Decision tree and PCA-based fault diagnosis of rotating machinery
After analysing the flaws of conventional fault diagnosis methods, data mining technology is introduced to fault diagnosis field, and a new method based on C4.5 decision tree and principal component analysis (PCA) is proposed. In this method, PCA is used to reduce features after data collection, pre...
Saved in:
Published in | Mechanical systems and signal processing Vol. 21; no. 3; pp. 1300 - 1317 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier Ltd
01.04.2007
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | After analysing the flaws of conventional fault diagnosis methods, data mining technology is introduced to fault diagnosis field, and a new method based on C4.5 decision tree and principal component analysis (PCA) is proposed. In this method, PCA is used to reduce features after data collection, preprocessing and feature extraction. Then, C4.5 is trained by using the samples to generate a decision tree model with diagnosis knowledge. At last the tree model is used to make diagnosis analysis. To validate the method proposed, six kinds of running states (normal or without any defect, unbalance, rotor radial rub, oil whirl, shaft crack and a simultaneous state of unbalance and radial rub), are simulated on Bently Rotor Kit RK4 to test C4.5 and PCA-based method and back-propagation neural network (BPNN). The result shows that C4.5 and PCA-based diagnosis method has higher accuracy and needs less training time than BPNN. |
---|---|
AbstractList | After analysing the flaws of conventional fault diagnosis methods, data mining technology is introduced to fault diagnosis field, and a new method based on C4.5 decision tree and principal component analysis (PCA) is proposed. In this method, PCA is used to reduce features after data collection, preprocessing and feature extraction. Then, C4.5 is trained by using the samples to generate a decision tree model with diagnosis knowledge. At last the tree model is used to make diagnosis analysis. To validate the method proposed, six kinds of running states (normal or without any defect, unbalance, rotor radial rub, oil whirl, shaft crack and a simultaneous state of unbalance and radial rub), are simulated on Bently Rotor Kit RK4 to test C4.5 and PCA-based method and back-propagation neural network (BPNN). The result shows that C4.5 and PCA-based diagnosis method has higher accuracy and needs less training time than BPNN. |
Author | Li, Jiaqing Chen, Jin Sun, Weixiang |
Author_xml | – sequence: 1 givenname: Weixiang surname: Sun fullname: Sun, Weixiang email: wxsun@sjtu.edu.cn – sequence: 2 givenname: Jin surname: Chen fullname: Chen, Jin email: jinchen@mail.sjtu.edu.cn – sequence: 3 givenname: Jiaqing surname: Li fullname: Li, Jiaqing email: jqli_vsn@sjtu.edu.cn |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18416764$$DView record in Pascal Francis |
BookMark | eNp9kDFv2zAQhYkiBeqk_QVdtKSbnDtSpqQhg-GkTYAA6dDOxIk8pTRk0iXlAP73leogQ4YAB9zyvge871ychRhYiK8ISwTUV9vlcZfzfikB9HI-hA9igdDqEiXqM7GApmlKJWv4JM5z3gJAW4FeiPUNW599DMWYmAsKrvi5WZcdZXZFT4dhLJynpxCzz0XsixRHGn14KnZk__jA6fhZfOxpyPzl5V-I399vf23uyofHH_eb9UNpla7GUgO2lqHu3Ipk39NKOgnESnINUpHuGNu2lasaXKdQyQ5rhRU0rPtVw06qC_Ht1LtP8e-B82h2PlseBgocD9nIdlqPVTUFL1-ClC0NfaIwTTT75HeUjgabCnWt51x7ytkUc07cG-vncTGMifxgEMws12zNf7lmlmvmQ5hY9YZ9rX-Xuj5RPHl69pxMtp6DZecT29G46N_l_wFYNJWz |
CitedBy_id | crossref_primary_10_1155_2016_6127479 crossref_primary_10_1007_s11831_020_09446_w crossref_primary_10_1016_j_compind_2020_103385 crossref_primary_10_3390_s25010137 crossref_primary_10_1016_j_measurement_2022_111114 crossref_primary_10_1016_j_engappai_2023_107456 crossref_primary_10_1016_j_bbrep_2023_101587 crossref_primary_10_1016_j_engappai_2023_106648 crossref_primary_10_1016_j_measurement_2019_107232 crossref_primary_10_1007_s12046_017_0678_9 crossref_primary_10_1016_j_asoc_2011_08_053 crossref_primary_10_1016_j_engappai_2008_11_001 crossref_primary_10_1016_j_measurement_2018_08_040 crossref_primary_10_1364_OE_23_017487 crossref_primary_10_4028_www_scientific_net_AMR_1039_155 crossref_primary_10_1016_j_proeng_2014_12_337 crossref_primary_10_1109_TMECH_2022_3191051 crossref_primary_10_1016_j_ymssp_2016_09_030 crossref_primary_10_1177_08827508231225018 crossref_primary_10_3390_s22239148 crossref_primary_10_1016_j_eswa_2010_09_116 crossref_primary_10_1515_phys_2024_0015 crossref_primary_10_1016_j_jsv_2012_12_024 crossref_primary_10_1155_2022_4569954 crossref_primary_10_1007_s00521_010_0434_0 crossref_primary_10_1177_1475472X231206495 crossref_primary_10_3390_jmse11081577 crossref_primary_10_1016_j_ymssp_2019_106587 crossref_primary_10_1177_14759217241241985 crossref_primary_10_1108_JQME_11_2015_0058 crossref_primary_10_1177_1748006X21992886 crossref_primary_10_1088_1361_6501_aceb0c crossref_primary_10_1007_s12206_017_0712_1 crossref_primary_10_1007_s12206_007_1036_3 crossref_primary_10_1177_14750902221143827 crossref_primary_10_1016_j_asoc_2021_107286 crossref_primary_10_1007_s00500_011_0734_z crossref_primary_10_1016_j_eswa_2009_10_002 crossref_primary_10_3390_app10082932 crossref_primary_10_1002_cjce_25247 crossref_primary_10_1016_j_asoc_2016_05_015 crossref_primary_10_1109_JSEN_2020_3015868 crossref_primary_10_1177_0954406211412017 crossref_primary_10_1109_JSEN_2023_3311644 crossref_primary_10_1016_j_compind_2018_12_012 crossref_primary_10_1016_j_measurement_2017_11_035 crossref_primary_10_3390_s140101295 crossref_primary_10_1016_j_eswa_2024_126109 crossref_primary_10_1016_j_ymssp_2014_05_032 crossref_primary_10_1080_00207217_2010_482023 crossref_primary_10_1016_j_ymssp_2017_07_001 crossref_primary_10_1371_journal_pone_0104046 crossref_primary_10_1016_j_eswa_2020_114116 crossref_primary_10_1093_tse_tdab013 crossref_primary_10_3390_app12104976 crossref_primary_10_21595_jve_2016_17449 crossref_primary_10_1177_1077546313496833 crossref_primary_10_3390_en15249508 crossref_primary_10_1155_2018_2530248 crossref_primary_10_2352_J_ImagingSci_Technol_2020_64_6_060405 crossref_primary_10_12677_MET_2020_95051 crossref_primary_10_1016_j_jsv_2012_11_029 crossref_primary_10_1016_j_ymssp_2012_07_001 crossref_primary_10_1080_14484846_2018_1552355 crossref_primary_10_3934_math_20241441 crossref_primary_10_1007_s42417_021_00379_7 crossref_primary_10_31796_ogummf_853090 crossref_primary_10_1080_08839514_2012_721694 crossref_primary_10_1016_j_neucom_2020_08_091 crossref_primary_10_1016_j_jsv_2015_01_014 crossref_primary_10_3390_s18051429 crossref_primary_10_1016_j_measurement_2014_10_026 crossref_primary_10_1016_j_neucom_2015_04_069 crossref_primary_10_1007_s41872_018_0044_x crossref_primary_10_1016_j_matpr_2021_02_061 crossref_primary_10_3906_elk_1305_271 crossref_primary_10_1016_j_ymssp_2011_04_004 crossref_primary_10_1007_s00170_009_1953_7 crossref_primary_10_1002_cben_202100008 crossref_primary_10_1016_j_measurement_2017_09_041 crossref_primary_10_1002_qre_1639 crossref_primary_10_1016_j_ymssp_2008_01_013 crossref_primary_10_1007_s00170_012_4639_5 crossref_primary_10_1155_2022_5386341 crossref_primary_10_1016_j_knosys_2012_05_013 crossref_primary_10_1016_j_jtice_2023_105178 crossref_primary_10_1155_2015_793161 crossref_primary_10_1016_j_ces_2024_120699 crossref_primary_10_1177_1687814016665747 crossref_primary_10_1145_3519313 crossref_primary_10_3390_e16010607 crossref_primary_10_1016_j_ymssp_2016_10_004 crossref_primary_10_1109_ACCESS_2019_2937838 crossref_primary_10_1177_0954406215582015 crossref_primary_10_3390_electronics13244931 crossref_primary_10_3390_app131810458 crossref_primary_10_1088_1742_6596_2419_1_012066 crossref_primary_10_1016_j_ymssp_2012_06_005 crossref_primary_10_3390_s20215979 crossref_primary_10_1007_s10845_023_02123_2 crossref_primary_10_1016_j_cpb_2024_100370 crossref_primary_10_3390_s16030316 crossref_primary_10_1109_TIM_2019_2900885 crossref_primary_10_1088_1361_6501_ac94ec crossref_primary_10_1016_j_ymssp_2009_05_020 crossref_primary_10_1080_02533839_2020_1794979 crossref_primary_10_3390_s22218129 crossref_primary_10_1243_09544062JMES913 crossref_primary_10_1021_acsomega_3c09122 crossref_primary_10_1007_s12008_022_01085_8 crossref_primary_10_1007_s12206_014_0704_3 crossref_primary_10_1016_j_tra_2018_07_011 crossref_primary_10_3390_s22228730 crossref_primary_10_1016_j_eswa_2011_11_097 crossref_primary_10_1007_s12206_021_0304_y crossref_primary_10_1016_j_asoc_2012_03_021 crossref_primary_10_1016_j_chemolab_2013_06_009 crossref_primary_10_1016_j_energy_2016_08_039 crossref_primary_10_1177_0954406217743536 crossref_primary_10_1109_TII_2020_2968370 crossref_primary_10_1016_j_measurement_2019_107419 crossref_primary_10_1007_s12206_013_0844_x crossref_primary_10_1016_j_ymssp_2014_08_007 crossref_primary_10_1175_JTECH_D_16_0216_1 crossref_primary_10_1007_s10845_014_0987_3 crossref_primary_10_1080_0305215X_2021_1982929 crossref_primary_10_1177_1475921718788299 crossref_primary_10_4028_www_scientific_net_AMR_760_762_1062 crossref_primary_10_1016_j_knosys_2022_108116 crossref_primary_10_1016_j_ymssp_2011_09_005 crossref_primary_10_1016_j_aej_2021_08_036 crossref_primary_10_1016_j_neucom_2014_11_021 crossref_primary_10_3390_en12173221 crossref_primary_10_12677_csa_2024_149185 crossref_primary_10_1177_14759217241289874 crossref_primary_10_1016_j_measurement_2019_107253 crossref_primary_10_1016_j_conengprac_2016_08_013 crossref_primary_10_1109_TIE_2021_3128895 crossref_primary_10_1016_j_eswa_2008_05_014 crossref_primary_10_3390_en12193665 crossref_primary_10_1007_s10462_022_10260_y crossref_primary_10_1007_s11071_024_10073_4 crossref_primary_10_1016_j_fuel_2022_124778 crossref_primary_10_1016_j_anucene_2024_111029 crossref_primary_10_1155_2018_4252438 crossref_primary_10_3390_e15020416 crossref_primary_10_1007_s42417_024_01600_z crossref_primary_10_1016_j_ces_2022_117467 crossref_primary_10_1016_j_knosys_2019_02_024 crossref_primary_10_1177_1748006X15595875 crossref_primary_10_1784_insi_2010_52_8_428 crossref_primary_10_1243_09544062JMES1784 crossref_primary_10_1016_j_eswa_2010_09_042 crossref_primary_10_1080_21642583_2024_2328542 crossref_primary_10_1088_1361_6501_ac8303 crossref_primary_10_3390_sym12101690 crossref_primary_10_1177_1077546316689644 crossref_primary_10_1007_s10489_021_02252_2 crossref_primary_10_1016_j_matpr_2023_05_400 crossref_primary_10_1109_TAES_2009_5259178 crossref_primary_10_4028_www_scientific_net_AMM_128_129_731 crossref_primary_10_1108_13552511111180186 crossref_primary_10_1109_ACCESS_2018_2882801 crossref_primary_10_4028_www_scientific_net_AMM_723_54 crossref_primary_10_1016_j_applthermaleng_2017_09_117 crossref_primary_10_1016_j_ymssp_2015_09_003 crossref_primary_10_1016_j_ijepes_2014_07_077 crossref_primary_10_3390_sym13040632 |
Cites_doi | 10.1016/0360-8352(95)00173-5 10.1016/j.dsp.2003.12.003 10.1016/0893-6080(91)90009-T 10.1006/mssp.2001.1462 10.1016/S0020-7373(87)80053-6 10.1016/S0165-0114(99)00115-3 10.1023/A:1022604100933 10.1016/j.eswa.2004.12.030 10.1145/304182.304197 10.1007/BF00116251 |
ContentType | Journal Article |
Copyright | 2006 Elsevier Ltd 2007 INIST-CNRS |
Copyright_xml | – notice: 2006 Elsevier Ltd – notice: 2007 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1016/j.ymssp.2006.06.010 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences Physics |
EISSN | 1096-1216 |
EndPage | 1317 |
ExternalDocumentID | 18416764 10_1016_j_ymssp_2006_06_010 S0888327006001336 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SPD SST SSV SSZ T5K WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c364t-6019ce07bd5a2ffa52d20ae32e7023a6be19992570db3132b1731408e6f58ed23 |
IEDL.DBID | .~1 |
ISSN | 0888-3270 |
IngestDate | Fri Jul 11 16:51:10 EDT 2025 Mon Jul 21 09:16:13 EDT 2025 Tue Jul 01 00:57:58 EDT 2025 Thu Apr 24 23:01:14 EDT 2025 Fri Feb 23 02:25:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Fault diagnosis Rotating machinery Data mining Decision tree C4.5 Principal component analysis Data analysis Vibration Rotating machine Fault tree Decision making Unbalanced conditions Data processing Information extraction Pattern recognition Modeling Backpropagation algorithm Shaft Database Signal processing Fault diagnostic Pattern extraction Cracked beam |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-6019ce07bd5a2ffa52d20ae32e7023a6be19992570db3132b1731408e6f58ed23 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 29200144 |
PQPubID | 23500 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_29200144 pascalfrancis_primary_18416764 crossref_citationtrail_10_1016_j_ymssp_2006_06_010 crossref_primary_10_1016_j_ymssp_2006_06_010 elsevier_sciencedirect_doi_10_1016_j_ymssp_2006_06_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-04-01 |
PublicationDateYYYYMMDD | 2007-04-01 |
PublicationDate_xml | – month: 04 year: 2007 text: 2007-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Mechanical systems and signal processing |
PublicationYear | 2007 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Hagan, Demuth, Beale (bib30) 1996 JolliHe (bib23) 1986 Chen, Mo (bib3) 2004; 14 Li, Chen, Wu (bib26) 2005; 1433–3015 Chen, Lin (bib17) 2001; 118 Shi (bib29) 2002 Quinlan (bib22) 1987; 27 Operation Manual of Bently Rotor Kit Model RK4, Bently, Nevada, 2002. X.J. Xiang, J.F. Shan, F.W. Fuchs, The study of transformer failure diagnose expert system based on rough set theory, in: Power Electronics and Motion Control Conference, vol. 2, IPEMC 2004. The Fourth International, pp. 533–536. P. Yang, S.S. Liu, Fault diagnosis for boilers in thermal power plant by data mining, in: The Eighth International Conference on Control, Automation, Robotics and Vision, Kunming, China, 2004, pp. 2176–2180. X.B. Li, Multivariate decision trees for data mining, Ph.D. Thesis, Darla Moore School of Business, University of South Carolina, 1999. Y.G. Wang, B. Liu, Z.B. Guo, et al., Application of rough set neural network in fault diagnosing of test-launching control system of missiles, in: Proceedings of the Fifth World Congress on Intelligent Control and Automation, Hangzhou, PR China, 2004, pp. 1790–1792. Breiman, Friedman, Olshen (bib10) 1984 Sawyer, Hallenberg (bib27) 1980 Breiman, Friedman, Olshen (bib20) 1984 Xu, Wang (bib18) 2005; 3584 Han, Kamber (bib28) 2001 Hunt, Marin, Stone (bib7) 1966 D. Jiang, S.T. Huang, W.P. Lei, et al., Study of data mining based machinery fault diagnosis, in: Proceedings of the First International Conference on Machine Learning and Cybernetics, Beijing, PR China, 2002, pp. 536–539. Quinlan (bib8) 1986; 1 Niblett (bib19) 1987 Gayme, Menon, Ball (bib4) 2003; vol. 24–26 Samanta, Al-Balushi (bib25) 2003; 17 Zhang (bib32) 1992 Mehta, Agrawal, Rissanen (bib11) 1996 Hornik (bib31) 1991; 4 Mingers (bib21) 1989; 4 Quinlan (bib9) 1993 Nam, Lee (bib24) 1992 Patel, Kamrani (bib1) 1996; 30 Yang, Lim, Tan (bib2) 2005; 28 J. Gehrke, V. Ganti, R. Ramakrishnan, et al., BOAT—optimistic decision tree construction, in: Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, Philadelphia, Pennsylvania, 1999. J. Shafer, R. Agrawal, M. Mehta, SPRINT: a scalable parallel classifier for data mining, in: Proceedings of the 22nd International Conference on Very Large Data Based, Mumbai, India, 1996. Yang (10.1016/j.ymssp.2006.06.010_bib2) 2005; 28 Hunt (10.1016/j.ymssp.2006.06.010_bib7) 1966 Hornik (10.1016/j.ymssp.2006.06.010_bib31) 1991; 4 10.1016/j.ymssp.2006.06.010_bib33 Quinlan (10.1016/j.ymssp.2006.06.010_bib22) 1987; 27 Samanta (10.1016/j.ymssp.2006.06.010_bib25) 2003; 17 10.1016/j.ymssp.2006.06.010_bib14 Mingers (10.1016/j.ymssp.2006.06.010_bib21) 1989; 4 10.1016/j.ymssp.2006.06.010_bib15 10.1016/j.ymssp.2006.06.010_bib12 Nam (10.1016/j.ymssp.2006.06.010_bib24) 1992 10.1016/j.ymssp.2006.06.010_bib13 Shi (10.1016/j.ymssp.2006.06.010_bib29) 2002 Chen (10.1016/j.ymssp.2006.06.010_bib3) 2004; 14 Gayme (10.1016/j.ymssp.2006.06.010_bib4) 2003; vol. 24–26 Zhang (10.1016/j.ymssp.2006.06.010_bib32) 1992 Quinlan (10.1016/j.ymssp.2006.06.010_bib8) 1986; 1 Hagan (10.1016/j.ymssp.2006.06.010_bib30) 1996 Breiman (10.1016/j.ymssp.2006.06.010_bib10) 1984 Breiman (10.1016/j.ymssp.2006.06.010_bib20) 1984 Han (10.1016/j.ymssp.2006.06.010_bib28) 2001 Quinlan (10.1016/j.ymssp.2006.06.010_bib9) 1993 10.1016/j.ymssp.2006.06.010_bib16 Chen (10.1016/j.ymssp.2006.06.010_bib17) 2001; 118 JolliHe (10.1016/j.ymssp.2006.06.010_bib23) 1986 Li (10.1016/j.ymssp.2006.06.010_bib26) 2005; 1433–3015 Sawyer (10.1016/j.ymssp.2006.06.010_bib27) 1980 Mehta (10.1016/j.ymssp.2006.06.010_bib11) 1996 Xu (10.1016/j.ymssp.2006.06.010_bib18) 2005; 3584 Niblett (10.1016/j.ymssp.2006.06.010_bib19) 1987 Patel (10.1016/j.ymssp.2006.06.010_bib1) 1996; 30 10.1016/j.ymssp.2006.06.010_bib6 10.1016/j.ymssp.2006.06.010_bib5 |
References_xml | – reference: D. Jiang, S.T. Huang, W.P. Lei, et al., Study of data mining based machinery fault diagnosis, in: Proceedings of the First International Conference on Machine Learning and Cybernetics, Beijing, PR China, 2002, pp. 536–539. – volume: 14 start-page: 203 year: 2004 end-page: 217 ident: bib3 article-title: A method for intelligent fault diagnosis of rotating machinery publication-title: Digital Signal Processing – reference: Operation Manual of Bently Rotor Kit Model RK4, Bently, Nevada, 2002. – reference: Y.G. Wang, B. Liu, Z.B. Guo, et al., Application of rough set neural network in fault diagnosing of test-launching control system of missiles, in: Proceedings of the Fifth World Congress on Intelligent Control and Automation, Hangzhou, PR China, 2004, pp. 1790–1792. – reference: X.J. Xiang, J.F. Shan, F.W. Fuchs, The study of transformer failure diagnose expert system based on rough set theory, in: Power Electronics and Motion Control Conference, vol. 2, IPEMC 2004. The Fourth International, pp. 533–536. – reference: P. Yang, S.S. Liu, Fault diagnosis for boilers in thermal power plant by data mining, in: The Eighth International Conference on Control, Automation, Robotics and Vision, Kunming, China, 2004, pp. 2176–2180. – year: 1992 ident: bib32 article-title: Models and Applications of Artificial Neural Networks – volume: 1433–3015 year: 2005 ident: bib26 article-title: Fault diagnosis of rotating machinery based on SVD, FCM and RST publication-title: International Journal of Advanced Manufacturing Technology – volume: 4 start-page: 251 year: 1991 end-page: 257 ident: bib31 article-title: Approximation capabilities of multilayer feedforward networks publication-title: Neural Networks – volume: 118 start-page: 139 year: 2001 end-page: 151 ident: bib17 article-title: Fuzzy approaches for fault diagnosis of transformers publication-title: Fuzzy Sets and System – year: 2001 ident: bib28 article-title: Data Mining: Concepts and Techniques – year: 1980 ident: bib27 article-title: Sawyer's Turbomachinery Maintenance Handbooks – year: 1984 ident: bib20 article-title: Classification and Regression Trees – reference: J. Shafer, R. Agrawal, M. Mehta, SPRINT: a scalable parallel classifier for data mining, in: Proceedings of the 22nd International Conference on Very Large Data Based, Mumbai, India, 1996. – start-page: 67 year: 1987 end-page: 78 ident: bib19 article-title: Constructing decision trees in noisy domains publication-title: Proceedings of the Second European Working Session on Learning – volume: 3584 start-page: 696 year: 2005 end-page: 703 ident: bib18 article-title: An adaptive network intrusion detection method based on PCA and support vector machines publication-title: Lecture Notes in Artificial Intelligence – volume: 28 start-page: 735 year: 2005 end-page: 742 ident: bib2 article-title: VIBEX: an expert system for vibration fault diagnosis of rotating machinery using decision tree and decision table publication-title: Expert System with Application – year: 1996 ident: bib11 article-title: SLIQ: A Fast Scalable Classifier for Data Mining, EDBT 96 – volume: vol. 24–26 start-page: 341 year: 2003 end-page: 346 ident: bib4 article-title: Fault detection and diagnosis in turbine engines using fuzzy logic publication-title: 22nd International Conference of Digital Object Identifier – volume: 4 start-page: 227 year: 1989 end-page: 243 ident: bib21 article-title: An empirical comparison of pruning methods for decision tree induction publication-title: Machine Learning – volume: 1 start-page: 81 year: 1986 end-page: 106 ident: bib8 article-title: Induction of decision trees publication-title: Machine Learning – volume: 17 start-page: 317 year: 2003 end-page: 328 ident: bib25 article-title: Artificial neural network based fault diagnostics of rolling element bearings using time-domain features publication-title: Mechanical Systems and Signal Processing – year: 1996 ident: bib30 article-title: Neural Network Design – reference: X.B. Li, Multivariate decision trees for data mining, Ph.D. Thesis, Darla Moore School of Business, University of South Carolina, 1999. – year: 1993 ident: bib9 article-title: C4.5: Programs for Machine Learning – volume: 30 start-page: 297 year: 1996 end-page: 319 ident: bib1 article-title: Intelligent decision support system for diagnosis and maintenance of automated systems publication-title: Computers Industrial Engineering – volume: 27 start-page: 221 year: 1987 end-page: 234 ident: bib22 article-title: Simplifying decision tree publication-title: International Journal of Man–Machine Studies – year: 1984 ident: bib10 article-title: Classification and Regression Trees – year: 1966 ident: bib7 article-title: Experiments in Induction – year: 2002 ident: bib29 article-title: Knowledge Discovery – start-page: 1064 year: 1992 end-page: 1067 ident: bib24 article-title: Diagnosis of rotating machines by utilizing a backpropagation neural net publication-title: IEEE 0-7803-0582-5/92 – reference: J. Gehrke, V. Ganti, R. Ramakrishnan, et al., BOAT—optimistic decision tree construction, in: Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, Philadelphia, Pennsylvania, 1999. – year: 1986 ident: bib23 article-title: Principal Component Analysis – year: 1984 ident: 10.1016/j.ymssp.2006.06.010_bib10 – volume: 30 start-page: 297 issue: 2 year: 1996 ident: 10.1016/j.ymssp.2006.06.010_bib1 article-title: Intelligent decision support system for diagnosis and maintenance of automated systems publication-title: Computers Industrial Engineering doi: 10.1016/0360-8352(95)00173-5 – volume: 14 start-page: 203 year: 2004 ident: 10.1016/j.ymssp.2006.06.010_bib3 article-title: A method for intelligent fault diagnosis of rotating machinery publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2003.12.003 – volume: vol. 24–26 start-page: 341 year: 2003 ident: 10.1016/j.ymssp.2006.06.010_bib4 article-title: Fault detection and diagnosis in turbine engines using fuzzy logic – year: 1980 ident: 10.1016/j.ymssp.2006.06.010_bib27 – year: 2001 ident: 10.1016/j.ymssp.2006.06.010_bib28 – year: 1992 ident: 10.1016/j.ymssp.2006.06.010_bib32 – year: 1986 ident: 10.1016/j.ymssp.2006.06.010_bib23 – start-page: 1064 year: 1992 ident: 10.1016/j.ymssp.2006.06.010_bib24 article-title: Diagnosis of rotating machines by utilizing a backpropagation neural net publication-title: IEEE 0-7803-0582-5/92 – volume: 4 start-page: 251 issue: 2 year: 1991 ident: 10.1016/j.ymssp.2006.06.010_bib31 article-title: Approximation capabilities of multilayer feedforward networks publication-title: Neural Networks doi: 10.1016/0893-6080(91)90009-T – volume: 17 start-page: 317 issue: 2 year: 2003 ident: 10.1016/j.ymssp.2006.06.010_bib25 article-title: Artificial neural network based fault diagnostics of rolling element bearings using time-domain features publication-title: Mechanical Systems and Signal Processing doi: 10.1006/mssp.2001.1462 – ident: 10.1016/j.ymssp.2006.06.010_bib16 – volume: 1433–3015 year: 2005 ident: 10.1016/j.ymssp.2006.06.010_bib26 article-title: Fault diagnosis of rotating machinery based on SVD, FCM and RST publication-title: International Journal of Advanced Manufacturing Technology – ident: 10.1016/j.ymssp.2006.06.010_bib5 – year: 1966 ident: 10.1016/j.ymssp.2006.06.010_bib7 – ident: 10.1016/j.ymssp.2006.06.010_bib12 – volume: 27 start-page: 221 year: 1987 ident: 10.1016/j.ymssp.2006.06.010_bib22 article-title: Simplifying decision tree publication-title: International Journal of Man–Machine Studies doi: 10.1016/S0020-7373(87)80053-6 – ident: 10.1016/j.ymssp.2006.06.010_bib33 – ident: 10.1016/j.ymssp.2006.06.010_bib14 – volume: 118 start-page: 139 year: 2001 ident: 10.1016/j.ymssp.2006.06.010_bib17 article-title: Fuzzy approaches for fault diagnosis of transformers publication-title: Fuzzy Sets and System doi: 10.1016/S0165-0114(99)00115-3 – volume: 4 start-page: 227 year: 1989 ident: 10.1016/j.ymssp.2006.06.010_bib21 article-title: An empirical comparison of pruning methods for decision tree induction publication-title: Machine Learning doi: 10.1023/A:1022604100933 – year: 1996 ident: 10.1016/j.ymssp.2006.06.010_bib11 – year: 2002 ident: 10.1016/j.ymssp.2006.06.010_bib29 – volume: 28 start-page: 735 year: 2005 ident: 10.1016/j.ymssp.2006.06.010_bib2 article-title: VIBEX: an expert system for vibration fault diagnosis of rotating machinery using decision tree and decision table publication-title: Expert System with Application doi: 10.1016/j.eswa.2004.12.030 – volume: 3584 start-page: 696 year: 2005 ident: 10.1016/j.ymssp.2006.06.010_bib18 article-title: An adaptive network intrusion detection method based on PCA and support vector machines publication-title: Lecture Notes in Artificial Intelligence – year: 1984 ident: 10.1016/j.ymssp.2006.06.010_bib20 – ident: 10.1016/j.ymssp.2006.06.010_bib13 doi: 10.1145/304182.304197 – volume: 1 start-page: 81 year: 1986 ident: 10.1016/j.ymssp.2006.06.010_bib8 article-title: Induction of decision trees publication-title: Machine Learning doi: 10.1007/BF00116251 – year: 1993 ident: 10.1016/j.ymssp.2006.06.010_bib9 – start-page: 67 year: 1987 ident: 10.1016/j.ymssp.2006.06.010_bib19 article-title: Constructing decision trees in noisy domains – year: 1996 ident: 10.1016/j.ymssp.2006.06.010_bib30 – ident: 10.1016/j.ymssp.2006.06.010_bib6 – ident: 10.1016/j.ymssp.2006.06.010_bib15 |
SSID | ssj0009406 |
Score | 2.3100767 |
Snippet | After analysing the flaws of conventional fault diagnosis methods, data mining technology is introduced to fault diagnosis field, and a new method based on... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1300 |
SubjectTerms | Applied sciences C4.5 Data mining Decision tree Exact sciences and technology Fault diagnosis Fundamental areas of phenomenology (including applications) Industrial metrology. Testing Measurement and testing methods Mechanical engineering. Machine design Physics Principal component analysis Rotating machinery Solid mechanics Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
Title | Decision tree and PCA-based fault diagnosis of rotating machinery |
URI | https://dx.doi.org/10.1016/j.ymssp.2006.06.010 https://www.proquest.com/docview/29200144 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IXjTG-BnxA3vwaGVs3QpHghLUSEyUhNvSra3BwEbYOHDxb_e9fYhEw8Fkp6VNl77X97H3-vsRcg0-0bRDKZjUyjCuHcWCMOQMPFlLIqGIyq5HPw-8_pA_jtxRhXTLuzDYVlnY_tymZ9a6eNModrMxG48br3A-QB0FIopAHOMg7DbnArX89nPV5tHmGb8mDmY4ukQeynq8ltMkmRUVCXjwGu3f3ml3JhPYM5OTXfyy25kz6u2TvSKKpJ38Qw9IRUeHZOcHtuAR6dwV7DkU685URoq-dDsMvZaiRi4mKVV5m904obGh8xiL8tE7nWbtlXq-PCbD3v1bt88KvgQWOh5PGeRW7VBbIlCutI2Rrq1sS2rH1gI8s_QCjZgDSFunAkRsDJrCgfyqpT3jtrSynRNSjeJInxIaQB4hQFaGtx0IMZotS1ra5XYYGg4TRY3Y5T75YQEmjpwWE7_sGvvws81FmkvPx6dp1cjN96RZjqWxebhXCsBfUwkfrP3mifU1ca0Wwxqr8HiNXJXy8-E0YYlERjpeJD5yd2GOefbftc_Jdv73F3t7Lkg1nS_0JYQtaVDP9LJOtjoPT_3BFxJr68k |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFH9CcBgTQoxtWmGAD3CbaZo4SXvYoSqg8qlJA4mb58T2VNSmVdMK9cI_xT_Ie4kDVEwcJlXKKYpl6z37fcS_934A--gTbStVMVdGWy5MoHmSpoKjJ2sqIhTRRXn05VXUvRFnt-HtEjxWtTAEq3S2v7TphbV2b-pOmvVRr1f_jecDt2NMHUUwjgkih6w8N7N7zNvyn6dHqOQD3z85vu50uaMW4GkQiQnHNKSVGi9OdKh8a1Xoa99TJvBNjE5MRYmh8nxieNMJNTdMGnGAqUjTRDZsGk3dDtDurwg0F0SbcPjwgitpiYLQk1bHaXlVq6MCVDYb5PnIXYHgQ3W7_3aHayOVo5Jsya7xxlEU3u9kA9Zd2MrapWQ-wZLJNuHjq2aGn6F95Oh6GF10M5Vp9qvT5uQmNbNq2p8wXeL6ejkbWjYeEgog-8sGBZ7TjGdf4GYhUvwKy9kwM9-AJZi4xLg5rGgFGNM0mp7yTCj8NLUCB8Y18Cs5ydR1LycSjb6sYGp3shAu8WpGkp6GV4Mfz4NGZfOO9z-PKgXIuT0o0b28P3B3Tl0vk9GlbhyJGuxV-pN4fOlORmVmOM0lkYVRUrv1v3PvwYfu9eWFvDi9Ot-G1fLXMwGLvsPyZDw1OxgzTZLdYo8y-LPoQ_EEuR4mUA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decision+tree+and+PCA-based+fault+diagnosis+of+rotating+machinery&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Sun%2C+Weixiang&rft.au=Chen%2C+Jin&rft.au=Li%2C+Jiaqing&rft.date=2007-04-01&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=21&rft.issue=3&rft.spage=1300&rft.epage=1317&rft_id=info:doi/10.1016%2Fj.ymssp.2006.06.010&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |