Mapping Distributional Semantics to Property Norms with Deep Neural Networks
Word embeddings have been very successful in many natural language processing tasks, but they characterize the meaning of a word/concept by uninterpretable “context signatures”. Such a representation can render results obtained using embeddings difficult to interpret. Neighboring word vectors may ha...
Saved in:
Published in | Big data and cognitive computing Vol. 3; no. 2; p. 30 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2504-2289 2504-2289 |
DOI | 10.3390/bdcc3020030 |
Cover
Loading…
Abstract | Word embeddings have been very successful in many natural language processing tasks, but they characterize the meaning of a word/concept by uninterpretable “context signatures”. Such a representation can render results obtained using embeddings difficult to interpret. Neighboring word vectors may have similar meanings, but in what way are they similar? That similarity may represent a synonymy, metonymy, or even antonymy relation. In the cognitive psychology literature, in contrast, concepts are frequently represented by their relations with properties. These properties are produced by test subjects when asked to describe important features of concepts. As such, they form a natural, intuitive feature space. In this work, we present a neural-network-based method for mapping a distributional semantic space onto a human-built property space automatically. We evaluate our method on word embeddings learned with different types of contexts, and report state-of-the-art performances on the widely used McRae semantic feature production norms. |
---|---|
AbstractList | Word embeddings have been very successful in many natural language processing tasks, but they characterize the meaning of a word/concept by uninterpretable “context signatures”. Such a representation can render results obtained using embeddings difficult to interpret. Neighboring word vectors may have similar meanings, but in what way are they similar? That similarity may represent a synonymy, metonymy, or even antonymy relation. In the cognitive psychology literature, in contrast, concepts are frequently represented by their relations with properties. These properties are produced by test subjects when asked to describe important features of concepts. As such, they form a natural, intuitive feature space. In this work, we present a neural-network-based method for mapping a distributional semantic space onto a human-built property space automatically. We evaluate our method on word embeddings learned with different types of contexts, and report state-of-the-art performances on the widely used McRae semantic feature production norms. |
Author | Summers-Stay, Douglas Li, Dandan |
Author_xml | – sequence: 1 givenname: Dandan surname: Li fullname: Li, Dandan – sequence: 2 givenname: Douglas surname: Summers-Stay fullname: Summers-Stay, Douglas |
BookMark | eNptkE1LAzEQhoMoqNWTf2DBo1STTJLdHMXPQq2Ceg5JNtHUdrMmKeK_d7UiIp5mGJ55Z3h20WYXO4fQAcHHABKfmNZawBRjwBtoh3LMxpQ2cvNXv432c55jjCllTBCyg6Y3uu9D91Sdh1xSMKsSYqcX1b1b6q4Em6sSq7sUe5fKezWLaZmrt1Ceq3Pn-mrmVmmAZ668xfSS99CW14vs9r_rCD1eXjycXY-nt1eTs9Pp2IJgZcw9bwxlgF1tfd00uqFt7VuLawkaHPNGSmmI46L2goIAx20NjfZM1EKYGkZoss5to56rPoWlTu8q6qC-BjE9KZ2G5xdOgfNcEpCagWTEGC2paXHrOccgCYch63Cd1af4unK5qHlcpUFBVpQzIRnmAzZCR2vKpphzcv7nKsHq0776ZX-gyR_ahqI_zZakw-LfnQ8YT4hT |
CitedBy_id | crossref_primary_10_3390_bdcc4040033 |
Cites_doi | 10.1109/TPAMI.2016.2635138 10.1007/BF02551274 10.7551/mitpress/1602.001.0001 10.3115/v1/P15-2119 10.18653/v1/D15-1003 10.1016/0893-6080(89)90020-8 10.3115/v1/P14-2050 10.3115/v1/P14-5010 10.1111/j.1551-6709.2009.01068.x 10.1080/00437956.1954.11659520 10.3758/s13428-013-0420-4 10.18653/v1/N16-1071 10.3115/1690219.1690287 10.18653/v1/D17-1099 10.18653/v1/D15-1002 10.18653/v1/N16-1118 10.1007/s11168-010-9068-8 10.1609/aaai.v31i1.11164 10.3758/BF03192726 10.3765/sp.9.17 |
ContentType | Journal Article |
Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/bdcc3020030 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2504-2289 |
ExternalDocumentID | oai_doaj_org_article_3ef59139a43941bba92bd0df55039153 10_3390_bdcc3020030 |
GroupedDBID | 8FE 8FG AADQD AAFWJ AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c364t-5f58b2430e7cf788a82d7fdc0793a3e4fb999b1e567f62363e5c738af46766b73 |
IEDL.DBID | BENPR |
ISSN | 2504-2289 |
IngestDate | Wed Aug 27 01:27:46 EDT 2025 Sun Jul 13 04:58:35 EDT 2025 Tue Jul 01 02:11:36 EDT 2025 Thu Apr 24 22:54:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-5f58b2430e7cf788a82d7fdc0793a3e4fb999b1e567f62363e5c738af46766b73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2546940515?pq-origsite=%requestingapplication% |
PQID | 2546940515 |
PQPubID | 2061777 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3ef59139a43941bba92bd0df55039153 proquest_journals_2546940515 crossref_primary_10_3390_bdcc3020030 crossref_citationtrail_10_3390_bdcc3020030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Big data and cognitive computing |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Boleda (ref_22) 2017; 42 Devereux (ref_14) 2009; 7 Baroni (ref_19) 2008; 9 McRae (ref_4) 2005; 37 ref_36 ref_13 ref_35 ref_12 ref_34 ref_11 ref_33 ref_10 ref_31 Harris (ref_8) 1954; 10 Cybenko (ref_29) 1989; 2 Devereux (ref_5) 2014; 46 ref_18 ref_17 Srivastava (ref_32) 2014; 15 ref_16 Erk (ref_21) 2016; 9 ref_24 ref_23 Silberer (ref_25) 2017; 39 ref_20 ref_1 ref_3 Hornik (ref_30) 1989; 2 ref_2 ref_28 ref_27 ref_26 ref_9 Baroni (ref_7) 2010; 34 Voss (ref_15) 2016; 16 ref_6 |
References_xml | – volume: 16 start-page: 34 year: 2016 ident: ref_15 article-title: Using a Distributional Semantic Vector Space with a Knowledge Base for Reasoning in Uncertain Conditions publication-title: Biol. Inspired Cogn. Archit. – volume: 39 start-page: 2284 year: 2017 ident: ref_25 article-title: Visually Grounded Meaning Representations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2635138 – volume: 2 start-page: 303 year: 1989 ident: ref_29 article-title: Approximation by Superpositions of a Sigmoidal Function publication-title: Math. Control Signals Syst. doi: 10.1007/BF02551274 – ident: ref_9 – volume: 15 start-page: 1929 year: 2014 ident: ref_32 article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting publication-title: J. Mach. Learn. Res. – ident: ref_24 – ident: ref_34 – ident: ref_10 doi: 10.7551/mitpress/1602.001.0001 – ident: ref_20 doi: 10.3115/v1/P15-2119 – ident: ref_16 doi: 10.18653/v1/D15-1003 – volume: 2 start-page: 359 year: 1989 ident: ref_30 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90020-8 – ident: ref_1 – ident: ref_18 – ident: ref_35 – ident: ref_3 doi: 10.3115/v1/P14-2050 – ident: ref_36 doi: 10.3115/v1/P14-5010 – volume: 34 start-page: 222 year: 2010 ident: ref_7 article-title: Strudel: A Corpus-Based Semantic Model Based on Properties and Types publication-title: Cogn. Sci. doi: 10.1111/j.1551-6709.2009.01068.x – volume: 10 start-page: 146 year: 1954 ident: ref_8 article-title: Distributional structure publication-title: Word doi: 10.1080/00437956.1954.11659520 – volume: 46 start-page: 1119 year: 2014 ident: ref_5 article-title: The Centre for Speech, Language and the Brain (CSLB) concept property norms publication-title: Behav. Res. Methods doi: 10.3758/s13428-013-0420-4 – ident: ref_23 doi: 10.18653/v1/N16-1071 – ident: ref_31 – ident: ref_33 – ident: ref_11 doi: 10.3115/1690219.1690287 – volume: 42 start-page: 619 year: 2017 ident: ref_22 article-title: Formal Distributional Semantics: Introduction to the Special Issue publication-title: Spec. Issue Comput. Linguist. Form. Distrib. Semant. – ident: ref_27 – ident: ref_2 – ident: ref_26 doi: 10.18653/v1/D17-1099 – ident: ref_12 – ident: ref_6 doi: 10.18653/v1/D15-1002 – ident: ref_28 doi: 10.18653/v1/N16-1118 – volume: 7 start-page: 137 year: 2009 ident: ref_14 article-title: Towards Unrestricted, Large-Scale Acquisition of Feature-Based Conceptual Representations from Corpus Data publication-title: Res. Lang. Comput. doi: 10.1007/s11168-010-9068-8 – ident: ref_17 – ident: ref_13 doi: 10.1609/aaai.v31i1.11164 – volume: 9 start-page: 1 year: 2008 ident: ref_19 article-title: Concepts and Properties in Word Spaces publication-title: Ital. J. Linguist. – volume: 37 start-page: 547 year: 2005 ident: ref_4 article-title: Semantic feature production norms for a large set of living and nonliving things publication-title: Behav. Res. Methods doi: 10.3758/BF03192726 – volume: 9 start-page: 1 year: 2016 ident: ref_21 article-title: What do you know about an alligator when you know the company it keeps? publication-title: Semant. Pragmat. doi: 10.3765/sp.9.17 |
SSID | ssj0002244611 |
Score | 2.126526 |
Snippet | Word embeddings have been very successful in many natural language processing tasks, but they characterize the meaning of a word/concept by uninterpretable... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 30 |
SubjectTerms | Aircraft Artificial neural networks Astronomers Cognitive psychology Datasets distributional semantics Hypotheses Mapping Natural language processing Neural networks Norms property norm Query expansion Semantics word embeddings Words (language) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8NAEIAX6cmLKCpWq-yhJyE0yWaT7VGtpYgtghZ6C_uYFUXb0sSD_96ZJC0VBS9ew5CEmezOzGbmG8a6XtHfP_CBik1GLTkJLqnQBw69S-QM-KjiFown6Wia3M3kbGvUF9WE1XjgWnE9AV4SulJTC2dkjO7HxoXOY2RNbPOK84k-byuZeq2gLpjmRFHdkCcwr-8ZZ60IqRQr_OaCKlL_j4248i7DfbbXhIX8qn6dA7YD80N2P9ZET3jmA6LbNoOpUOoR3lEfL7bg5YI_0Gn6qvzkE4w-C07nqnwAsOSE3UDhSV3nXRyx6fD26WYUNNMPAivSpAykl8rEiQiByEFKaRW7zDtLRDstIPEGYzsTgUwzjzFMKkDaTCjtcetLU5OJY9aaL-ZwwnhspfEaQCqVJkbIvnYRKK8jvFvspG-zy7VCctugwWlCxVuOKQJpL9_SXpt1N8LLmojxu9g1aXYjQhjr6gIaN2-Mm_9l3DbrrO2SN2uryIng309oNs3pfzzjjO1iENSvy786rFWuPuAcA43SXFTf1Bd1Ys_2 priority: 102 providerName: Directory of Open Access Journals |
Title | Mapping Distributional Semantics to Property Norms with Deep Neural Networks |
URI | https://www.proquest.com/docview/2546940515 https://doaj.org/article/3ef59139a43941bba92bd0df55039153 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ1LS8NAEIAXHxcvoqhYH2UPPQmhSTabbE_iq4rYUtRCb2GfImhTm3jw3zuTbKuieE2GHGaz89rZbwjpOIGnf9YFIlYZXslJYEuFLjDgXSKjrItqbsFgmN6Mk9sJn_iCW-nbKhc2sTbUptBYI-8it72X4ESS09lbgFOj8HTVj9BYJetgggUkX-vnV8PR_bLKAg4qSaOouZjHIL_vKqM1C7ElK_zhimpi_y-DXHuZ_hbZ9OEhPWvWc5us2OkOuRtIpCg80Uuk3PoBVSD1YF9BL8-6pFVBR1hVn1cfdAhRaEmxvkovrZ1RxG-A8LDp9y53ybh_9XhxE_gpCIFmaVIF3HGh4oSFFglCQkgRm8wZjWQ7yWziFMR4KrI8zRzEMimzXGdMSAcmME1VxvbI2rSY2n1CY82Vk9ZyIdJEMd6TJrLCyQi-FhvuWuRkoZBce0Q4Tqp4ySFVQO3l37TXIp2l8KwhY_wtdo6aXYogzrp-UMyfcr87cmYdRz6pxHu6kVKyFysTGgfpEwLsWYscLdYl93uszL_-iIP_Xx-SDQhzek2D1xFZq-bv9hhCiUq1yaroX7f9X9OuE_JPYW7LZA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcoALAgEibYE9lAuSVdvrtdcHhIAQUppESLRSb2YfsxUSTUJshPqn-I3M-BFAIG69ekcreXZeOzvzDcBh0Pz6hyHSqS24JScjlYpD5Mm7JN5iSFrcgvkin55l78_V-Q78GHphuKxysImtofYrxznyI8ZtLzOeSPJy_TXiqVH8ujqM0OjE4gSvvtOVrX5xPKbzfZamk7enb6ZRP1UgcjLPmkgFpW2ayRgZkUdro1NfBO8YKc5IzIKlmMkmqPIiUGyQS1SukNoEMil5bgtJ-96Am_RbJWuUnrzb5nTIHWZ5knRtgLQeH1nvnIy5ACz-w_G18wH-Mv-tT5vchTt9MCpeddJzD3ZweR9mc8OYDRdizJi6_TgsovqIl3QKn10tmpX4wDn8TXMlFhTz1oKzuWKMuBYM9kHEi666vH4AZ9fCnYewu1wt8RGI1CkbDKLSOs-sVKXxCepgEtot9SqM4PnAkMr1gOQ8F-NLRRcT5l71G_dGcLglXnc4HP8me82c3ZIweHb7YbW5qHpdrCQGxWiohruCE2tNmVof-0CXNYbLlyM4GM6l6jW6rn7J397_l5_CrenpfFbNjhcn-3CbAqyyKy07gN1m8w0fUxDT2Cet5Aj4dN2i-hMBCASA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJcUFGpCLRlD-WCZMX2eu31AVW0adSnFVEq9Wb2WSFBEmIj1L_WX8eMH2kRiFuv9mgPs7M7j535PoA9L-n1z_lAxjqjkZwEj1ToA4veJbLa-ajBLbgo0uOr5PRaXK_BXT8LQ22V_Z3YXNR2bqhGPiLc9jwhRpKR79oipuPJ_uJHQAxS9NLa02m0JnLmbn9h-lZ9OBnjXr-L48nR58PjoGMYCAxPkzoQXkgdJzx0hM4jpZKxzbw1hBqnuEu8xvhJR06kmcc4IeVOmIxL5fF6SVOdcVz3CaxnmBWFA1g_OCqmn1YVHnSOSRpF7VAg53k40tYYHlI7WPiHG2zYAv5yBo2Hm2zA8y40ZR9bW3oBa262CecXihAcbtiYEHY7ciyUunTfcU--morVczaliv6yvmUFRsAVo9ouGzu3YAT9gcJF22tevYSrR9HPFgxm85l7BSw2QnvlnJAyTTQXubKRk15FuFpshR_C-14hpengyYkl41uJaQppr3ygvSHsrYQXLSrHv8UOSLMrEYLSbj7MlzdldzJL7rwgbFRFM8KR1iqPtQ2tx9SNwPP5ELb7fSm7812V99b4-v-_38JTNNPy_KQ4ewPPMNrK2z6zbRjUy59uByOaWu92psPgy2Nb629HUgoS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+Distributional+Semantics+to+Property+Norms+with+Deep+Neural+Networks&rft.jtitle=Big+data+and+cognitive+computing&rft.au=Li%2C+Dandan&rft.au=Summers-Stay%2C+Douglas&rft.date=2019-06-01&rft.issn=2504-2289&rft.eissn=2504-2289&rft.volume=3&rft.issue=2&rft.spage=30&rft_id=info:doi/10.3390%2Fbdcc3020030&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_bdcc3020030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-2289&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-2289&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-2289&client=summon |