYUBhvfMiwcMgCRfmsJrIZ8moQdOFI9eWavh1Vh2fll_Pd87Th1qVjlStM7IE6tD7ukbNILxhHmc-qD5dXWXSNin9Xk4XGY1gvpNZRfJnJp7s9lljzkgXMcC1Psbp_P_s5nek8joz8n4Wor9f_AI77NWbyDDYTORR7QzafwyNcbMGT5FN-8WcLNn7MupuhR_cCvu6JE5a8mMV7HOKYx1IbZl6c2u6XiB5nvwUzUhEF5nyOyTxJtMQtnB8UJ_Hs-mIqPs8ZU7qXcDY5OP14mCV3hMyrqlxm8YZqqcmQdJYQKXiJpSJVkpNO57XMiYKR1jPeVaiC5cdApbIBXV2TU69gbdEu8DUITmRFldW1p1BqGUyQu0S6zoOzLqAZwc4qVM3lUASjYfEQI9rci-gI9mMY77rEytV9Q3s9bdJEaMihrHQgS0zFkPEyGpYxCc2Z5hMhjWB7lYQmTaeu-Zv8N____Bae8osZjlVvw9ry-gbfMWtYunE_NMawvn9wdPx93GvvWxgcxtw
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB5ROKQcENBWDY-yB65WHa_x44TSihAgICSSipu1j5mQQmLAyYF_z6y9oa0qcbN29zSz-8186535AA4z28lMZmyAHY1MUKQJciIVIEcDm3Y0ybpd0-VV0h_F57dHt_7CrfLPKpeYWAO1LY27I2eS3mEc5XxWHj8-BU41yv1d9RIaH2AtlhyrXaV47_TtjsX1vGQC05TlSWb33ye_x5M0dDsj_CcQ1f36_4PjOsb0NmHDJ4ei23hzC1Zwtg0tr1N-97IN678m1aJZUX2CQVfcMOXFwNVxiGveS6WdGDFU1b1wGmcPgjNS4QjmdIpePEmUxCPsHxQ37u36bCzOpowp1WcY9U6GP_uBV0cIjEzieeAqVOOUMoq0IkSyJsJYkoxJRzoN8ygkslmkDONdgtIq_rQUS2VR5zlp-QVWZ-UMv4JgRyaUqDQ3ZOM0spmNjojSPLRaaYtZGw6XpioemyYYBZMHZ9HiL4u24Ycz49sS17m6Hiifx4U_CAVpjJLUkiJOxZDx0gmWcRIacppPhNSGvaUTCn-cquKP83fenz6AVn94OSgGZ1cXu_CRJ7LmifUerM6fF7jPGcRcf6u3ySuOqscv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9xADLYoSJQeKspDbEthDlwjsplsMjkh-lgeBYTEQ9yiedjbLewGyHLg3-NJZikIiVs0mZPt-ewv8fgD2FKuq6yyLsKuQSYo0kYFkY6Qs4HLu4ZkM67p-CTbv0gPr3pXof-pDm2VU0xsgNpV1n8jZ5LeZRzlelZuU2iLOP3V37m9i7yClP_TGuQ0PsAcZ8XMx7zq7z1_b_HzL5nMtFf0JDP97eG_wTCPfZTEr5JSM7v_DTQ3-aa_CJ9DoSh2W89-gRkcL8HHoFn-93EJPl0O64d2R70MR7vijOkvRv5OhzjluKrc0IpzXV8Lr3d2I7g6FZ5sjkYYhJRERbzCvkJx5vvYxwNxMGJ8qVfgov_7_Od-FJQSIiuzdBL526ppTooSowmRnE0wlSRTMonJ4yKJiZxKtGXsy1A6zY-OUqkdmqIgI1dhdlyNcQ0EOzWjTOeFJZfmiVMu6RHlReyMNg5VB7ampipv24EYJRMJb9HyhUU78MOb8XmLn2LdLFT3gzIcipIMJlnuSBOXZcjY6cXLuCCNueQnQurA-tQJZThadfk_EL6-_3oT5jlCyqODkz_fYIHXVdttvQ6zk_sH_M7FxMRsNFHyBJ3Uy2c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Space-Time+Periodic+Task+Model+for+Recommendation+of+Remote+Sensing+Images&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Zhang%2C+Xiuhong&rft.au=Chen%2C+Di&rft.au=Liu%2C+Jiping&rft.date=2018-02-01&rft.pub=MDPI+AG&rft.eissn=2220-9964&rft.volume=7&rft.issue=2&rft.spage=40&rft_id=info:doi/10.3390%2Fijgi7020040&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon