Mapping Distributional Semantics to Property Norms with Deep Neural Networks

Word embeddings have been very successful in many natural language processing tasks, but they characterize the meaning of a word/concept by uninterpretable “context signatures”. Such a representation can render results obtained using embeddings difficult to interpret. Neighboring word vectors may ha...

Full description

Saved in:
Bibliographic Details
Published inBig data and cognitive computing Vol. 3; no. 2; p. 30
Main Authors Li, Dandan, Summers-Stay, Douglas
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2019
Subjects
Online AccessGet full text
ISSN2504-2289
2504-2289
DOI10.3390/bdcc3020030

Cover

Loading…
Abstract Word embeddings have been very successful in many natural language processing tasks, but they characterize the meaning of a word/concept by uninterpretable “context signatures”. Such a representation can render results obtained using embeddings difficult to interpret. Neighboring word vectors may have similar meanings, but in what way are they similar? That similarity may represent a synonymy, metonymy, or even antonymy relation. In the cognitive psychology literature, in contrast, concepts are frequently represented by their relations with properties. These properties are produced by test subjects when asked to describe important features of concepts. As such, they form a natural, intuitive feature space. In this work, we present a neural-network-based method for mapping a distributional semantic space onto a human-built property space automatically. We evaluate our method on word embeddings learned with different types of contexts, and report state-of-the-art performances on the widely used McRae semantic feature production norms.
AbstractList Word embeddings have been very successful in many natural language processing tasks, but they characterize the meaning of a word/concept by uninterpretable “context signatures”. Such a representation can render results obtained using embeddings difficult to interpret. Neighboring word vectors may have similar meanings, but in what way are they similar? That similarity may represent a synonymy, metonymy, or even antonymy relation. In the cognitive psychology literature, in contrast, concepts are frequently represented by their relations with properties. These properties are produced by test subjects when asked to describe important features of concepts. As such, they form a natural, intuitive feature space. In this work, we present a neural-network-based method for mapping a distributional semantic space onto a human-built property space automatically. We evaluate our method on word embeddings learned with different types of contexts, and report state-of-the-art performances on the widely used McRae semantic feature production norms.
Author Summers-Stay, Douglas
Li, Dandan
Author_xml – sequence: 1
  givenname: Dandan
  surname: Li
  fullname: Li, Dandan
– sequence: 2
  givenname: Douglas
  surname: Summers-Stay
  fullname: Summers-Stay, Douglas
BookMark eNptkE1LAzEQhoMoqNWTf2DBo1STTJLdHMXPQq2Ceg5JNtHUdrMmKeK_d7UiIp5mGJ55Z3h20WYXO4fQAcHHABKfmNZawBRjwBtoh3LMxpQ2cvNXv432c55jjCllTBCyg6Y3uu9D91Sdh1xSMKsSYqcX1b1b6q4Em6sSq7sUe5fKezWLaZmrt1Ceq3Pn-mrmVmmAZ668xfSS99CW14vs9r_rCD1eXjycXY-nt1eTs9Pp2IJgZcw9bwxlgF1tfd00uqFt7VuLawkaHPNGSmmI46L2goIAx20NjfZM1EKYGkZoss5to56rPoWlTu8q6qC-BjE9KZ2G5xdOgfNcEpCagWTEGC2paXHrOccgCYch63Cd1af4unK5qHlcpUFBVpQzIRnmAzZCR2vKpphzcv7nKsHq0776ZX-gyR_ahqI_zZakw-LfnQ8YT4hT
CitedBy_id crossref_primary_10_3390_bdcc4040033
Cites_doi 10.1109/TPAMI.2016.2635138
10.1007/BF02551274
10.7551/mitpress/1602.001.0001
10.3115/v1/P15-2119
10.18653/v1/D15-1003
10.1016/0893-6080(89)90020-8
10.3115/v1/P14-2050
10.3115/v1/P14-5010
10.1111/j.1551-6709.2009.01068.x
10.1080/00437956.1954.11659520
10.3758/s13428-013-0420-4
10.18653/v1/N16-1071
10.3115/1690219.1690287
10.18653/v1/D17-1099
10.18653/v1/D15-1002
10.18653/v1/N16-1118
10.1007/s11168-010-9068-8
10.1609/aaai.v31i1.11164
10.3758/BF03192726
10.3765/sp.9.17
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/bdcc3020030
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2504-2289
ExternalDocumentID oai_doaj_org_article_3ef59139a43941bba92bd0df55039153
10_3390_bdcc3020030
GroupedDBID 8FE
8FG
AADQD
AAFWJ
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c364t-5f58b2430e7cf788a82d7fdc0793a3e4fb999b1e567f62363e5c738af46766b73
IEDL.DBID BENPR
ISSN 2504-2289
IngestDate Wed Aug 27 01:27:46 EDT 2025
Sun Jul 13 04:58:35 EDT 2025
Tue Jul 01 02:11:36 EDT 2025
Thu Apr 24 22:54:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-5f58b2430e7cf788a82d7fdc0793a3e4fb999b1e567f62363e5c738af46766b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2546940515?pq-origsite=%requestingapplication%
PQID 2546940515
PQPubID 2061777
ParticipantIDs doaj_primary_oai_doaj_org_article_3ef59139a43941bba92bd0df55039153
proquest_journals_2546940515
crossref_primary_10_3390_bdcc3020030
crossref_citationtrail_10_3390_bdcc3020030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Big data and cognitive computing
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Boleda (ref_22) 2017; 42
Devereux (ref_14) 2009; 7
Baroni (ref_19) 2008; 9
McRae (ref_4) 2005; 37
ref_36
ref_13
ref_35
ref_12
ref_34
ref_11
ref_33
ref_10
ref_31
Harris (ref_8) 1954; 10
Cybenko (ref_29) 1989; 2
Devereux (ref_5) 2014; 46
ref_18
ref_17
Srivastava (ref_32) 2014; 15
ref_16
Erk (ref_21) 2016; 9
ref_24
ref_23
Silberer (ref_25) 2017; 39
ref_20
ref_1
ref_3
Hornik (ref_30) 1989; 2
ref_2
ref_28
ref_27
ref_26
ref_9
Baroni (ref_7) 2010; 34
Voss (ref_15) 2016; 16
ref_6
References_xml – volume: 16
  start-page: 34
  year: 2016
  ident: ref_15
  article-title: Using a Distributional Semantic Vector Space with a Knowledge Base for Reasoning in Uncertain Conditions
  publication-title: Biol. Inspired Cogn. Archit.
– volume: 39
  start-page: 2284
  year: 2017
  ident: ref_25
  article-title: Visually Grounded Meaning Representations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2635138
– volume: 2
  start-page: 303
  year: 1989
  ident: ref_29
  article-title: Approximation by Superpositions of a Sigmoidal Function
  publication-title: Math. Control Signals Syst.
  doi: 10.1007/BF02551274
– ident: ref_9
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_32
  article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting
  publication-title: J. Mach. Learn. Res.
– ident: ref_24
– ident: ref_34
– ident: ref_10
  doi: 10.7551/mitpress/1602.001.0001
– ident: ref_20
  doi: 10.3115/v1/P15-2119
– ident: ref_16
  doi: 10.18653/v1/D15-1003
– volume: 2
  start-page: 359
  year: 1989
  ident: ref_30
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– ident: ref_1
– ident: ref_18
– ident: ref_35
– ident: ref_3
  doi: 10.3115/v1/P14-2050
– ident: ref_36
  doi: 10.3115/v1/P14-5010
– volume: 34
  start-page: 222
  year: 2010
  ident: ref_7
  article-title: Strudel: A Corpus-Based Semantic Model Based on Properties and Types
  publication-title: Cogn. Sci.
  doi: 10.1111/j.1551-6709.2009.01068.x
– volume: 10
  start-page: 146
  year: 1954
  ident: ref_8
  article-title: Distributional structure
  publication-title: Word
  doi: 10.1080/00437956.1954.11659520
– volume: 46
  start-page: 1119
  year: 2014
  ident: ref_5
  article-title: The Centre for Speech, Language and the Brain (CSLB) concept property norms
  publication-title: Behav. Res. Methods
  doi: 10.3758/s13428-013-0420-4
– ident: ref_23
  doi: 10.18653/v1/N16-1071
– ident: ref_31
– ident: ref_33
– ident: ref_11
  doi: 10.3115/1690219.1690287
– volume: 42
  start-page: 619
  year: 2017
  ident: ref_22
  article-title: Formal Distributional Semantics: Introduction to the Special Issue
  publication-title: Spec. Issue Comput. Linguist. Form. Distrib. Semant.
– ident: ref_27
– ident: ref_2
– ident: ref_26
  doi: 10.18653/v1/D17-1099
– ident: ref_12
– ident: ref_6
  doi: 10.18653/v1/D15-1002
– ident: ref_28
  doi: 10.18653/v1/N16-1118
– volume: 7
  start-page: 137
  year: 2009
  ident: ref_14
  article-title: Towards Unrestricted, Large-Scale Acquisition of Feature-Based Conceptual Representations from Corpus Data
  publication-title: Res. Lang. Comput.
  doi: 10.1007/s11168-010-9068-8
– ident: ref_17
– ident: ref_13
  doi: 10.1609/aaai.v31i1.11164
– volume: 9
  start-page: 1
  year: 2008
  ident: ref_19
  article-title: Concepts and Properties in Word Spaces
  publication-title: Ital. J. Linguist.
– volume: 37
  start-page: 547
  year: 2005
  ident: ref_4
  article-title: Semantic feature production norms for a large set of living and nonliving things
  publication-title: Behav. Res. Methods
  doi: 10.3758/BF03192726
– volume: 9
  start-page: 1
  year: 2016
  ident: ref_21
  article-title: What do you know about an alligator when you know the company it keeps?
  publication-title: Semant. Pragmat.
  doi: 10.3765/sp.9.17
SSID ssj0002244611
Score 2.126526
Snippet Word embeddings have been very successful in many natural language processing tasks, but they characterize the meaning of a word/concept by uninterpretable...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 30
SubjectTerms Aircraft
Artificial neural networks
Astronomers
Cognitive psychology
Datasets
distributional semantics
Hypotheses
Mapping
Natural language processing
Neural networks
Norms
property norm
Query expansion
Semantics
word embeddings
Words (language)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8NAEIAX6cmLKCpWq-yhJyE0yWaT7VGtpYgtghZ6C_uYFUXb0sSD_96ZJC0VBS9ew5CEmezOzGbmG8a6XtHfP_CBik1GLTkJLqnQBw69S-QM-KjiFown6Wia3M3kbGvUF9WE1XjgWnE9AV4SulJTC2dkjO7HxoXOY2RNbPOK84k-byuZeq2gLpjmRFHdkCcwr-8ZZ60IqRQr_OaCKlL_j4248i7DfbbXhIX8qn6dA7YD80N2P9ZET3jmA6LbNoOpUOoR3lEfL7bg5YI_0Gn6qvzkE4w-C07nqnwAsOSE3UDhSV3nXRyx6fD26WYUNNMPAivSpAykl8rEiQiByEFKaRW7zDtLRDstIPEGYzsTgUwzjzFMKkDaTCjtcetLU5OJY9aaL-ZwwnhspfEaQCqVJkbIvnYRKK8jvFvspG-zy7VCctugwWlCxVuOKQJpL9_SXpt1N8LLmojxu9g1aXYjQhjr6gIaN2-Mm_9l3DbrrO2SN2uryIng309oNs3pfzzjjO1iENSvy786rFWuPuAcA43SXFTf1Bd1Ys_2
  priority: 102
  providerName: Directory of Open Access Journals
Title Mapping Distributional Semantics to Property Norms with Deep Neural Networks
URI https://www.proquest.com/docview/2546940515
https://doaj.org/article/3ef59139a43941bba92bd0df55039153
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ1LS8NAEIAXHxcvoqhYH2UPPQmhSTabbE_iq4rYUtRCb2GfImhTm3jw3zuTbKuieE2GHGaz89rZbwjpOIGnf9YFIlYZXslJYEuFLjDgXSKjrItqbsFgmN6Mk9sJn_iCW-nbKhc2sTbUptBYI-8it72X4ESS09lbgFOj8HTVj9BYJetgggUkX-vnV8PR_bLKAg4qSaOouZjHIL_vKqM1C7ElK_zhimpi_y-DXHuZ_hbZ9OEhPWvWc5us2OkOuRtIpCg80Uuk3PoBVSD1YF9BL8-6pFVBR1hVn1cfdAhRaEmxvkovrZ1RxG-A8LDp9y53ybh_9XhxE_gpCIFmaVIF3HGh4oSFFglCQkgRm8wZjWQ7yWziFMR4KrI8zRzEMimzXGdMSAcmME1VxvbI2rSY2n1CY82Vk9ZyIdJEMd6TJrLCyQi-FhvuWuRkoZBce0Q4Tqp4ySFVQO3l37TXIp2l8KwhY_wtdo6aXYogzrp-UMyfcr87cmYdRz6pxHu6kVKyFysTGgfpEwLsWYscLdYl93uszL_-iIP_Xx-SDQhzek2D1xFZq-bv9hhCiUq1yaroX7f9X9OuE_JPYW7LZA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcoALAgEibYE9lAuSVdvrtdcHhIAQUppESLRSb2YfsxUSTUJshPqn-I3M-BFAIG69ekcreXZeOzvzDcBh0Pz6hyHSqS24JScjlYpD5Mm7JN5iSFrcgvkin55l78_V-Q78GHphuKxysImtofYrxznyI8ZtLzOeSPJy_TXiqVH8ujqM0OjE4gSvvtOVrX5xPKbzfZamk7enb6ZRP1UgcjLPmkgFpW2ayRgZkUdro1NfBO8YKc5IzIKlmMkmqPIiUGyQS1SukNoEMil5bgtJ-96Am_RbJWuUnrzb5nTIHWZ5knRtgLQeH1nvnIy5ACz-w_G18wH-Mv-tT5vchTt9MCpeddJzD3ZweR9mc8OYDRdizJi6_TgsovqIl3QKn10tmpX4wDn8TXMlFhTz1oKzuWKMuBYM9kHEi666vH4AZ9fCnYewu1wt8RGI1CkbDKLSOs-sVKXxCepgEtot9SqM4PnAkMr1gOQ8F-NLRRcT5l71G_dGcLglXnc4HP8me82c3ZIweHb7YbW5qHpdrCQGxWiohruCE2tNmVof-0CXNYbLlyM4GM6l6jW6rn7J397_l5_CrenpfFbNjhcn-3CbAqyyKy07gN1m8w0fUxDT2Cet5Aj4dN2i-hMBCASA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJcUFGpCLRlD-WCZMX2eu31AVW0adSnFVEq9Wb2WSFBEmIj1L_WX8eMH2kRiFuv9mgPs7M7j535PoA9L-n1z_lAxjqjkZwEj1ToA4veJbLa-ajBLbgo0uOr5PRaXK_BXT8LQ22V_Z3YXNR2bqhGPiLc9jwhRpKR79oipuPJ_uJHQAxS9NLa02m0JnLmbn9h-lZ9OBnjXr-L48nR58PjoGMYCAxPkzoQXkgdJzx0hM4jpZKxzbw1hBqnuEu8xvhJR06kmcc4IeVOmIxL5fF6SVOdcVz3CaxnmBWFA1g_OCqmn1YVHnSOSRpF7VAg53k40tYYHlI7WPiHG2zYAv5yBo2Hm2zA8y40ZR9bW3oBa262CecXihAcbtiYEHY7ciyUunTfcU--morVczaliv6yvmUFRsAVo9ouGzu3YAT9gcJF22tevYSrR9HPFgxm85l7BSw2QnvlnJAyTTQXubKRk15FuFpshR_C-14hpengyYkl41uJaQppr3ygvSHsrYQXLSrHv8UOSLMrEYLSbj7MlzdldzJL7rwgbFRFM8KR1iqPtQ2tx9SNwPP5ELb7fSm7812V99b4-v-_38JTNNPy_KQ4ewPPMNrK2z6zbRjUy59uByOaWu92psPgy2Nb629HUgoS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+Distributional+Semantics+to+Property+Norms+with+Deep+Neural+Networks&rft.jtitle=Big+data+and+cognitive+computing&rft.au=Li%2C+Dandan&rft.au=Summers-Stay%2C+Douglas&rft.date=2019-06-01&rft.issn=2504-2289&rft.eissn=2504-2289&rft.volume=3&rft.issue=2&rft.spage=30&rft_id=info:doi/10.3390%2Fbdcc3020030&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_bdcc3020030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-2289&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-2289&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-2289&client=summon