Cover

Loading…
Abstract After analysing the flaws of conventional fault diagnosis methods, data mining technology is introduced to fault diagnosis field, and a new method based on C4.5 decision tree and principal component analysis (PCA) is proposed. In this method, PCA is used to reduce features after data collection, preprocessing and feature extraction. Then, C4.5 is trained by using the samples to generate a decision tree model with diagnosis knowledge. At last the tree model is used to make diagnosis analysis. To validate the method proposed, six kinds of running states (normal or without any defect, unbalance, rotor radial rub, oil whirl, shaft crack and a simultaneous state of unbalance and radial rub), are simulated on Bently Rotor Kit RK4 to test C4.5 and PCA-based method and back-propagation neural network (BPNN). The result shows that C4.5 and PCA-based diagnosis method has higher accuracy and needs less training time than BPNN.
AbstractList After analysing the flaws of conventional fault diagnosis methods, data mining technology is introduced to fault diagnosis field, and a new method based on C4.5 decision tree and principal component analysis (PCA) is proposed. In this method, PCA is used to reduce features after data collection, preprocessing and feature extraction. Then, C4.5 is trained by using the samples to generate a decision tree model with diagnosis knowledge. At last the tree model is used to make diagnosis analysis. To validate the method proposed, six kinds of running states (normal or without any defect, unbalance, rotor radial rub, oil whirl, shaft crack and a simultaneous state of unbalance and radial rub), are simulated on Bently Rotor Kit RK4 to test C4.5 and PCA-based method and back-propagation neural network (BPNN). The result shows that C4.5 and PCA-based diagnosis method has higher accuracy and needs less training time than BPNN.
Author Li, Jiaqing
Chen, Jin
Sun, Weixiang
Author_xml – sequence: 1
  givenname: Weixiang
  surname: Sun
  fullname: Sun, Weixiang
  email: wxsun@sjtu.edu.cn
– sequence: 2
  givenname: Jin
  surname: Chen
  fullname: Chen, Jin
  email: jinchen@mail.sjtu.edu.cn
– sequence: 3
  givenname: Jiaqing
  surname: Li
  fullname: Li, Jiaqing
  email: jqli_vsn@sjtu.edu.cn
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18416764$$DView record in Pascal Francis
BookMark eNp9kDFv2zAQhYkiBeqk_QVdtKSbnDtSpqQhg-GkTYAA6dDOxIk8pTRk0iXlAP73leogQ4YAB9zyvge871ychRhYiK8ISwTUV9vlcZfzfikB9HI-hA9igdDqEiXqM7GApmlKJWv4JM5z3gJAW4FeiPUNW599DMWYmAsKrvi5WZcdZXZFT4dhLJynpxCzz0XsixRHGn14KnZk__jA6fhZfOxpyPzl5V-I399vf23uyofHH_eb9UNpla7GUgO2lqHu3Ipk39NKOgnESnINUpHuGNu2lasaXKdQyQ5rhRU0rPtVw06qC_Ht1LtP8e-B82h2PlseBgocD9nIdlqPVTUFL1-ClC0NfaIwTTT75HeUjgabCnWt51x7ytkUc07cG-vncTGMifxgEMws12zNf7lmlmvmQ5hY9YZ9rX-Xuj5RPHl69pxMtp6DZecT29G46N_l_wFYNJWz
CitedBy_id crossref_primary_10_1155_2016_6127479
crossref_primary_10_1007_s11831_020_09446_w
crossref_primary_10_1016_j_compind_2020_103385
crossref_primary_10_3390_s25010137
crossref_primary_10_1016_j_measurement_2022_111114
crossref_primary_10_1016_j_engappai_2023_107456
crossref_primary_10_1016_j_bbrep_2023_101587
crossref_primary_10_1016_j_engappai_2023_106648
crossref_primary_10_1016_j_measurement_2019_107232
crossref_primary_10_1007_s12046_017_0678_9
crossref_primary_10_1016_j_asoc_2011_08_053
crossref_primary_10_1016_j_engappai_2008_11_001
crossref_primary_10_1016_j_measurement_2018_08_040
crossref_primary_10_1364_OE_23_017487
crossref_primary_10_4028_www_scientific_net_AMR_1039_155
crossref_primary_10_1016_j_proeng_2014_12_337
crossref_primary_10_1109_TMECH_2022_3191051
crossref_primary_10_1016_j_ymssp_2016_09_030
crossref_primary_10_1177_08827508231225018
crossref_primary_10_3390_s22239148
crossref_primary_10_1016_j_eswa_2010_09_116
crossref_primary_10_1515_phys_2024_0015
crossref_primary_10_1016_j_jsv_2012_12_024
crossref_primary_10_1155_2022_4569954
crossref_primary_10_1007_s00521_010_0434_0
crossref_primary_10_1177_1475472X231206495
crossref_primary_10_3390_jmse11081577
crossref_primary_10_1016_j_ymssp_2019_106587
crossref_primary_10_1177_14759217241241985
crossref_primary_10_1108_JQME_11_2015_0058
crossref_primary_10_1177_1748006X21992886
crossref_primary_10_1088_1361_6501_aceb0c
crossref_primary_10_1007_s12206_017_0712_1
crossref_primary_10_1007_s12206_007_1036_3
crossref_primary_10_1177_14750902221143827
crossref_primary_10_1016_j_asoc_2021_107286
crossref_primary_10_1007_s00500_011_0734_z
crossref_primary_10_1016_j_eswa_2009_10_002
crossref_primary_10_3390_app10082932
crossref_primary_10_1002_cjce_25247
crossref_primary_10_1016_j_asoc_2016_05_015
crossref_primary_10_1109_JSEN_2020_3015868
crossref_primary_10_1177_0954406211412017
crossref_primary_10_1109_JSEN_2023_3311644
crossref_primary_10_1016_j_compind_2018_12_012
crossref_primary_10_1016_j_measurement_2017_11_035
crossref_primary_10_3390_s140101295
crossref_primary_10_1016_j_eswa_2024_126109
crossref_primary_10_1016_j_ymssp_2014_05_032
crossref_primary_10_1080_00207217_2010_482023
crossref_primary_10_1016_j_ymssp_2017_07_001
crossref_primary_10_1371_journal_pone_0104046
crossref_primary_10_1016_j_eswa_2020_114116
crossref_primary_10_1093_tse_tdab013
crossref_primary_10_3390_app12104976
crossref_primary_10_21595_jve_2016_17449
crossref_primary_10_1177_1077546313496833
crossref_primary_10_3390_en15249508
crossref_primary_10_1155_2018_2530248
crossref_primary_10_2352_J_ImagingSci_Technol_2020_64_6_060405
crossref_primary_10_12677_MET_2020_95051
crossref_primary_10_1016_j_jsv_2012_11_029
crossref_primary_10_1016_j_ymssp_2012_07_001
crossref_primary_10_1080_14484846_2018_1552355
crossref_primary_10_3934_math_20241441
crossref_primary_10_1007_s42417_021_00379_7
crossref_primary_10_31796_ogummf_853090
crossref_primary_10_1080_08839514_2012_721694
crossref_primary_10_1016_j_neucom_2020_08_091
crossref_primary_10_1016_j_jsv_2015_01_014
crossref_primary_10_3390_s18051429
crossref_primary_10_1016_j_measurement_2014_10_026
crossref_primary_10_1016_j_neucom_2015_04_069
crossref_primary_10_1007_s41872_018_0044_x
crossref_primary_10_1016_j_matpr_2021_02_061
crossref_primary_10_3906_elk_1305_271
crossref_primary_10_1016_j_ymssp_2011_04_004
crossref_primary_10_1007_s00170_009_1953_7
crossref_primary_10_1002_cben_202100008
crossref_primary_10_1016_j_measurement_2017_09_041
crossref_primary_10_1002_qre_1639
crossref_primary_10_1016_j_ymssp_2008_01_013
crossref_primary_10_1007_s00170_012_4639_5
crossref_primary_10_1155_2022_5386341
crossref_primary_10_1016_j_knosys_2012_05_013
crossref_primary_10_1016_j_jtice_2023_105178
crossref_primary_10_1155_2015_793161
crossref_primary_10_1016_j_ces_2024_120699
crossref_primary_10_1177_1687814016665747
crossref_primary_10_1145_3519313
crossref_primary_10_3390_e16010607
crossref_primary_10_1016_j_ymssp_2016_10_004
crossref_primary_10_1109_ACCESS_2019_2937838
crossref_primary_10_1177_0954406215582015
crossref_primary_10_3390_electronics13244931
crossref_primary_10_3390_app131810458
crossref_primary_10_1088_1742_6596_2419_1_012066
crossref_primary_10_1016_j_ymssp_2012_06_005
crossref_primary_10_3390_s20215979
crossref_primary_10_1007_s10845_023_02123_2
crossref_primary_10_1016_j_cpb_2024_100370
crossref_primary_10_3390_s16030316
crossref_primary_10_1109_TIM_2019_2900885
crossref_primary_10_1088_1361_6501_ac94ec
crossref_primary_10_1016_j_ymssp_2009_05_020
crossref_primary_10_1080_02533839_2020_1794979
crossref_primary_10_3390_s22218129
crossref_primary_10_1243_09544062JMES913
crossref_primary_10_1021_acsomega_3c09122
crossref_primary_10_1007_s12008_022_01085_8
crossref_primary_10_1007_s12206_014_0704_3
crossref_primary_10_1016_j_tra_2018_07_011
crossref_primary_10_3390_s22228730
crossref_primary_10_1016_j_eswa_2011_11_097
crossref_primary_10_1007_s12206_021_0304_y
crossref_primary_10_1016_j_asoc_2012_03_021
crossref_primary_10_1016_j_chemolab_2013_06_009
crossref_primary_10_1016_j_energy_2016_08_039
crossref_primary_10_1177_0954406217743536
crossref_primary_10_1109_TII_2020_2968370
crossref_primary_10_1016_j_measurement_2019_107419
crossref_primary_10_1007_s12206_013_0844_x
crossref_primary_10_1016_j_ymssp_2014_08_007
crossref_primary_10_1175_JTECH_D_16_0216_1
crossref_primary_10_1007_s10845_014_0987_3
crossref_primary_10_1080_0305215X_2021_1982929
crossref_primary_10_1177_1475921718788299
crossref_primary_10_4028_www_scientific_net_AMR_760_762_1062
crossref_primary_10_1016_j_knosys_2022_108116
crossref_primary_10_1016_j_ymssp_2011_09_005
crossref_primary_10_1016_j_aej_2021_08_036
crossref_primary_10_1016_j_neucom_2014_11_021
crossref_primary_10_3390_en12173221
crossref_primary_10_12677_csa_2024_149185
crossref_primary_10_1177_14759217241289874
crossref_primary_10_1016_j_measurement_2019_107253
crossref_primary_10_1016_j_conengprac_2016_08_013
crossref_primary_10_1109_TIE_2021_3128895
crossref_primary_10_1016_j_eswa_2008_05_014
crossref_primary_10_3390_en12193665
crossref_primary_10_1007_s10462_022_10260_y
crossref_primary_10_1007_s11071_024_10073_4
crossref_primary_10_1016_j_fuel_2022_124778
crossref_primary_10_1016_j_anucene_2024_111029
crossref_primary_10_1155_2018_4252438
crossref_primary_10_3390_e15020416
crossref_primary_10_1007_s42417_024_01600_z
crossref_primary_10_1016_j_ces_2022_117467
crossref_primary_10_1016_j_knosys_2019_02_024
crossref_primary_10_1177_1748006X15595875
crossref_primary_10_1784_insi_2010_52_8_428
crossref_primary_10_1243_09544062JMES1784
crossref_primary_10_1016_j_eswa_2010_09_042
crossref_primary_10_1080_21642583_2024_2328542
crossref_primary_10_1088_1361_6501_ac8303
crossref_primary_10_3390_sym12101690
crossref_primary_10_1177_1077546316689644
crossref_primary_10_1007_s10489_021_02252_2
crossref_primary_10_1016_j_matpr_2023_05_400
crossref_primary_10_1109_TAES_2009_5259178
crossref_primary_10_4028_www_scientific_net_AMM_128_129_731
crossref_primary_10_1108_13552511111180186
crossref_primary_10_1109_ACCESS_2018_2882801
crossref_primary_10_4028_www_scientific_net_AMM_723_54
crossref_primary_10_1016_j_applthermaleng_2017_09_117
crossref_primary_10_1016_j_ymssp_2015_09_003
crossref_primary_10_1016_j_ijepes_2014_07_077
crossref_primary_10_3390_sym13040632
Cites_doi 10.1016/0360-8352(95)00173-5
10.1016/j.dsp.2003.12.003
10.1016/0893-6080(91)90009-T
10.1006/mssp.2001.1462
10.1016/S0020-7373(87)80053-6
10.1016/S0165-0114(99)00115-3
10.1023/A:1022604100933
10.1016/j.eswa.2004.12.030
10.1145/304182.304197
10.1007/BF00116251
ContentType Journal Article
Copyright 2006 Elsevier Ltd
2007 INIST-CNRS
Copyright_xml – notice: 2006 Elsevier Ltd
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ymssp.2006.06.010
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Physics
EISSN 1096-1216
EndPage 1317
ExternalDocumentID 18416764
10_1016_j_ymssp_2006_06_010
S0888327006001336
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c364t-6019ce07bd5a2ffa52d20ae32e7023a6be19992570db3132b1731408e6f58ed23
IEDL.DBID .~1
ISSN 0888-3270
IngestDate Fri Jul 11 16:51:10 EDT 2025
Mon Jul 21 09:16:13 EDT 2025
Tue Jul 01 00:57:58 EDT 2025
Thu Apr 24 23:01:14 EDT 2025
Fri Feb 23 02:25:13 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Fault diagnosis
Rotating machinery
Data mining
Decision tree
C4.5
Principal component analysis
Data analysis
Vibration
Rotating machine
Fault tree
Decision making
Unbalanced conditions
Data processing
Information extraction
Pattern recognition
Modeling
Backpropagation algorithm
Shaft
Database
Signal processing
Fault diagnostic
Pattern extraction
Cracked beam
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-6019ce07bd5a2ffa52d20ae32e7023a6be19992570db3132b1731408e6f58ed23
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 29200144
PQPubID 23500
PageCount 18
ParticipantIDs proquest_miscellaneous_29200144
pascalfrancis_primary_18416764
crossref_citationtrail_10_1016_j_ymssp_2006_06_010
crossref_primary_10_1016_j_ymssp_2006_06_010
elsevier_sciencedirect_doi_10_1016_j_ymssp_2006_06_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-04-01
PublicationDateYYYYMMDD 2007-04-01
PublicationDate_xml – month: 04
  year: 2007
  text: 2007-04-01
  day: 01
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Mechanical systems and signal processing
PublicationYear 2007
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Hagan, Demuth, Beale (bib30) 1996
JolliHe (bib23) 1986
Chen, Mo (bib3) 2004; 14
Li, Chen, Wu (bib26) 2005; 1433–3015
Chen, Lin (bib17) 2001; 118
Shi (bib29) 2002
Quinlan (bib22) 1987; 27
Operation Manual of Bently Rotor Kit Model RK4, Bently, Nevada, 2002.
X.J. Xiang, J.F. Shan, F.W. Fuchs, The study of transformer failure diagnose expert system based on rough set theory, in: Power Electronics and Motion Control Conference, vol. 2, IPEMC 2004. The Fourth International, pp. 533–536.
P. Yang, S.S. Liu, Fault diagnosis for boilers in thermal power plant by data mining, in: The Eighth International Conference on Control, Automation, Robotics and Vision, Kunming, China, 2004, pp. 2176–2180.
X.B. Li, Multivariate decision trees for data mining, Ph.D. Thesis, Darla Moore School of Business, University of South Carolina, 1999.
Y.G. Wang, B. Liu, Z.B. Guo, et al., Application of rough set neural network in fault diagnosing of test-launching control system of missiles, in: Proceedings of the Fifth World Congress on Intelligent Control and Automation, Hangzhou, PR China, 2004, pp. 1790–1792.
Breiman, Friedman, Olshen (bib10) 1984
Sawyer, Hallenberg (bib27) 1980
Breiman, Friedman, Olshen (bib20) 1984
Xu, Wang (bib18) 2005; 3584
Han, Kamber (bib28) 2001
Hunt, Marin, Stone (bib7) 1966
D. Jiang, S.T. Huang, W.P. Lei, et al., Study of data mining based machinery fault diagnosis, in: Proceedings of the First International Conference on Machine Learning and Cybernetics, Beijing, PR China, 2002, pp. 536–539.
Quinlan (bib8) 1986; 1
Niblett (bib19) 1987
Gayme, Menon, Ball (bib4) 2003; vol. 24–26
Samanta, Al-Balushi (bib25) 2003; 17
Zhang (bib32) 1992
Mehta, Agrawal, Rissanen (bib11) 1996
Hornik (bib31) 1991; 4
Mingers (bib21) 1989; 4
Quinlan (bib9) 1993
Nam, Lee (bib24) 1992
Patel, Kamrani (bib1) 1996; 30
Yang, Lim, Tan (bib2) 2005; 28
J. Gehrke, V. Ganti, R. Ramakrishnan, et al., BOAT—optimistic decision tree construction, in: Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, Philadelphia, Pennsylvania, 1999.
J. Shafer, R. Agrawal, M. Mehta, SPRINT: a scalable parallel classifier for data mining, in: Proceedings of the 22nd International Conference on Very Large Data Based, Mumbai, India, 1996.
Yang (10.1016/j.ymssp.2006.06.010_bib2) 2005; 28
Hunt (10.1016/j.ymssp.2006.06.010_bib7) 1966
Hornik (10.1016/j.ymssp.2006.06.010_bib31) 1991; 4
10.1016/j.ymssp.2006.06.010_bib33
Quinlan (10.1016/j.ymssp.2006.06.010_bib22) 1987; 27
Samanta (10.1016/j.ymssp.2006.06.010_bib25) 2003; 17
10.1016/j.ymssp.2006.06.010_bib14
Mingers (10.1016/j.ymssp.2006.06.010_bib21) 1989; 4
10.1016/j.ymssp.2006.06.010_bib15
10.1016/j.ymssp.2006.06.010_bib12
Nam (10.1016/j.ymssp.2006.06.010_bib24) 1992
10.1016/j.ymssp.2006.06.010_bib13
Shi (10.1016/j.ymssp.2006.06.010_bib29) 2002
Chen (10.1016/j.ymssp.2006.06.010_bib3) 2004; 14
Gayme (10.1016/j.ymssp.2006.06.010_bib4) 2003; vol. 24–26
Zhang (10.1016/j.ymssp.2006.06.010_bib32) 1992
Quinlan (10.1016/j.ymssp.2006.06.010_bib8) 1986; 1
Hagan (10.1016/j.ymssp.2006.06.010_bib30) 1996
Breiman (10.1016/j.ymssp.2006.06.010_bib10) 1984
Breiman (10.1016/j.ymssp.2006.06.010_bib20) 1984
Han (10.1016/j.ymssp.2006.06.010_bib28) 2001
Quinlan (10.1016/j.ymssp.2006.06.010_bib9) 1993
10.1016/j.ymssp.2006.06.010_bib16
Chen (10.1016/j.ymssp.2006.06.010_bib17) 2001; 118
JolliHe (10.1016/j.ymssp.2006.06.010_bib23) 1986
Li (10.1016/j.ymssp.2006.06.010_bib26) 2005; 1433–3015
Sawyer (10.1016/j.ymssp.2006.06.010_bib27) 1980
Mehta (10.1016/j.ymssp.2006.06.010_bib11) 1996
Xu (10.1016/j.ymssp.2006.06.010_bib18) 2005; 3584
Niblett (10.1016/j.ymssp.2006.06.010_bib19) 1987
Patel (10.1016/j.ymssp.2006.06.010_bib1) 1996; 30
10.1016/j.ymssp.2006.06.010_bib6
10.1016/j.ymssp.2006.06.010_bib5
References_xml – reference: D. Jiang, S.T. Huang, W.P. Lei, et al., Study of data mining based machinery fault diagnosis, in: Proceedings of the First International Conference on Machine Learning and Cybernetics, Beijing, PR China, 2002, pp. 536–539.
– volume: 14
  start-page: 203
  year: 2004
  end-page: 217
  ident: bib3
  article-title: A method for intelligent fault diagnosis of rotating machinery
  publication-title: Digital Signal Processing
– reference: Operation Manual of Bently Rotor Kit Model RK4, Bently, Nevada, 2002.
– reference: Y.G. Wang, B. Liu, Z.B. Guo, et al., Application of rough set neural network in fault diagnosing of test-launching control system of missiles, in: Proceedings of the Fifth World Congress on Intelligent Control and Automation, Hangzhou, PR China, 2004, pp. 1790–1792.
– reference: X.J. Xiang, J.F. Shan, F.W. Fuchs, The study of transformer failure diagnose expert system based on rough set theory, in: Power Electronics and Motion Control Conference, vol. 2, IPEMC 2004. The Fourth International, pp. 533–536.
– reference: P. Yang, S.S. Liu, Fault diagnosis for boilers in thermal power plant by data mining, in: The Eighth International Conference on Control, Automation, Robotics and Vision, Kunming, China, 2004, pp. 2176–2180.
– year: 1992
  ident: bib32
  article-title: Models and Applications of Artificial Neural Networks
– volume: 1433–3015
  year: 2005
  ident: bib26
  article-title: Fault diagnosis of rotating machinery based on SVD, FCM and RST
  publication-title: International Journal of Advanced Manufacturing Technology
– volume: 4
  start-page: 251
  year: 1991
  end-page: 257
  ident: bib31
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural Networks
– volume: 118
  start-page: 139
  year: 2001
  end-page: 151
  ident: bib17
  article-title: Fuzzy approaches for fault diagnosis of transformers
  publication-title: Fuzzy Sets and System
– year: 2001
  ident: bib28
  article-title: Data Mining: Concepts and Techniques
– year: 1980
  ident: bib27
  article-title: Sawyer's Turbomachinery Maintenance Handbooks
– year: 1984
  ident: bib20
  article-title: Classification and Regression Trees
– reference: J. Shafer, R. Agrawal, M. Mehta, SPRINT: a scalable parallel classifier for data mining, in: Proceedings of the 22nd International Conference on Very Large Data Based, Mumbai, India, 1996.
– start-page: 67
  year: 1987
  end-page: 78
  ident: bib19
  article-title: Constructing decision trees in noisy domains
  publication-title: Proceedings of the Second European Working Session on Learning
– volume: 3584
  start-page: 696
  year: 2005
  end-page: 703
  ident: bib18
  article-title: An adaptive network intrusion detection method based on PCA and support vector machines
  publication-title: Lecture Notes in Artificial Intelligence
– volume: 28
  start-page: 735
  year: 2005
  end-page: 742
  ident: bib2
  article-title: VIBEX: an expert system for vibration fault diagnosis of rotating machinery using decision tree and decision table
  publication-title: Expert System with Application
– year: 1996
  ident: bib11
  article-title: SLIQ: A Fast Scalable Classifier for Data Mining, EDBT 96
– volume: vol. 24–26
  start-page: 341
  year: 2003
  end-page: 346
  ident: bib4
  article-title: Fault detection and diagnosis in turbine engines using fuzzy logic
  publication-title: 22nd International Conference of Digital Object Identifier
– volume: 4
  start-page: 227
  year: 1989
  end-page: 243
  ident: bib21
  article-title: An empirical comparison of pruning methods for decision tree induction
  publication-title: Machine Learning
– volume: 1
  start-page: 81
  year: 1986
  end-page: 106
  ident: bib8
  article-title: Induction of decision trees
  publication-title: Machine Learning
– volume: 17
  start-page: 317
  year: 2003
  end-page: 328
  ident: bib25
  article-title: Artificial neural network based fault diagnostics of rolling element bearings using time-domain features
  publication-title: Mechanical Systems and Signal Processing
– year: 1996
  ident: bib30
  article-title: Neural Network Design
– reference: X.B. Li, Multivariate decision trees for data mining, Ph.D. Thesis, Darla Moore School of Business, University of South Carolina, 1999.
– year: 1993
  ident: bib9
  article-title: C4.5: Programs for Machine Learning
– volume: 30
  start-page: 297
  year: 1996
  end-page: 319
  ident: bib1
  article-title: Intelligent decision support system for diagnosis and maintenance of automated systems
  publication-title: Computers Industrial Engineering
– volume: 27
  start-page: 221
  year: 1987
  end-page: 234
  ident: bib22
  article-title: Simplifying decision tree
  publication-title: International Journal of Man–Machine Studies
– year: 1984
  ident: bib10
  article-title: Classification and Regression Trees
– year: 1966
  ident: bib7
  article-title: Experiments in Induction
– year: 2002
  ident: bib29
  article-title: Knowledge Discovery
– start-page: 1064
  year: 1992
  end-page: 1067
  ident: bib24
  article-title: Diagnosis of rotating machines by utilizing a backpropagation neural net
  publication-title: IEEE 0-7803-0582-5/92
– reference: J. Gehrke, V. Ganti, R. Ramakrishnan, et al., BOAT—optimistic decision tree construction, in: Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, Philadelphia, Pennsylvania, 1999.
– year: 1986
  ident: bib23
  article-title: Principal Component Analysis
– year: 1984
  ident: 10.1016/j.ymssp.2006.06.010_bib10
– volume: 30
  start-page: 297
  issue: 2
  year: 1996
  ident: 10.1016/j.ymssp.2006.06.010_bib1
  article-title: Intelligent decision support system for diagnosis and maintenance of automated systems
  publication-title: Computers Industrial Engineering
  doi: 10.1016/0360-8352(95)00173-5
– volume: 14
  start-page: 203
  year: 2004
  ident: 10.1016/j.ymssp.2006.06.010_bib3
  article-title: A method for intelligent fault diagnosis of rotating machinery
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2003.12.003
– volume: vol. 24–26
  start-page: 341
  year: 2003
  ident: 10.1016/j.ymssp.2006.06.010_bib4
  article-title: Fault detection and diagnosis in turbine engines using fuzzy logic
– year: 1980
  ident: 10.1016/j.ymssp.2006.06.010_bib27
– year: 2001
  ident: 10.1016/j.ymssp.2006.06.010_bib28
– year: 1992
  ident: 10.1016/j.ymssp.2006.06.010_bib32
– year: 1986
  ident: 10.1016/j.ymssp.2006.06.010_bib23
– start-page: 1064
  year: 1992
  ident: 10.1016/j.ymssp.2006.06.010_bib24
  article-title: Diagnosis of rotating machines by utilizing a backpropagation neural net
  publication-title: IEEE 0-7803-0582-5/92
– volume: 4
  start-page: 251
  issue: 2
  year: 1991
  ident: 10.1016/j.ymssp.2006.06.010_bib31
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(91)90009-T
– volume: 17
  start-page: 317
  issue: 2
  year: 2003
  ident: 10.1016/j.ymssp.2006.06.010_bib25
  article-title: Artificial neural network based fault diagnostics of rolling element bearings using time-domain features
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1006/mssp.2001.1462
– ident: 10.1016/j.ymssp.2006.06.010_bib16
– volume: 1433–3015
  year: 2005
  ident: 10.1016/j.ymssp.2006.06.010_bib26
  article-title: Fault diagnosis of rotating machinery based on SVD, FCM and RST
  publication-title: International Journal of Advanced Manufacturing Technology
– ident: 10.1016/j.ymssp.2006.06.010_bib5
– year: 1966
  ident: 10.1016/j.ymssp.2006.06.010_bib7
– ident: 10.1016/j.ymssp.2006.06.010_bib12
– volume: 27
  start-page: 221
  year: 1987
  ident: 10.1016/j.ymssp.2006.06.010_bib22
  article-title: Simplifying decision tree
  publication-title: International Journal of Man–Machine Studies
  doi: 10.1016/S0020-7373(87)80053-6
– ident: 10.1016/j.ymssp.2006.06.010_bib33
– ident: 10.1016/j.ymssp.2006.06.010_bib14
– volume: 118
  start-page: 139
  year: 2001
  ident: 10.1016/j.ymssp.2006.06.010_bib17
  article-title: Fuzzy approaches for fault diagnosis of transformers
  publication-title: Fuzzy Sets and System
  doi: 10.1016/S0165-0114(99)00115-3
– volume: 4
  start-page: 227
  year: 1989
  ident: 10.1016/j.ymssp.2006.06.010_bib21
  article-title: An empirical comparison of pruning methods for decision tree induction
  publication-title: Machine Learning
  doi: 10.1023/A:1022604100933
– year: 1996
  ident: 10.1016/j.ymssp.2006.06.010_bib11
– year: 2002
  ident: 10.1016/j.ymssp.2006.06.010_bib29
– volume: 28
  start-page: 735
  year: 2005
  ident: 10.1016/j.ymssp.2006.06.010_bib2
  article-title: VIBEX: an expert system for vibration fault diagnosis of rotating machinery using decision tree and decision table
  publication-title: Expert System with Application
  doi: 10.1016/j.eswa.2004.12.030
– volume: 3584
  start-page: 696
  year: 2005
  ident: 10.1016/j.ymssp.2006.06.010_bib18
  article-title: An adaptive network intrusion detection method based on PCA and support vector machines
  publication-title: Lecture Notes in Artificial Intelligence
– year: 1984
  ident: 10.1016/j.ymssp.2006.06.010_bib20
– ident: 10.1016/j.ymssp.2006.06.010_bib13
  doi: 10.1145/304182.304197
– volume: 1
  start-page: 81
  year: 1986
  ident: 10.1016/j.ymssp.2006.06.010_bib8
  article-title: Induction of decision trees
  publication-title: Machine Learning
  doi: 10.1007/BF00116251
– year: 1993
  ident: 10.1016/j.ymssp.2006.06.010_bib9
– start-page: 67
  year: 1987
  ident: 10.1016/j.ymssp.2006.06.010_bib19
  article-title: Constructing decision trees in noisy domains
– year: 1996
  ident: 10.1016/j.ymssp.2006.06.010_bib30
– ident: 10.1016/j.ymssp.2006.06.010_bib6
– ident: 10.1016/j.ymssp.2006.06.010_bib15
SSID ssj0009406
Score 2.3100767
Snippet After analysing the flaws of conventional fault diagnosis methods, data mining technology is introduced to fault diagnosis field, and a new method based on...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1300
SubjectTerms Applied sciences
C4.5
Data mining
Decision tree
Exact sciences and technology
Fault diagnosis
Fundamental areas of phenomenology (including applications)
Industrial metrology. Testing
Measurement and testing methods
Mechanical engineering. Machine design
Physics
Principal component analysis
Rotating machinery
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Title Decision tree and PCA-based fault diagnosis of rotating machinery
URI https://dx.doi.org/10.1016/j.ymssp.2006.06.010
https://www.proquest.com/docview/29200144
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IXjTG-BnxA3vwaGVs3QpHghLUSEyUhNvSra3BwEbYOHDxb_e9fYhEw8Fkp6VNl77X97H3-vsRcg0-0bRDKZjUyjCuHcWCMOQMPFlLIqGIyq5HPw-8_pA_jtxRhXTLuzDYVlnY_tymZ9a6eNModrMxG48br3A-QB0FIopAHOMg7DbnArX89nPV5tHmGb8mDmY4ukQeynq8ltMkmRUVCXjwGu3f3ml3JhPYM5OTXfyy25kz6u2TvSKKpJ38Qw9IRUeHZOcHtuAR6dwV7DkU685URoq-dDsMvZaiRi4mKVV5m904obGh8xiL8tE7nWbtlXq-PCbD3v1bt88KvgQWOh5PGeRW7VBbIlCutI2Rrq1sS2rH1gI8s_QCjZgDSFunAkRsDJrCgfyqpT3jtrSynRNSjeJInxIaQB4hQFaGtx0IMZotS1ra5XYYGg4TRY3Y5T75YQEmjpwWE7_sGvvws81FmkvPx6dp1cjN96RZjqWxebhXCsBfUwkfrP3mifU1ca0Wwxqr8HiNXJXy8-E0YYlERjpeJD5yd2GOefbftc_Jdv73F3t7Lkg1nS_0JYQtaVDP9LJOtjoPT_3BFxJr68k
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFH9CcBgTQoxtWmGAD3CbaZo4SXvYoSqg8qlJA4mb58T2VNSmVdMK9cI_xT_Ie4kDVEwcJlXKKYpl6z37fcS_934A--gTbStVMVdGWy5MoHmSpoKjJ2sqIhTRRXn05VXUvRFnt-HtEjxWtTAEq3S2v7TphbV2b-pOmvVRr1f_jecDt2NMHUUwjgkih6w8N7N7zNvyn6dHqOQD3z85vu50uaMW4GkQiQnHNKSVGi9OdKh8a1Xoa99TJvBNjE5MRYmh8nxieNMJNTdMGnGAqUjTRDZsGk3dDtDurwg0F0SbcPjwgitpiYLQk1bHaXlVq6MCVDYb5PnIXYHgQ3W7_3aHayOVo5Jsya7xxlEU3u9kA9Zd2MrapWQ-wZLJNuHjq2aGn6F95Oh6GF10M5Vp9qvT5uQmNbNq2p8wXeL6ejkbWjYeEgog-8sGBZ7TjGdf4GYhUvwKy9kwM9-AJZi4xLg5rGgFGNM0mp7yTCj8NLUCB8Y18Cs5ydR1LycSjb6sYGp3shAu8WpGkp6GV4Mfz4NGZfOO9z-PKgXIuT0o0b28P3B3Tl0vk9GlbhyJGuxV-pN4fOlORmVmOM0lkYVRUrv1v3PvwYfu9eWFvDi9Ot-G1fLXMwGLvsPyZDw1OxgzTZLdYo8y-LPoQ_EEuR4mUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decision+tree+and+PCA-based+fault+diagnosis+of+rotating+machinery&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Sun%2C+Weixiang&rft.au=Chen%2C+Jin&rft.au=Li%2C+Jiaqing&rft.date=2007-04-01&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=21&rft.issue=3&rft.spage=1300&rft.epage=1317&rft_id=info:doi/10.1016%2Fj.ymssp.2006.06.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon