Ice plug prevents irreversible discharge from East Antarctica
The Wilkes ice sheet in East Antarctica, which lies on bedrock below sea level, is sensitive to climate change but its stability and potential contribution to sea-level rise has not been comprehensively assessed. This study uses topographic data and ice-dynamic simulations to show that removal of a...
Saved in:
Published in | Nature climate change Vol. 4; no. 6; pp. 451 - 455 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.06.2014
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Wilkes ice sheet in East Antarctica, which lies on bedrock below sea level, is sensitive to climate change but its stability and potential contribution to sea-level rise has not been comprehensively assessed. This study uses topographic data and ice-dynamic simulations to show that removal of a specific coastal ice volume destabilizes the ice sheet, leading to discharge of the entire Wilkes Basin and global sea-level rise of 3–4 m.
Changes in ice discharge from Antarctica constitute the largest uncertainty in future sea-level projections, mainly because of the unknown response of its marine basins
1
. Most of West Antarctica’s marine ice sheet lies on an inland-sloping bed
2
and is thereby prone to a marine ice sheet instability
3
,
4
,
5
. A similar topographic configuration is found in large parts of East Antarctica, which holds marine ice equivalent to 19 m of global sea-level rise
6
, that is, more than five times that of West Antarctica. Within East Antarctica, the Wilkes Basin holds the largest volume of marine ice that is fully connected by subglacial troughs. This ice body was significantly reduced during the Pliocene epoch
7
. Strong melting underneath adjacent ice shelves with similar bathymetry
8
indicates the ice sheet’s sensitivity to climatic perturbations. The stability of the Wilkes marine ice sheet has not been the subject of any comprehensive assessment of future sea level. Using recently improved topographic data
6
in combination with ice-dynamic simulations, we show here that the removal of a specific coastal ice volume equivalent to less than 80 mm of global sea-level rise at the margin of the Wilkes Basin destabilizes the regional ice flow and leads to a self-sustained discharge of the entire basin and a global sea-level rise of 3–4 m. Our results are robust with respect to variation in ice parameters, forcing details and model resolution as well as increased surface mass balance, indicating that East Antarctica may become a large contributor to future sea-level rise on timescales beyond a century. |
---|---|
AbstractList | The Wilkes ice sheet in East Antarctica, which lies on bedrock below sea level, is sensitive to climate change but its stability and potential contribution to sea-level rise has not been comprehensively assessed. This study uses topographic data and ice-dynamic simulations to show that removal of a specific coastal ice volume destabilizes the ice sheet, leading to discharge of the entire Wilkes Basin and global sea-level rise of 3–4 m.
Changes in ice discharge from Antarctica constitute the largest uncertainty in future sea-level projections, mainly because of the unknown response of its marine basins
1
. Most of West Antarctica’s marine ice sheet lies on an inland-sloping bed
2
and is thereby prone to a marine ice sheet instability
3
,
4
,
5
. A similar topographic configuration is found in large parts of East Antarctica, which holds marine ice equivalent to 19 m of global sea-level rise
6
, that is, more than five times that of West Antarctica. Within East Antarctica, the Wilkes Basin holds the largest volume of marine ice that is fully connected by subglacial troughs. This ice body was significantly reduced during the Pliocene epoch
7
. Strong melting underneath adjacent ice shelves with similar bathymetry
8
indicates the ice sheet’s sensitivity to climatic perturbations. The stability of the Wilkes marine ice sheet has not been the subject of any comprehensive assessment of future sea level. Using recently improved topographic data
6
in combination with ice-dynamic simulations, we show here that the removal of a specific coastal ice volume equivalent to less than 80 mm of global sea-level rise at the margin of the Wilkes Basin destabilizes the regional ice flow and leads to a self-sustained discharge of the entire basin and a global sea-level rise of 3–4 m. Our results are robust with respect to variation in ice parameters, forcing details and model resolution as well as increased surface mass balance, indicating that East Antarctica may become a large contributor to future sea-level rise on timescales beyond a century. Changes in ice discharge from Antarctica constitute the largest uncertainty in future sea-level projections, mainly because of the unknown response of its marine basins. Most of West Antarctica's marine ice sheet lies on an inland-sloping bed and is thereby prone to a marine ice sheet instability. A similar topographic configuration is found in large parts of East Antarctica, which holds marine ice equivalent to 19 m of global sea-level rise, that is, more than five times that of West Antarctica. Within East Antarctica, the Wilkes Basin holds the largest volume of marine ice that is fully connected by subglacial troughs. This ice body was significantly reduced during the Pliocene epoch. Strong melting underneath adjacent ice shelves with similar bathymetry indicates the ice sheet's sensitivity to climatic perturbations. The stability of the Wilkes marine ice sheet has not been the subject of any comprehensive assessment of future sea level. Using recently improved topographic data in combination with ice-dynamic simulations, we show here that the removal of a specific coastal ice volume equivalent to less than 80 mm of global sea-level rise at the margin of the Wilkes Basin destabilizes the regional ice flow and leads to a self-sustained discharge of the entire basin and a global sea-level rise of 3-4 m. Our results are robust with respect to variation in ice parameters, forcing details and model resolution as well as increased surface mass balance, indicating that East Antarctica may become a large contributor to future sea-level rise on timescales beyond a century. |
Author | Mengel, M. Levermann, A. |
Author_xml | – sequence: 1 givenname: M. surname: Mengel fullname: Mengel, M. organization: Potsdam Institute for Climate Impact Research, Institute of Physics, Potsdam University – sequence: 2 givenname: A. surname: Levermann fullname: Levermann, A. email: anders.levermann@pik-potsdam.de organization: Potsdam Institute for Climate Impact Research, Institute of Physics, Potsdam University |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28500398$$DView record in Pascal Francis |
BookMark | eNp10N9LwzAQB_AgE5xzb_4BBRF8sJq0Tdo--DDG_AEDXxR8C-ntOjO6tCaZ4H9vRqeMoXnJwX3uOL6nZGBag4ScM3rDaFrcGmj0WnlMkkQckSHLeRGLvCwGv3XxdkLGzq1oeDkTqSiH5O4JMOqazTLqLH6i8S7SdltZp6sGo4V28K7sEqPatutoppyPJsYrC16DOiPHtWocjnf_iLzez16mj_H8-eFpOpnHkIrMx1zxjGVZzkGxBdRZVSIUokhZmYIq85qXVFBccA6M5hXHvIasBs5RJVVoZemIXPV7O9t-bNB5uQ53YdMog-3GScZ5VvKkpxcHdNVurAnXSSY4S3NKhQjqcqeUA9XUVhnQTnY2RGi_ZFJwStOyCC7pHdjWOYu1BO2V163xVulGMiq34cv98MPQ9cHQz95_eNxzF5hZot27-C__DUKamHU |
CitedBy_id | crossref_primary_10_1007_s00367_016_0489_8 crossref_primary_10_5194_tc_9_631_2015 crossref_primary_10_1016_j_quascirev_2018_07_004 crossref_primary_10_3354_cr01279 crossref_primary_10_5194_tc_16_1927_2022 crossref_primary_10_1016_j_epsl_2014_12_035 crossref_primary_10_3189_2015JoG14J221 crossref_primary_10_1029_2023GL103815 crossref_primary_10_5194_esd_7_327_2016 crossref_primary_10_5670_oceanog_2016_105 crossref_primary_10_1029_2018GL078253 crossref_primary_10_1038_nature16147 crossref_primary_10_1109_JSTARS_2016_2614758 crossref_primary_10_1038_s41598_018_29718_7 crossref_primary_10_1038_s41586_020_2727_5 crossref_primary_10_1016_j_qsa_2022_100054 crossref_primary_10_1038_s41586_022_04946_0 crossref_primary_10_5194_esd_11_1153_2020 crossref_primary_10_1146_annurev_earth_060614_105344 crossref_primary_10_5194_tc_13_1621_2019 crossref_primary_10_1038_s41467_022_33009_1 crossref_primary_10_1016_j_quascirev_2020_106738 crossref_primary_10_5194_cp_13_959_2017 crossref_primary_10_5194_tc_12_39_2018 crossref_primary_10_1177_2053019621995526 crossref_primary_10_1038_ncomms9910 crossref_primary_10_5194_cp_12_1721_2016 crossref_primary_10_1016_j_epsl_2015_09_013 crossref_primary_10_1175_JCLI_D_15_0908_1 crossref_primary_10_1093_climsys_dzw004 crossref_primary_10_1073_pnas_1810141115 crossref_primary_10_1038_ncomms14376 crossref_primary_10_1016_j_palaeo_2015_01_009 crossref_primary_10_5194_sp_3_slre1_4_2024 crossref_primary_10_1126_science_aaa4019 crossref_primary_10_1177_09636625231177820 crossref_primary_10_3390_rs15123079 crossref_primary_10_1002_2014PA002704 crossref_primary_10_1038_s41467_021_27053_6 crossref_primary_10_5194_gmd_8_2723_2015 crossref_primary_10_1016_j_quascirev_2021_107366 crossref_primary_10_1002_joc_4712 crossref_primary_10_1029_2024PA004856 crossref_primary_10_1130_GES02701_1 crossref_primary_10_1038_s41598_018_22765_0 crossref_primary_10_1038_s41561_018_0195_4 crossref_primary_10_1038_nclimate2539 crossref_primary_10_1017_jog_2021_106 crossref_primary_10_1038_s41467_023_37325_y crossref_primary_10_1126_science_adt9619 crossref_primary_10_5194_esd_5_271_2014 crossref_primary_10_1002_2015EF000306 crossref_primary_10_1038_s43017_022_00348_y crossref_primary_10_1002_2015GC006117 crossref_primary_10_1029_2017PA003283 crossref_primary_10_1038_s41586_018_0501_8 crossref_primary_10_1016_j_quascirev_2014_10_025 crossref_primary_10_1038_nclimate2923 crossref_primary_10_1126_sciadv_1500589 crossref_primary_10_1175_JCLI_D_17_0854_1 crossref_primary_10_1002_2016EF000362 crossref_primary_10_1038_nclimate2808 crossref_primary_10_1038_s41467_018_04583_0 crossref_primary_10_1126_science_abn7950 crossref_primary_10_5194_gmd_11_1257_2018 crossref_primary_10_1144_M56_2020_7 crossref_primary_10_5194_tc_13_2023_2019 crossref_primary_10_1029_2018GC008126 crossref_primary_10_1038_s41467_022_32632_2 crossref_primary_10_1038_s41467_024_50160_z crossref_primary_10_1111_nyas_14006 crossref_primary_10_1038_nclimate3096 crossref_primary_10_1038_s41467_022_32847_3 crossref_primary_10_1016_j_epsl_2017_08_011 crossref_primary_10_1038_s41467_017_02609_7 crossref_primary_10_1038_s41586_020_2484_5 crossref_primary_10_1073_pnas_1707633114 crossref_primary_10_5194_tc_17_3739_2023 crossref_primary_10_1073_pnas_1500515113 crossref_primary_10_5194_tc_18_5117_2024 crossref_primary_10_5194_tc_16_4537_2022 crossref_primary_10_1002_2014PA002653 crossref_primary_10_5194_tc_14_599_2020 crossref_primary_10_1002_2015JF003760 crossref_primary_10_1007_s00382_015_2582_5 crossref_primary_10_5194_tc_17_4571_2023 crossref_primary_10_1177_0309133317751843 crossref_primary_10_5194_gmd_12_2255_2019 crossref_primary_10_1038_ncomms12957 crossref_primary_10_1088_1748_9326_ac2e6b crossref_primary_10_1038_s41467_018_05179_4 crossref_primary_10_1029_2018JF004705 crossref_primary_10_5194_tc_17_3761_2023 crossref_primary_10_1130_G38104_1 crossref_primary_10_1016_j_quascirev_2025_109224 crossref_primary_10_5194_tc_9_881_2015 crossref_primary_10_1063_PT_3_2434 crossref_primary_10_1017_jog_2016_85 crossref_primary_10_1002_2017GL074943 crossref_primary_10_1002_2017PA003225 crossref_primary_10_1016_j_quascirev_2022_107401 crossref_primary_10_1029_2018GL077268 crossref_primary_10_5194_tc_11_1851_2017 crossref_primary_10_5194_tc_18_4463_2024 crossref_primary_10_1002_wcc_634 crossref_primary_10_1007_s40641_017_0071_0 crossref_primary_10_1002_2016GL072422 crossref_primary_10_1029_2021GL094513 crossref_primary_10_1016_j_quascirev_2020_106222 crossref_primary_10_1016_j_earscirev_2017_11_022 crossref_primary_10_1073_pnas_1512482112 crossref_primary_10_1017_S0954102017000074 crossref_primary_10_1038_s41467_023_37553_2 crossref_primary_10_1002_2016GL067818 crossref_primary_10_1017_jog_2024_17 crossref_primary_10_1002_2017GL074433 crossref_primary_10_1007_s11430_020_9729_6 crossref_primary_10_5194_tc_12_3123_2018 crossref_primary_10_5194_esd_7_203_2016 crossref_primary_10_5194_tc_10_1753_2016 crossref_primary_10_1007_s00382_014_2451_7 crossref_primary_10_1029_2021RG000757 crossref_primary_10_1029_2020GL088131 crossref_primary_10_1073_pnas_1516130113 crossref_primary_10_5194_tc_10_2317_2016 crossref_primary_10_5194_tc_9_197_2015 crossref_primary_10_5194_tc_10_597_2016 crossref_primary_10_1029_2023GL105450 |
Cites_doi | 10.1038/271321a0 10.1002/grl.50527 10.5194/tc-5-715-2011 10.1098/rsta.2006.1797 10.1175/1520-0442(2000)013<1674:VATIAS>2.0.CO;2 10.1126/science.1208336 10.1016/j.epsl.2009.12.031 10.3189/2012JoG11J118 10.1002/2013JC009009 10.1029/2004GL021284 10.1029/2000JC000345 10.1126/science.1235798 10.1029/2006JF000664 10.1038/nclimate2094 10.1038/nature08471 10.1038/ngeo1889 10.1038/nclimate1911 10.1175/JPO-D-13-0240.1 10.1029/2008JF001179 10.1126/science.1169335 10.1038/nature07809 10.1007/s00382-013-1749-1 10.5194/tc-7-375-2013 10.3189/2014JoG13J093 10.1126/science.1185782 10.1029/2006GL028154 10.1038/ngeo890 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2014 2015 INIST-CNRS Copyright Nature Publishing Group Jun 2014 |
Copyright_xml | – notice: Springer Nature Limited 2014 – notice: 2015 INIST-CNRS – notice: Copyright Nature Publishing Group Jun 2014 |
DBID | AAYXX CITATION IQODW 3V. 7ST 7TG 7TN 7XB 88I 8AF 8FK ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 H97 HCIFZ KL. L.G M2P PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI Q9U SOI 7U6 |
DOI | 10.1038/nclimate2226 |
DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) STEM Database ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Environment Abstracts Sustainability Science Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) Sustainability Science Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1758-6798 |
EndPage | 455 |
ExternalDocumentID | 3579986451 28500398 10_1038_nclimate2226 |
GeographicLocations | polar regions Wilkes Land Antarctica East Antarctica PSW, Antarctica, West Antarctica Antarctica, West Antarctica PSE, Antarctica, East Antarctica |
GeographicLocations_xml | – name: PSW, Antarctica, West Antarctica – name: Antarctica, West Antarctica – name: PSE, Antarctica, East Antarctica |
GroupedDBID | 0R~ 39C 3V. 4.4 53G 5BI 70F 88I 8AF 8FE 8FH AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABJNI ABLJU ABUWG ACBWK ACGFS ACGOD ACHQT ADBBV AENEX AEUYN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHDO AGHTU AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BHPHI BKKNO BKSAR BPHCQ CCPQU D1K DWQXO EBS EDH EE. EJD EXGXG FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ K6- M2P NNMJJ O9- ODYON PCBAR PQQKQ PROAC RNT RNTTT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX AFANA ALPWD ATHPR CITATION PHGZM PHGZT IQODW NFIDA 7ST 7TG 7TN 7XB 8FK C1K F1W H96 H97 KL. L.G PKEHL PQEST PQUKI Q9U SOI 7U6 |
ID | FETCH-LOGICAL-c364t-5a5414475ca1dcf4b9ec8683193ca97f59060ed55c107b5e7fc4fc55ea2b90643 |
IEDL.DBID | BENPR |
ISSN | 1758-678X |
IngestDate | Fri Jul 11 06:19:44 EDT 2025 Wed Jul 16 16:02:59 EDT 2025 Wed Apr 02 07:15:05 EDT 2025 Tue Jul 01 03:01:33 EDT 2025 Thu Apr 24 22:50:22 EDT 2025 Fri Feb 21 02:38:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | ice sheets Regional scope Ice flow Observation data Sea level rise digital simulation Polar region Grounding line collapse sea level stability |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-5a5414475ca1dcf4b9ec8683193ca97f59060ed55c107b5e7fc4fc55ea2b90643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
PQID | 1651370066 |
PQPubID | 1056412 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1554952064 proquest_journals_1651370066 pascalfrancis_primary_28500398 crossref_citationtrail_10_1038_nclimate2226 crossref_primary_10_1038_nclimate2226 springer_journals_10_1038_nclimate2226 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-01 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature climate change |
PublicationTitleAbbrev | Nature Clim Change |
PublicationYear | 2014 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | HellmerHHJacobsSSJenkinsAOceanic erosion of a floating Antarctic glacier in the Amundsen SeaOcean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin1998319339 FavierLRetreat of Pine Island Glacier controlled by marine ice-sheet instabilityNature Clim. Change2014411712110.1038/nclimate2094 JenkinsAObservations beneath Pine Island Glacier in West Antarctica and implications for its retreatNature Geosci.201034684721:CAS:528:DC%2BC3cXotVKmtro%3D10.1038/ngeo890 WilliamsTEvidence for iceberg armadas from East Antarctica in the Southern Ocean during the late Miocene and early PlioceneEarth Planet. Sci. Lett.20102903513611:CAS:528:DC%2BC3cXhtlCrsLs%3D10.1016/j.epsl.2009.12.031 RignotEMouginotJScheuchlBIce flow of the Antarctic ice sheetScience2011333142714301:CAS:528:DC%2BC3MXhtFWqurnO10.1126/science.1208336 FeldmannJAlbrechtTKhroulevCPattynFLevermannAResolution-dependent performance of grounding line motion in a shallow model compared to a full-Stokes model according to the MISMIP3d intercomparisonJ. Glaciol.20146035336010.3189/2014JoG13J093 MercerJHWest Antarctic ice sheet and CO2 greenhouse effect: A threat of disasterNature197827132132510.1038/271321a0 BamberJLRivaREMVermeersenBLALeBrocqAMReassessment of the potential sea-level rise from a collapse of the West Antarctic ice sheetScience20093249019031:CAS:528:DC%2BD1MXlslWnu7s%3D10.1126/science.1169335 FlamentTRémyFDynamic thinning of Antarctic glaciers from along-track repeat radar altimetryJ. Glaciol.20125883084010.3189/2012JoG11J118 Ha, H. K. et al. Circulation and modification of warm deep water on the central Amundsen Shelf. J. Phys. Oceanogr.http://dx.doi.org/10.1175/JPO-D-13-0240.1 (2014). TimmermannRBeckmannAHellmerHHSimulations of ice-ocean dynamics in the Weddell Sea 1 Model configuration and validationJ. Geophys. Res.200210710-110-1110.1029/2000JC000345 HirabayashiYGlobal flood risk under climate changeNature Clim. Change2013381682110.1038/nclimate1911 SchoofCIce sheet grounding line dynamics: Steady states, stability, and hysteresisJ. Geophys. Res.2007112F03S2810.1029/2006JF000664 PollardDDeContoRMModelling West Antarctic ice sheet growth and collapse through the past five million yearsNature20094583293321:CAS:528:DC%2BD1MXjtlyntr8%3D10.1038/nature07809 HindmarshRCAThe role of membrane-like stresses in determining the stability and sensitivity of the Antarctic ice sheets: Back pressure and grounding line motionPhil. Trans. R. Soc.20063641733176710.1098/rsta.2006.1797 ChurchJAClimate Change 2013: The Physical Science Basis2013 VelicognaIWahrJTime-variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite dataGeophys. Res. Lett.2013403055306310.1002/grl.50527 WalkerDPOceanic heat transport onto the Amundsen Sea shelf through a submarine glacial troughGeophys. Res. Lett.200734L0260210.1029/2006GL028154 RignotEJacobsSMouginotJScheuchlBIce-shelf melting around AntarcticaScience20133412662701:CAS:528:DC%2BC3sXhtFSms7fO10.1126/science.1235798 BuelerEBrownJThe shallow shelf approximation as a sliding law in a thermomechanically coupled ice sheet modelJ. Geophys. Res.2009114F0300810.1029/2008JF001179 Pattyn, F. et al. Grounding-line migration in plan-view marine ice-sheet models: Results of the ice2sea MISMIP3d intercomparison. 59, 410–422 (2013). AokiSWidespread freshening in the seasonal ice zone near 140° E off the Adélie Land Coast, Antarctica, from 1994 to 2012J. Geophys. Res. Ocean.20131186046606310.1002/2013JC009009 CookCPDynamic behaviour of the East Antarctic ice sheet during Pliocene warmthNature Geosci.201367657691:CAS:528:DC%2BC3sXhtFCisr%2FN10.1038/ngeo1889 NichollsRJCazenaveASea-level rise and its impact on coastal zonesScience2010328151715211:CAS:528:DC%2BC3cXnsVWnt7g%3D10.1126/science.1185782 ComisoJCVariability and trends in antarctic surface temperatures from in situ and satellite infrared measurementsJ. Clim.2000131674169610.1175/1520-0442(2000)013<1674:VATIAS>2.0.CO;2 LigtenbergSRMBergWJBroekeMRRaeJGLMeijgaardEFuture surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate modelClim. Dynam.20134186788410.1007/s00382-013-1749-1 PritchardHDArthernRJVaughanDGEdwardsLAExtensive dynamic thinning on the margins of the Greenland and Antarctic ice sheetsNature20094619719751:CAS:528:DC%2BD1MXhtFGqtbrO10.1038/nature08471 WinkelmannRThe Potsdam Parallel Ice Sheet Model (PISM–PIK)–Part 1: Model descriptionCryosphere2011572774010.5194/tc-5-715-2011 FretwellPBedmap2: Improved ice bed, surface and thickness datasets for AntarcticaCryosphere2013737539310.5194/tc-7-375-2013 Payne, A. J., Vieli, A., Shepherd, A. P., Wingham, D. J. & Rignot, E. Recent dramatic thinning of larges West Antarctic ice stream triggered by oceans. Geophys. Res. Lett.31http://dx.doi.org/10.1029/2004GL021284 (2004). E Rignot (BFnclimate2226_CR8) 2013; 341 JH Mercer (BFnclimate2226_CR3) 1978; 271 T Flament (BFnclimate2226_CR18) 2012; 58 BFnclimate2226_CR11 T Williams (BFnclimate2226_CR20) 2010; 290 L Favier (BFnclimate2226_CR14) 2014; 4 R Timmermann (BFnclimate2226_CR25) 2002; 107 D Pollard (BFnclimate2226_CR5) 2009; 458 RJ Nicholls (BFnclimate2226_CR10) 2010; 328 S Aoki (BFnclimate2226_CR19) 2013; 118 P Fretwell (BFnclimate2226_CR6) 2013; 7 HH Hellmer (BFnclimate2226_CR30) 1998 Y Hirabayashi (BFnclimate2226_CR9) 2013; 3 A Jenkins (BFnclimate2226_CR12) 2010; 3 E Bueler (BFnclimate2226_CR21) 2009; 114 RCA Hindmarsh (BFnclimate2226_CR13) 2006; 364 R Winkelmann (BFnclimate2226_CR29) 2011; 5 CP Cook (BFnclimate2226_CR7) 2013; 6 DP Walker (BFnclimate2226_CR26) 2007; 34 JC Comiso (BFnclimate2226_CR24) 2000; 13 BFnclimate2226_CR22 HD Pritchard (BFnclimate2226_CR16) 2009; 461 JA Church (BFnclimate2226_CR1) 2013 C Schoof (BFnclimate2226_CR4) 2007; 112 J Feldmann (BFnclimate2226_CR23) 2014; 60 BFnclimate2226_CR27 SRM Ligtenberg (BFnclimate2226_CR28) 2013; 41 JL Bamber (BFnclimate2226_CR2) 2009; 324 E Rignot (BFnclimate2226_CR15) 2011; 333 I Velicogna (BFnclimate2226_CR17) 2013; 40 |
References_xml | – reference: FavierLRetreat of Pine Island Glacier controlled by marine ice-sheet instabilityNature Clim. Change2014411712110.1038/nclimate2094 – reference: RignotEMouginotJScheuchlBIce flow of the Antarctic ice sheetScience2011333142714301:CAS:528:DC%2BC3MXhtFWqurnO10.1126/science.1208336 – reference: BuelerEBrownJThe shallow shelf approximation as a sliding law in a thermomechanically coupled ice sheet modelJ. Geophys. Res.2009114F0300810.1029/2008JF001179 – reference: BamberJLRivaREMVermeersenBLALeBrocqAMReassessment of the potential sea-level rise from a collapse of the West Antarctic ice sheetScience20093249019031:CAS:528:DC%2BD1MXlslWnu7s%3D10.1126/science.1169335 – reference: Payne, A. J., Vieli, A., Shepherd, A. P., Wingham, D. J. & Rignot, E. Recent dramatic thinning of larges West Antarctic ice stream triggered by oceans. Geophys. Res. Lett.31http://dx.doi.org/10.1029/2004GL021284 (2004). – reference: ComisoJCVariability and trends in antarctic surface temperatures from in situ and satellite infrared measurementsJ. Clim.2000131674169610.1175/1520-0442(2000)013<1674:VATIAS>2.0.CO;2 – reference: MercerJHWest Antarctic ice sheet and CO2 greenhouse effect: A threat of disasterNature197827132132510.1038/271321a0 – reference: FretwellPBedmap2: Improved ice bed, surface and thickness datasets for AntarcticaCryosphere2013737539310.5194/tc-7-375-2013 – reference: LigtenbergSRMBergWJBroekeMRRaeJGLMeijgaardEFuture surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate modelClim. Dynam.20134186788410.1007/s00382-013-1749-1 – reference: ChurchJAClimate Change 2013: The Physical Science Basis2013 – reference: WilliamsTEvidence for iceberg armadas from East Antarctica in the Southern Ocean during the late Miocene and early PlioceneEarth Planet. Sci. Lett.20102903513611:CAS:528:DC%2BC3cXhtlCrsLs%3D10.1016/j.epsl.2009.12.031 – reference: RignotEJacobsSMouginotJScheuchlBIce-shelf melting around AntarcticaScience20133412662701:CAS:528:DC%2BC3sXhtFSms7fO10.1126/science.1235798 – reference: VelicognaIWahrJTime-variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite dataGeophys. Res. Lett.2013403055306310.1002/grl.50527 – reference: WalkerDPOceanic heat transport onto the Amundsen Sea shelf through a submarine glacial troughGeophys. Res. Lett.200734L0260210.1029/2006GL028154 – reference: HindmarshRCAThe role of membrane-like stresses in determining the stability and sensitivity of the Antarctic ice sheets: Back pressure and grounding line motionPhil. Trans. R. Soc.20063641733176710.1098/rsta.2006.1797 – reference: FeldmannJAlbrechtTKhroulevCPattynFLevermannAResolution-dependent performance of grounding line motion in a shallow model compared to a full-Stokes model according to the MISMIP3d intercomparisonJ. Glaciol.20146035336010.3189/2014JoG13J093 – reference: CookCPDynamic behaviour of the East Antarctic ice sheet during Pliocene warmthNature Geosci.201367657691:CAS:528:DC%2BC3sXhtFCisr%2FN10.1038/ngeo1889 – reference: HellmerHHJacobsSSJenkinsAOceanic erosion of a floating Antarctic glacier in the Amundsen SeaOcean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin1998319339 – reference: HirabayashiYGlobal flood risk under climate changeNature Clim. Change2013381682110.1038/nclimate1911 – reference: PollardDDeContoRMModelling West Antarctic ice sheet growth and collapse through the past five million yearsNature20094583293321:CAS:528:DC%2BD1MXjtlyntr8%3D10.1038/nature07809 – reference: WinkelmannRThe Potsdam Parallel Ice Sheet Model (PISM–PIK)–Part 1: Model descriptionCryosphere2011572774010.5194/tc-5-715-2011 – reference: AokiSWidespread freshening in the seasonal ice zone near 140° E off the Adélie Land Coast, Antarctica, from 1994 to 2012J. Geophys. Res. Ocean.20131186046606310.1002/2013JC009009 – reference: NichollsRJCazenaveASea-level rise and its impact on coastal zonesScience2010328151715211:CAS:528:DC%2BC3cXnsVWnt7g%3D10.1126/science.1185782 – reference: PritchardHDArthernRJVaughanDGEdwardsLAExtensive dynamic thinning on the margins of the Greenland and Antarctic ice sheetsNature20094619719751:CAS:528:DC%2BD1MXhtFGqtbrO10.1038/nature08471 – reference: JenkinsAObservations beneath Pine Island Glacier in West Antarctica and implications for its retreatNature Geosci.201034684721:CAS:528:DC%2BC3cXotVKmtro%3D10.1038/ngeo890 – reference: Ha, H. K. et al. Circulation and modification of warm deep water on the central Amundsen Shelf. J. Phys. Oceanogr.http://dx.doi.org/10.1175/JPO-D-13-0240.1 (2014). – reference: SchoofCIce sheet grounding line dynamics: Steady states, stability, and hysteresisJ. Geophys. Res.2007112F03S2810.1029/2006JF000664 – reference: FlamentTRémyFDynamic thinning of Antarctic glaciers from along-track repeat radar altimetryJ. Glaciol.20125883084010.3189/2012JoG11J118 – reference: Pattyn, F. et al. Grounding-line migration in plan-view marine ice-sheet models: Results of the ice2sea MISMIP3d intercomparison. 59, 410–422 (2013). – reference: TimmermannRBeckmannAHellmerHHSimulations of ice-ocean dynamics in the Weddell Sea 1 Model configuration and validationJ. Geophys. Res.200210710-110-1110.1029/2000JC000345 – ident: BFnclimate2226_CR22 – volume: 271 start-page: 321 year: 1978 ident: BFnclimate2226_CR3 publication-title: Nature doi: 10.1038/271321a0 – volume: 40 start-page: 3055 year: 2013 ident: BFnclimate2226_CR17 publication-title: Geophys. Res. Lett. doi: 10.1002/grl.50527 – volume: 5 start-page: 727 year: 2011 ident: BFnclimate2226_CR29 publication-title: Cryosphere doi: 10.5194/tc-5-715-2011 – volume: 364 start-page: 1733 year: 2006 ident: BFnclimate2226_CR13 publication-title: Phil. Trans. R. Soc. doi: 10.1098/rsta.2006.1797 – volume: 13 start-page: 1674 year: 2000 ident: BFnclimate2226_CR24 publication-title: J. Clim. doi: 10.1175/1520-0442(2000)013<1674:VATIAS>2.0.CO;2 – volume: 333 start-page: 1427 year: 2011 ident: BFnclimate2226_CR15 publication-title: Science doi: 10.1126/science.1208336 – volume: 290 start-page: 351 year: 2010 ident: BFnclimate2226_CR20 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2009.12.031 – volume: 58 start-page: 830 year: 2012 ident: BFnclimate2226_CR18 publication-title: J. Glaciol. doi: 10.3189/2012JoG11J118 – volume: 118 start-page: 6046 year: 2013 ident: BFnclimate2226_CR19 publication-title: J. Geophys. Res. Ocean. doi: 10.1002/2013JC009009 – ident: BFnclimate2226_CR11 doi: 10.1029/2004GL021284 – volume: 107 start-page: 10-1 year: 2002 ident: BFnclimate2226_CR25 publication-title: J. Geophys. Res. doi: 10.1029/2000JC000345 – volume: 341 start-page: 266 year: 2013 ident: BFnclimate2226_CR8 publication-title: Science doi: 10.1126/science.1235798 – volume: 112 start-page: F03S28 year: 2007 ident: BFnclimate2226_CR4 publication-title: J. Geophys. Res. doi: 10.1029/2006JF000664 – volume: 4 start-page: 117 year: 2014 ident: BFnclimate2226_CR14 publication-title: Nature Clim. Change doi: 10.1038/nclimate2094 – volume: 461 start-page: 971 year: 2009 ident: BFnclimate2226_CR16 publication-title: Nature doi: 10.1038/nature08471 – start-page: 319 volume-title: Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin year: 1998 ident: BFnclimate2226_CR30 – volume: 6 start-page: 765 year: 2013 ident: BFnclimate2226_CR7 publication-title: Nature Geosci. doi: 10.1038/ngeo1889 – volume: 3 start-page: 816 year: 2013 ident: BFnclimate2226_CR9 publication-title: Nature Clim. Change doi: 10.1038/nclimate1911 – ident: BFnclimate2226_CR27 doi: 10.1175/JPO-D-13-0240.1 – volume: 114 start-page: F03008 year: 2009 ident: BFnclimate2226_CR21 publication-title: J. Geophys. Res. doi: 10.1029/2008JF001179 – volume: 324 start-page: 901 year: 2009 ident: BFnclimate2226_CR2 publication-title: Science doi: 10.1126/science.1169335 – volume: 458 start-page: 329 year: 2009 ident: BFnclimate2226_CR5 publication-title: Nature doi: 10.1038/nature07809 – volume-title: Climate Change 2013: The Physical Science Basis year: 2013 ident: BFnclimate2226_CR1 – volume: 41 start-page: 867 year: 2013 ident: BFnclimate2226_CR28 publication-title: Clim. Dynam. doi: 10.1007/s00382-013-1749-1 – volume: 7 start-page: 375 year: 2013 ident: BFnclimate2226_CR6 publication-title: Cryosphere doi: 10.5194/tc-7-375-2013 – volume: 60 start-page: 353 year: 2014 ident: BFnclimate2226_CR23 publication-title: J. Glaciol. doi: 10.3189/2014JoG13J093 – volume: 328 start-page: 1517 year: 2010 ident: BFnclimate2226_CR10 publication-title: Science doi: 10.1126/science.1185782 – volume: 34 start-page: L02602 year: 2007 ident: BFnclimate2226_CR26 publication-title: Geophys. Res. Lett. doi: 10.1029/2006GL028154 – volume: 3 start-page: 468 year: 2010 ident: BFnclimate2226_CR12 publication-title: Nature Geosci. doi: 10.1038/ngeo890 |
SSID | ssj0000716369 |
Score | 2.4519289 |
Snippet | The Wilkes ice sheet in East Antarctica, which lies on bedrock below sea level, is sensitive to climate change but its stability and potential contribution to... Changes in ice discharge from Antarctica constitute the largest uncertainty in future sea-level projections, mainly because of the unknown response of its... |
SourceID | proquest pascalfrancis crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 451 |
SubjectTerms | 704/106/125 704/106/694/1108 704/106/829/2737 Bathymetry Climate Change Climate Change/Climate Change Impacts Earth, ocean, space Environment Environmental Law/Policy/Ecojustice Exact sciences and technology External geophysics Ice Ice shelves letter Ocean basins Physics of the oceans Pliocene Sea level Snow. Ice. Glaciers Surface waves, tides and sea level. Seiches |
Title | Ice plug prevents irreversible discharge from East Antarctica |
URI | https://link.springer.com/article/10.1038/nclimate2226 https://www.proquest.com/docview/1651370066 https://www.proquest.com/docview/1554952064 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED8x-jJpQgM2LQyQkTZepqhNYzv2wzQBKoJJIISo1LfIuTgIqUpDk_7_nBO3ayfgLZEtOznfx89n3x3Aj8iijYkXwixKZMg5YqitcYkg9bCIC57l3MU739zKqzH_OxET73Cr_bXKpU5sFXU-Q-cj70dSRHHiLOSf6jl0VaPc6aovofEBeqSCFW2-euej27v7lZeFDKiM27p2ZCZVSJp54m-_D2LVL3H6RLjQko2UG3bpU2VqIlHR1bbYAJ__nZe2ZujyM-x4_MjOugXfhS1b7kFwQ9B3Nm895OyUXbTztW_78PsaLaumi0dWddmaavY0d09zEoapZS4s12VLssxFmrCRqRt2VjbE_87L_QXGl6OHi6vQ10wIMZa8CYVxdb15ItBEORKttUUlFQlajEYnhdADObC5EEj7vkzYpEBeoBDWDDPt4MlX2C5npf0GLCuU5tRCexYaR-YGM4mDRCPmhmCMDODXkmIp-oTirq7FNG0PtmOVrtM3gJ-r3lWXSOONfscbxF91HirhAolVAIfL1Ui9vNXpP-4I4GTVTJLijj9MaWcL6kPISYsh_WQAp8tVXBvilY85eH-u7_CR8BPvbo4dwnYzX9gjwihNduwZ8QVDyekX |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1da9sw8OjShw1G2Sf1-jEN1r4M09iWZOuhlK5LSdYmjNFC3jz5LI9CcLzYofRP7Tfu5I-sGdve-mbjQ5LvQ3en090BvPcMmoB4wU28ULqcI7rKaFsIUvlZkPEk5TbfeTyRw2v-eSqmG_Czy4Wx1yq7PbHeqNM52jPyI08KLwithjwpfri2a5SNrnYtNBq2uDB3t-SylcejT0TfA98_H1ydDd22q4CLgeSVK7TtfM1DgdpLkVajDEYyIlYMUKswE6ov-yYVAskzSoQJM-QZCmG0nyirwGncR7DJA3JlerD5cTD58nV1qkMKWwZ1Hz1Sy5FLmmDa3rbvB9FRjrMbskMN6WS5pgefFrokkmRNL401Y_eP-Gyt9s6fwVZrr7LThsGew4bJX4AzJlN7vqhP5NkhO6vnq99ewvEIDStmy--saKpDlexmYZ8WJHwzw2wasK3OZJjNbGEDXVbsNK8IsfZU_RVcPwg2X0Mvn-dmG1iSRYrTF_KRaByZakwk9kOFmGoym6QDHzqMxdgWMLd9NGZxHUgPovg-fh04WEEXTeGOf8DtryF_BexHwiYuRw7sdtSIW_ku49_c6MC71WeSTBtu0bmZLwmGLDUlfPpJBw47Kt4b4i-LefP_ud7C4-HV-DK-HE0uduAJ2W68ubW2C71qsTR7ZB9VyX7LlAy-PbQc_AJjWCXf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swED-6FMZglH1Sr12nwdqXYeIPSbYeyujahGZdQxkr5M2Tz_IoBMeLHcb-tf11O_kja8a2t77Z-JDk00n3k-4L4I1v0IQkC27qR9LlHNFVRttEkCrIw5ynGbfxzpdTeX7NP8zEbAt-9rEw1q2y3xObjTpboL0jH_pS-GFkNeQw79wirs7G78pvrq0gZS2tfTmNVkQuzI_vdHyrjidnNNeHQTAefT49d7sKAy6Gkteu0LYKNo8Eaj9DGpkyGMuYxDJEraJcKE96JhMC6ZSUChPlyHMUwuggVVaZU7v3YDuiU5E3gO33o-nVp_UNDylvGTY19UhFxy5phVnnee-F8bDA-Q1hUkP6WW7oxIelrmh68rauxgbw_cNW26jA8SPY6bArO2mF7TFsmeIJOJcEuxfL5naeHbHTpr_m7SkcT9Cwcr76yso2U1TFbpb2aUkLcW6YDQm2mZoMs1EubKSrmp0UNTHW3rA_g-s74eZzGBSLwuwCS_NYcfpC5yVqR2YaU4lepBAzTRBKOvC251iCXTJzW1NjnjRG9TBObvPXgcM1ddkm8fgH3cEG89fEQSxsEHPswH4_G0m31qvkt2Q68Hr9mVapNb3owixWREOoTYmAftKBo34WbzXxl8G8-H9fr-A-yX_ycTK92IMHBON468C2D4N6uTIvCSrV6UEnkwy-3PUy-AXGrioU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ice+plug+prevents+irreversible+discharge+from+East+Antarctica&rft.jtitle=Nature+climate+change&rft.au=Mengel%2C+M.&rft.au=Levermann%2C+A.&rft.date=2014-06-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1758-678X&rft.eissn=1758-6798&rft.volume=4&rft.issue=6&rft.spage=451&rft.epage=455&rft_id=info:doi/10.1038%2Fnclimate2226&rft.externalDocID=10_1038_nclimate2226 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-678X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-678X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-678X&client=summon |