Ice plug prevents irreversible discharge from East Antarctica

The Wilkes ice sheet in East Antarctica, which lies on bedrock below sea level, is sensitive to climate change but its stability and potential contribution to sea-level rise has not been comprehensively assessed. This study uses topographic data and ice-dynamic simulations to show that removal of a...

Full description

Saved in:
Bibliographic Details
Published inNature climate change Vol. 4; no. 6; pp. 451 - 455
Main Authors Mengel, M., Levermann, A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.06.2014
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Wilkes ice sheet in East Antarctica, which lies on bedrock below sea level, is sensitive to climate change but its stability and potential contribution to sea-level rise has not been comprehensively assessed. This study uses topographic data and ice-dynamic simulations to show that removal of a specific coastal ice volume destabilizes the ice sheet, leading to discharge of the entire Wilkes Basin and global sea-level rise of 3–4 m. Changes in ice discharge from Antarctica constitute the largest uncertainty in future sea-level projections, mainly because of the unknown response of its marine basins 1 . Most of West Antarctica’s marine ice sheet lies on an inland-sloping bed 2 and is thereby prone to a marine ice sheet instability 3 , 4 , 5 . A similar topographic configuration is found in large parts of East Antarctica, which holds marine ice equivalent to 19 m of global sea-level rise 6 , that is, more than five times that of West Antarctica. Within East Antarctica, the Wilkes Basin holds the largest volume of marine ice that is fully connected by subglacial troughs. This ice body was significantly reduced during the Pliocene epoch 7 . Strong melting underneath adjacent ice shelves with similar bathymetry 8 indicates the ice sheet’s sensitivity to climatic perturbations. The stability of the Wilkes marine ice sheet has not been the subject of any comprehensive assessment of future sea level. Using recently improved topographic data 6 in combination with ice-dynamic simulations, we show here that the removal of a specific coastal ice volume equivalent to less than 80 mm of global sea-level rise at the margin of the Wilkes Basin destabilizes the regional ice flow and leads to a self-sustained discharge of the entire basin and a global sea-level rise of 3–4 m. Our results are robust with respect to variation in ice parameters, forcing details and model resolution as well as increased surface mass balance, indicating that East Antarctica may become a large contributor to future sea-level rise on timescales beyond a century.
AbstractList The Wilkes ice sheet in East Antarctica, which lies on bedrock below sea level, is sensitive to climate change but its stability and potential contribution to sea-level rise has not been comprehensively assessed. This study uses topographic data and ice-dynamic simulations to show that removal of a specific coastal ice volume destabilizes the ice sheet, leading to discharge of the entire Wilkes Basin and global sea-level rise of 3–4 m. Changes in ice discharge from Antarctica constitute the largest uncertainty in future sea-level projections, mainly because of the unknown response of its marine basins 1 . Most of West Antarctica’s marine ice sheet lies on an inland-sloping bed 2 and is thereby prone to a marine ice sheet instability 3 , 4 , 5 . A similar topographic configuration is found in large parts of East Antarctica, which holds marine ice equivalent to 19 m of global sea-level rise 6 , that is, more than five times that of West Antarctica. Within East Antarctica, the Wilkes Basin holds the largest volume of marine ice that is fully connected by subglacial troughs. This ice body was significantly reduced during the Pliocene epoch 7 . Strong melting underneath adjacent ice shelves with similar bathymetry 8 indicates the ice sheet’s sensitivity to climatic perturbations. The stability of the Wilkes marine ice sheet has not been the subject of any comprehensive assessment of future sea level. Using recently improved topographic data 6 in combination with ice-dynamic simulations, we show here that the removal of a specific coastal ice volume equivalent to less than 80 mm of global sea-level rise at the margin of the Wilkes Basin destabilizes the regional ice flow and leads to a self-sustained discharge of the entire basin and a global sea-level rise of 3–4 m. Our results are robust with respect to variation in ice parameters, forcing details and model resolution as well as increased surface mass balance, indicating that East Antarctica may become a large contributor to future sea-level rise on timescales beyond a century.
Changes in ice discharge from Antarctica constitute the largest uncertainty in future sea-level projections, mainly because of the unknown response of its marine basins. Most of West Antarctica's marine ice sheet lies on an inland-sloping bed and is thereby prone to a marine ice sheet instability. A similar topographic configuration is found in large parts of East Antarctica, which holds marine ice equivalent to 19 m of global sea-level rise, that is, more than five times that of West Antarctica. Within East Antarctica, the Wilkes Basin holds the largest volume of marine ice that is fully connected by subglacial troughs. This ice body was significantly reduced during the Pliocene epoch. Strong melting underneath adjacent ice shelves with similar bathymetry indicates the ice sheet's sensitivity to climatic perturbations. The stability of the Wilkes marine ice sheet has not been the subject of any comprehensive assessment of future sea level. Using recently improved topographic data in combination with ice-dynamic simulations, we show here that the removal of a specific coastal ice volume equivalent to less than 80 mm of global sea-level rise at the margin of the Wilkes Basin destabilizes the regional ice flow and leads to a self-sustained discharge of the entire basin and a global sea-level rise of 3-4 m. Our results are robust with respect to variation in ice parameters, forcing details and model resolution as well as increased surface mass balance, indicating that East Antarctica may become a large contributor to future sea-level rise on timescales beyond a century.
Author Mengel, M.
Levermann, A.
Author_xml – sequence: 1
  givenname: M.
  surname: Mengel
  fullname: Mengel, M.
  organization: Potsdam Institute for Climate Impact Research, Institute of Physics, Potsdam University
– sequence: 2
  givenname: A.
  surname: Levermann
  fullname: Levermann, A.
  email: anders.levermann@pik-potsdam.de
  organization: Potsdam Institute for Climate Impact Research, Institute of Physics, Potsdam University
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28500398$$DView record in Pascal Francis
BookMark eNp10N9LwzAQB_AgE5xzb_4BBRF8sJq0Tdo--DDG_AEDXxR8C-ntOjO6tCaZ4H9vRqeMoXnJwX3uOL6nZGBag4ScM3rDaFrcGmj0WnlMkkQckSHLeRGLvCwGv3XxdkLGzq1oeDkTqSiH5O4JMOqazTLqLH6i8S7SdltZp6sGo4V28K7sEqPatutoppyPJsYrC16DOiPHtWocjnf_iLzez16mj_H8-eFpOpnHkIrMx1zxjGVZzkGxBdRZVSIUokhZmYIq85qXVFBccA6M5hXHvIasBs5RJVVoZemIXPV7O9t-bNB5uQ53YdMog-3GScZ5VvKkpxcHdNVurAnXSSY4S3NKhQjqcqeUA9XUVhnQTnY2RGi_ZFJwStOyCC7pHdjWOYu1BO2V163xVulGMiq34cv98MPQ9cHQz95_eNxzF5hZot27-C__DUKamHU
CitedBy_id crossref_primary_10_1007_s00367_016_0489_8
crossref_primary_10_5194_tc_9_631_2015
crossref_primary_10_1016_j_quascirev_2018_07_004
crossref_primary_10_3354_cr01279
crossref_primary_10_5194_tc_16_1927_2022
crossref_primary_10_1016_j_epsl_2014_12_035
crossref_primary_10_3189_2015JoG14J221
crossref_primary_10_1029_2023GL103815
crossref_primary_10_5194_esd_7_327_2016
crossref_primary_10_5670_oceanog_2016_105
crossref_primary_10_1029_2018GL078253
crossref_primary_10_1038_nature16147
crossref_primary_10_1109_JSTARS_2016_2614758
crossref_primary_10_1038_s41598_018_29718_7
crossref_primary_10_1038_s41586_020_2727_5
crossref_primary_10_1016_j_qsa_2022_100054
crossref_primary_10_1038_s41586_022_04946_0
crossref_primary_10_5194_esd_11_1153_2020
crossref_primary_10_1146_annurev_earth_060614_105344
crossref_primary_10_5194_tc_13_1621_2019
crossref_primary_10_1038_s41467_022_33009_1
crossref_primary_10_1016_j_quascirev_2020_106738
crossref_primary_10_5194_cp_13_959_2017
crossref_primary_10_5194_tc_12_39_2018
crossref_primary_10_1177_2053019621995526
crossref_primary_10_1038_ncomms9910
crossref_primary_10_5194_cp_12_1721_2016
crossref_primary_10_1016_j_epsl_2015_09_013
crossref_primary_10_1175_JCLI_D_15_0908_1
crossref_primary_10_1093_climsys_dzw004
crossref_primary_10_1073_pnas_1810141115
crossref_primary_10_1038_ncomms14376
crossref_primary_10_1016_j_palaeo_2015_01_009
crossref_primary_10_5194_sp_3_slre1_4_2024
crossref_primary_10_1126_science_aaa4019
crossref_primary_10_1177_09636625231177820
crossref_primary_10_3390_rs15123079
crossref_primary_10_1002_2014PA002704
crossref_primary_10_1038_s41467_021_27053_6
crossref_primary_10_5194_gmd_8_2723_2015
crossref_primary_10_1016_j_quascirev_2021_107366
crossref_primary_10_1002_joc_4712
crossref_primary_10_1029_2024PA004856
crossref_primary_10_1130_GES02701_1
crossref_primary_10_1038_s41598_018_22765_0
crossref_primary_10_1038_s41561_018_0195_4
crossref_primary_10_1038_nclimate2539
crossref_primary_10_1017_jog_2021_106
crossref_primary_10_1038_s41467_023_37325_y
crossref_primary_10_1126_science_adt9619
crossref_primary_10_5194_esd_5_271_2014
crossref_primary_10_1002_2015EF000306
crossref_primary_10_1038_s43017_022_00348_y
crossref_primary_10_1002_2015GC006117
crossref_primary_10_1029_2017PA003283
crossref_primary_10_1038_s41586_018_0501_8
crossref_primary_10_1016_j_quascirev_2014_10_025
crossref_primary_10_1038_nclimate2923
crossref_primary_10_1126_sciadv_1500589
crossref_primary_10_1175_JCLI_D_17_0854_1
crossref_primary_10_1002_2016EF000362
crossref_primary_10_1038_nclimate2808
crossref_primary_10_1038_s41467_018_04583_0
crossref_primary_10_1126_science_abn7950
crossref_primary_10_5194_gmd_11_1257_2018
crossref_primary_10_1144_M56_2020_7
crossref_primary_10_5194_tc_13_2023_2019
crossref_primary_10_1029_2018GC008126
crossref_primary_10_1038_s41467_022_32632_2
crossref_primary_10_1038_s41467_024_50160_z
crossref_primary_10_1111_nyas_14006
crossref_primary_10_1038_nclimate3096
crossref_primary_10_1038_s41467_022_32847_3
crossref_primary_10_1016_j_epsl_2017_08_011
crossref_primary_10_1038_s41467_017_02609_7
crossref_primary_10_1038_s41586_020_2484_5
crossref_primary_10_1073_pnas_1707633114
crossref_primary_10_5194_tc_17_3739_2023
crossref_primary_10_1073_pnas_1500515113
crossref_primary_10_5194_tc_18_5117_2024
crossref_primary_10_5194_tc_16_4537_2022
crossref_primary_10_1002_2014PA002653
crossref_primary_10_5194_tc_14_599_2020
crossref_primary_10_1002_2015JF003760
crossref_primary_10_1007_s00382_015_2582_5
crossref_primary_10_5194_tc_17_4571_2023
crossref_primary_10_1177_0309133317751843
crossref_primary_10_5194_gmd_12_2255_2019
crossref_primary_10_1038_ncomms12957
crossref_primary_10_1088_1748_9326_ac2e6b
crossref_primary_10_1038_s41467_018_05179_4
crossref_primary_10_1029_2018JF004705
crossref_primary_10_5194_tc_17_3761_2023
crossref_primary_10_1130_G38104_1
crossref_primary_10_1016_j_quascirev_2025_109224
crossref_primary_10_5194_tc_9_881_2015
crossref_primary_10_1063_PT_3_2434
crossref_primary_10_1017_jog_2016_85
crossref_primary_10_1002_2017GL074943
crossref_primary_10_1002_2017PA003225
crossref_primary_10_1016_j_quascirev_2022_107401
crossref_primary_10_1029_2018GL077268
crossref_primary_10_5194_tc_11_1851_2017
crossref_primary_10_5194_tc_18_4463_2024
crossref_primary_10_1002_wcc_634
crossref_primary_10_1007_s40641_017_0071_0
crossref_primary_10_1002_2016GL072422
crossref_primary_10_1029_2021GL094513
crossref_primary_10_1016_j_quascirev_2020_106222
crossref_primary_10_1016_j_earscirev_2017_11_022
crossref_primary_10_1073_pnas_1512482112
crossref_primary_10_1017_S0954102017000074
crossref_primary_10_1038_s41467_023_37553_2
crossref_primary_10_1002_2016GL067818
crossref_primary_10_1017_jog_2024_17
crossref_primary_10_1002_2017GL074433
crossref_primary_10_1007_s11430_020_9729_6
crossref_primary_10_5194_tc_12_3123_2018
crossref_primary_10_5194_esd_7_203_2016
crossref_primary_10_5194_tc_10_1753_2016
crossref_primary_10_1007_s00382_014_2451_7
crossref_primary_10_1029_2021RG000757
crossref_primary_10_1029_2020GL088131
crossref_primary_10_1073_pnas_1516130113
crossref_primary_10_5194_tc_10_2317_2016
crossref_primary_10_5194_tc_9_197_2015
crossref_primary_10_5194_tc_10_597_2016
crossref_primary_10_1029_2023GL105450
Cites_doi 10.1038/271321a0
10.1002/grl.50527
10.5194/tc-5-715-2011
10.1098/rsta.2006.1797
10.1175/1520-0442(2000)013<1674:VATIAS>2.0.CO;2
10.1126/science.1208336
10.1016/j.epsl.2009.12.031
10.3189/2012JoG11J118
10.1002/2013JC009009
10.1029/2004GL021284
10.1029/2000JC000345
10.1126/science.1235798
10.1029/2006JF000664
10.1038/nclimate2094
10.1038/nature08471
10.1038/ngeo1889
10.1038/nclimate1911
10.1175/JPO-D-13-0240.1
10.1029/2008JF001179
10.1126/science.1169335
10.1038/nature07809
10.1007/s00382-013-1749-1
10.5194/tc-7-375-2013
10.3189/2014JoG13J093
10.1126/science.1185782
10.1029/2006GL028154
10.1038/ngeo890
ContentType Journal Article
Copyright Springer Nature Limited 2014
2015 INIST-CNRS
Copyright Nature Publishing Group Jun 2014
Copyright_xml – notice: Springer Nature Limited 2014
– notice: 2015 INIST-CNRS
– notice: Copyright Nature Publishing Group Jun 2014
DBID AAYXX
CITATION
IQODW
3V.
7ST
7TG
7TN
7XB
88I
8AF
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
H97
HCIFZ
KL.
L.G
M2P
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
SOI
7U6
DOI 10.1038/nclimate2226
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
STEM Database
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Sustainability Science Abstracts
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1758-6798
EndPage 455
ExternalDocumentID 3579986451
28500398
10_1038_nclimate2226
GeographicLocations polar regions
Wilkes Land
Antarctica
East Antarctica
PSW, Antarctica, West Antarctica
Antarctica, West Antarctica
PSE, Antarctica, East Antarctica
GeographicLocations_xml – name: PSW, Antarctica, West Antarctica
– name: Antarctica, West Antarctica
– name: PSE, Antarctica, East Antarctica
GroupedDBID 0R~
39C
3V.
4.4
53G
5BI
70F
88I
8AF
8FE
8FH
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABAWZ
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACGOD
ACHQT
ADBBV
AENEX
AEUYN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHDO
AGHTU
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
D1K
DWQXO
EBS
EDH
EE.
EJD
EXGXG
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
K6-
M2P
NNMJJ
O9-
ODYON
PCBAR
PQQKQ
PROAC
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
IQODW
NFIDA
7ST
7TG
7TN
7XB
8FK
C1K
F1W
H96
H97
KL.
L.G
PKEHL
PQEST
PQUKI
Q9U
SOI
7U6
ID FETCH-LOGICAL-c364t-5a5414475ca1dcf4b9ec8683193ca97f59060ed55c107b5e7fc4fc55ea2b90643
IEDL.DBID BENPR
ISSN 1758-678X
IngestDate Fri Jul 11 06:19:44 EDT 2025
Wed Jul 16 16:02:59 EDT 2025
Wed Apr 02 07:15:05 EDT 2025
Tue Jul 01 03:01:33 EDT 2025
Thu Apr 24 22:50:22 EDT 2025
Fri Feb 21 02:38:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords ice sheets
Regional scope
Ice flow
Observation data
Sea level rise
digital simulation
Polar region
Grounding line
collapse
sea level
stability
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-5a5414475ca1dcf4b9ec8683193ca97f59060ed55c107b5e7fc4fc55ea2b90643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
PQID 1651370066
PQPubID 1056412
PageCount 5
ParticipantIDs proquest_miscellaneous_1554952064
proquest_journals_1651370066
pascalfrancis_primary_28500398
crossref_citationtrail_10_1038_nclimate2226
crossref_primary_10_1038_nclimate2226
springer_journals_10_1038_nclimate2226
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature climate change
PublicationTitleAbbrev Nature Clim Change
PublicationYear 2014
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References HellmerHHJacobsSSJenkinsAOceanic erosion of a floating Antarctic glacier in the Amundsen SeaOcean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin1998319339
FavierLRetreat of Pine Island Glacier controlled by marine ice-sheet instabilityNature Clim. Change2014411712110.1038/nclimate2094
JenkinsAObservations beneath Pine Island Glacier in West Antarctica and implications for its retreatNature Geosci.201034684721:CAS:528:DC%2BC3cXotVKmtro%3D10.1038/ngeo890
WilliamsTEvidence for iceberg armadas from East Antarctica in the Southern Ocean during the late Miocene and early PlioceneEarth Planet. Sci. Lett.20102903513611:CAS:528:DC%2BC3cXhtlCrsLs%3D10.1016/j.epsl.2009.12.031
RignotEMouginotJScheuchlBIce flow of the Antarctic ice sheetScience2011333142714301:CAS:528:DC%2BC3MXhtFWqurnO10.1126/science.1208336
FeldmannJAlbrechtTKhroulevCPattynFLevermannAResolution-dependent performance of grounding line motion in a shallow model compared to a full-Stokes model according to the MISMIP3d intercomparisonJ. Glaciol.20146035336010.3189/2014JoG13J093
MercerJHWest Antarctic ice sheet and CO2 greenhouse effect: A threat of disasterNature197827132132510.1038/271321a0
BamberJLRivaREMVermeersenBLALeBrocqAMReassessment of the potential sea-level rise from a collapse of the West Antarctic ice sheetScience20093249019031:CAS:528:DC%2BD1MXlslWnu7s%3D10.1126/science.1169335
FlamentTRémyFDynamic thinning of Antarctic glaciers from along-track repeat radar altimetryJ. Glaciol.20125883084010.3189/2012JoG11J118
Ha, H. K. et al. Circulation and modification of warm deep water on the central Amundsen Shelf. J. Phys. Oceanogr.http://dx.doi.org/10.1175/JPO-D-13-0240.1 (2014).
TimmermannRBeckmannAHellmerHHSimulations of ice-ocean dynamics in the Weddell Sea 1 Model configuration and validationJ. Geophys. Res.200210710-110-1110.1029/2000JC000345
HirabayashiYGlobal flood risk under climate changeNature Clim. Change2013381682110.1038/nclimate1911
SchoofCIce sheet grounding line dynamics: Steady states, stability, and hysteresisJ. Geophys. Res.2007112F03S2810.1029/2006JF000664
PollardDDeContoRMModelling West Antarctic ice sheet growth and collapse through the past five million yearsNature20094583293321:CAS:528:DC%2BD1MXjtlyntr8%3D10.1038/nature07809
HindmarshRCAThe role of membrane-like stresses in determining the stability and sensitivity of the Antarctic ice sheets: Back pressure and grounding line motionPhil. Trans. R. Soc.20063641733176710.1098/rsta.2006.1797
ChurchJAClimate Change 2013: The Physical Science Basis2013
VelicognaIWahrJTime-variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite dataGeophys. Res. Lett.2013403055306310.1002/grl.50527
WalkerDPOceanic heat transport onto the Amundsen Sea shelf through a submarine glacial troughGeophys. Res. Lett.200734L0260210.1029/2006GL028154
RignotEJacobsSMouginotJScheuchlBIce-shelf melting around AntarcticaScience20133412662701:CAS:528:DC%2BC3sXhtFSms7fO10.1126/science.1235798
BuelerEBrownJThe shallow shelf approximation as a sliding law in a thermomechanically coupled ice sheet modelJ. Geophys. Res.2009114F0300810.1029/2008JF001179
Pattyn, F. et al. Grounding-line migration in plan-view marine ice-sheet models: Results of the ice2sea MISMIP3d intercomparison. 59, 410–422 (2013).
AokiSWidespread freshening in the seasonal ice zone near 140° E off the Adélie Land Coast, Antarctica, from 1994 to 2012J. Geophys. Res. Ocean.20131186046606310.1002/2013JC009009
CookCPDynamic behaviour of the East Antarctic ice sheet during Pliocene warmthNature Geosci.201367657691:CAS:528:DC%2BC3sXhtFCisr%2FN10.1038/ngeo1889
NichollsRJCazenaveASea-level rise and its impact on coastal zonesScience2010328151715211:CAS:528:DC%2BC3cXnsVWnt7g%3D10.1126/science.1185782
ComisoJCVariability and trends in antarctic surface temperatures from in situ and satellite infrared measurementsJ. Clim.2000131674169610.1175/1520-0442(2000)013<1674:VATIAS>2.0.CO;2
LigtenbergSRMBergWJBroekeMRRaeJGLMeijgaardEFuture surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate modelClim. Dynam.20134186788410.1007/s00382-013-1749-1
PritchardHDArthernRJVaughanDGEdwardsLAExtensive dynamic thinning on the margins of the Greenland and Antarctic ice sheetsNature20094619719751:CAS:528:DC%2BD1MXhtFGqtbrO10.1038/nature08471
WinkelmannRThe Potsdam Parallel Ice Sheet Model (PISM–PIK)–Part 1: Model descriptionCryosphere2011572774010.5194/tc-5-715-2011
FretwellPBedmap2: Improved ice bed, surface and thickness datasets for AntarcticaCryosphere2013737539310.5194/tc-7-375-2013
Payne, A. J., Vieli, A., Shepherd, A. P., Wingham, D. J. & Rignot, E. Recent dramatic thinning of larges West Antarctic ice stream triggered by oceans. Geophys. Res. Lett.31http://dx.doi.org/10.1029/2004GL021284 (2004).
E Rignot (BFnclimate2226_CR8) 2013; 341
JH Mercer (BFnclimate2226_CR3) 1978; 271
T Flament (BFnclimate2226_CR18) 2012; 58
BFnclimate2226_CR11
T Williams (BFnclimate2226_CR20) 2010; 290
L Favier (BFnclimate2226_CR14) 2014; 4
R Timmermann (BFnclimate2226_CR25) 2002; 107
D Pollard (BFnclimate2226_CR5) 2009; 458
RJ Nicholls (BFnclimate2226_CR10) 2010; 328
S Aoki (BFnclimate2226_CR19) 2013; 118
P Fretwell (BFnclimate2226_CR6) 2013; 7
HH Hellmer (BFnclimate2226_CR30) 1998
Y Hirabayashi (BFnclimate2226_CR9) 2013; 3
A Jenkins (BFnclimate2226_CR12) 2010; 3
E Bueler (BFnclimate2226_CR21) 2009; 114
RCA Hindmarsh (BFnclimate2226_CR13) 2006; 364
R Winkelmann (BFnclimate2226_CR29) 2011; 5
CP Cook (BFnclimate2226_CR7) 2013; 6
DP Walker (BFnclimate2226_CR26) 2007; 34
JC Comiso (BFnclimate2226_CR24) 2000; 13
BFnclimate2226_CR22
HD Pritchard (BFnclimate2226_CR16) 2009; 461
JA Church (BFnclimate2226_CR1) 2013
C Schoof (BFnclimate2226_CR4) 2007; 112
J Feldmann (BFnclimate2226_CR23) 2014; 60
BFnclimate2226_CR27
SRM Ligtenberg (BFnclimate2226_CR28) 2013; 41
JL Bamber (BFnclimate2226_CR2) 2009; 324
E Rignot (BFnclimate2226_CR15) 2011; 333
I Velicogna (BFnclimate2226_CR17) 2013; 40
References_xml – reference: FavierLRetreat of Pine Island Glacier controlled by marine ice-sheet instabilityNature Clim. Change2014411712110.1038/nclimate2094
– reference: RignotEMouginotJScheuchlBIce flow of the Antarctic ice sheetScience2011333142714301:CAS:528:DC%2BC3MXhtFWqurnO10.1126/science.1208336
– reference: BuelerEBrownJThe shallow shelf approximation as a sliding law in a thermomechanically coupled ice sheet modelJ. Geophys. Res.2009114F0300810.1029/2008JF001179
– reference: BamberJLRivaREMVermeersenBLALeBrocqAMReassessment of the potential sea-level rise from a collapse of the West Antarctic ice sheetScience20093249019031:CAS:528:DC%2BD1MXlslWnu7s%3D10.1126/science.1169335
– reference: Payne, A. J., Vieli, A., Shepherd, A. P., Wingham, D. J. & Rignot, E. Recent dramatic thinning of larges West Antarctic ice stream triggered by oceans. Geophys. Res. Lett.31http://dx.doi.org/10.1029/2004GL021284 (2004).
– reference: ComisoJCVariability and trends in antarctic surface temperatures from in situ and satellite infrared measurementsJ. Clim.2000131674169610.1175/1520-0442(2000)013<1674:VATIAS>2.0.CO;2
– reference: MercerJHWest Antarctic ice sheet and CO2 greenhouse effect: A threat of disasterNature197827132132510.1038/271321a0
– reference: FretwellPBedmap2: Improved ice bed, surface and thickness datasets for AntarcticaCryosphere2013737539310.5194/tc-7-375-2013
– reference: LigtenbergSRMBergWJBroekeMRRaeJGLMeijgaardEFuture surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate modelClim. Dynam.20134186788410.1007/s00382-013-1749-1
– reference: ChurchJAClimate Change 2013: The Physical Science Basis2013
– reference: WilliamsTEvidence for iceberg armadas from East Antarctica in the Southern Ocean during the late Miocene and early PlioceneEarth Planet. Sci. Lett.20102903513611:CAS:528:DC%2BC3cXhtlCrsLs%3D10.1016/j.epsl.2009.12.031
– reference: RignotEJacobsSMouginotJScheuchlBIce-shelf melting around AntarcticaScience20133412662701:CAS:528:DC%2BC3sXhtFSms7fO10.1126/science.1235798
– reference: VelicognaIWahrJTime-variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite dataGeophys. Res. Lett.2013403055306310.1002/grl.50527
– reference: WalkerDPOceanic heat transport onto the Amundsen Sea shelf through a submarine glacial troughGeophys. Res. Lett.200734L0260210.1029/2006GL028154
– reference: HindmarshRCAThe role of membrane-like stresses in determining the stability and sensitivity of the Antarctic ice sheets: Back pressure and grounding line motionPhil. Trans. R. Soc.20063641733176710.1098/rsta.2006.1797
– reference: FeldmannJAlbrechtTKhroulevCPattynFLevermannAResolution-dependent performance of grounding line motion in a shallow model compared to a full-Stokes model according to the MISMIP3d intercomparisonJ. Glaciol.20146035336010.3189/2014JoG13J093
– reference: CookCPDynamic behaviour of the East Antarctic ice sheet during Pliocene warmthNature Geosci.201367657691:CAS:528:DC%2BC3sXhtFCisr%2FN10.1038/ngeo1889
– reference: HellmerHHJacobsSSJenkinsAOceanic erosion of a floating Antarctic glacier in the Amundsen SeaOcean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin1998319339
– reference: HirabayashiYGlobal flood risk under climate changeNature Clim. Change2013381682110.1038/nclimate1911
– reference: PollardDDeContoRMModelling West Antarctic ice sheet growth and collapse through the past five million yearsNature20094583293321:CAS:528:DC%2BD1MXjtlyntr8%3D10.1038/nature07809
– reference: WinkelmannRThe Potsdam Parallel Ice Sheet Model (PISM–PIK)–Part 1: Model descriptionCryosphere2011572774010.5194/tc-5-715-2011
– reference: AokiSWidespread freshening in the seasonal ice zone near 140° E off the Adélie Land Coast, Antarctica, from 1994 to 2012J. Geophys. Res. Ocean.20131186046606310.1002/2013JC009009
– reference: NichollsRJCazenaveASea-level rise and its impact on coastal zonesScience2010328151715211:CAS:528:DC%2BC3cXnsVWnt7g%3D10.1126/science.1185782
– reference: PritchardHDArthernRJVaughanDGEdwardsLAExtensive dynamic thinning on the margins of the Greenland and Antarctic ice sheetsNature20094619719751:CAS:528:DC%2BD1MXhtFGqtbrO10.1038/nature08471
– reference: JenkinsAObservations beneath Pine Island Glacier in West Antarctica and implications for its retreatNature Geosci.201034684721:CAS:528:DC%2BC3cXotVKmtro%3D10.1038/ngeo890
– reference: Ha, H. K. et al. Circulation and modification of warm deep water on the central Amundsen Shelf. J. Phys. Oceanogr.http://dx.doi.org/10.1175/JPO-D-13-0240.1 (2014).
– reference: SchoofCIce sheet grounding line dynamics: Steady states, stability, and hysteresisJ. Geophys. Res.2007112F03S2810.1029/2006JF000664
– reference: FlamentTRémyFDynamic thinning of Antarctic glaciers from along-track repeat radar altimetryJ. Glaciol.20125883084010.3189/2012JoG11J118
– reference: Pattyn, F. et al. Grounding-line migration in plan-view marine ice-sheet models: Results of the ice2sea MISMIP3d intercomparison. 59, 410–422 (2013).
– reference: TimmermannRBeckmannAHellmerHHSimulations of ice-ocean dynamics in the Weddell Sea 1 Model configuration and validationJ. Geophys. Res.200210710-110-1110.1029/2000JC000345
– ident: BFnclimate2226_CR22
– volume: 271
  start-page: 321
  year: 1978
  ident: BFnclimate2226_CR3
  publication-title: Nature
  doi: 10.1038/271321a0
– volume: 40
  start-page: 3055
  year: 2013
  ident: BFnclimate2226_CR17
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/grl.50527
– volume: 5
  start-page: 727
  year: 2011
  ident: BFnclimate2226_CR29
  publication-title: Cryosphere
  doi: 10.5194/tc-5-715-2011
– volume: 364
  start-page: 1733
  year: 2006
  ident: BFnclimate2226_CR13
  publication-title: Phil. Trans. R. Soc.
  doi: 10.1098/rsta.2006.1797
– volume: 13
  start-page: 1674
  year: 2000
  ident: BFnclimate2226_CR24
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(2000)013<1674:VATIAS>2.0.CO;2
– volume: 333
  start-page: 1427
  year: 2011
  ident: BFnclimate2226_CR15
  publication-title: Science
  doi: 10.1126/science.1208336
– volume: 290
  start-page: 351
  year: 2010
  ident: BFnclimate2226_CR20
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2009.12.031
– volume: 58
  start-page: 830
  year: 2012
  ident: BFnclimate2226_CR18
  publication-title: J. Glaciol.
  doi: 10.3189/2012JoG11J118
– volume: 118
  start-page: 6046
  year: 2013
  ident: BFnclimate2226_CR19
  publication-title: J. Geophys. Res. Ocean.
  doi: 10.1002/2013JC009009
– ident: BFnclimate2226_CR11
  doi: 10.1029/2004GL021284
– volume: 107
  start-page: 10-1
  year: 2002
  ident: BFnclimate2226_CR25
  publication-title: J. Geophys. Res.
  doi: 10.1029/2000JC000345
– volume: 341
  start-page: 266
  year: 2013
  ident: BFnclimate2226_CR8
  publication-title: Science
  doi: 10.1126/science.1235798
– volume: 112
  start-page: F03S28
  year: 2007
  ident: BFnclimate2226_CR4
  publication-title: J. Geophys. Res.
  doi: 10.1029/2006JF000664
– volume: 4
  start-page: 117
  year: 2014
  ident: BFnclimate2226_CR14
  publication-title: Nature Clim. Change
  doi: 10.1038/nclimate2094
– volume: 461
  start-page: 971
  year: 2009
  ident: BFnclimate2226_CR16
  publication-title: Nature
  doi: 10.1038/nature08471
– start-page: 319
  volume-title: Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin
  year: 1998
  ident: BFnclimate2226_CR30
– volume: 6
  start-page: 765
  year: 2013
  ident: BFnclimate2226_CR7
  publication-title: Nature Geosci.
  doi: 10.1038/ngeo1889
– volume: 3
  start-page: 816
  year: 2013
  ident: BFnclimate2226_CR9
  publication-title: Nature Clim. Change
  doi: 10.1038/nclimate1911
– ident: BFnclimate2226_CR27
  doi: 10.1175/JPO-D-13-0240.1
– volume: 114
  start-page: F03008
  year: 2009
  ident: BFnclimate2226_CR21
  publication-title: J. Geophys. Res.
  doi: 10.1029/2008JF001179
– volume: 324
  start-page: 901
  year: 2009
  ident: BFnclimate2226_CR2
  publication-title: Science
  doi: 10.1126/science.1169335
– volume: 458
  start-page: 329
  year: 2009
  ident: BFnclimate2226_CR5
  publication-title: Nature
  doi: 10.1038/nature07809
– volume-title: Climate Change 2013: The Physical Science Basis
  year: 2013
  ident: BFnclimate2226_CR1
– volume: 41
  start-page: 867
  year: 2013
  ident: BFnclimate2226_CR28
  publication-title: Clim. Dynam.
  doi: 10.1007/s00382-013-1749-1
– volume: 7
  start-page: 375
  year: 2013
  ident: BFnclimate2226_CR6
  publication-title: Cryosphere
  doi: 10.5194/tc-7-375-2013
– volume: 60
  start-page: 353
  year: 2014
  ident: BFnclimate2226_CR23
  publication-title: J. Glaciol.
  doi: 10.3189/2014JoG13J093
– volume: 328
  start-page: 1517
  year: 2010
  ident: BFnclimate2226_CR10
  publication-title: Science
  doi: 10.1126/science.1185782
– volume: 34
  start-page: L02602
  year: 2007
  ident: BFnclimate2226_CR26
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL028154
– volume: 3
  start-page: 468
  year: 2010
  ident: BFnclimate2226_CR12
  publication-title: Nature Geosci.
  doi: 10.1038/ngeo890
SSID ssj0000716369
Score 2.4519289
Snippet The Wilkes ice sheet in East Antarctica, which lies on bedrock below sea level, is sensitive to climate change but its stability and potential contribution to...
Changes in ice discharge from Antarctica constitute the largest uncertainty in future sea-level projections, mainly because of the unknown response of its...
SourceID proquest
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 451
SubjectTerms 704/106/125
704/106/694/1108
704/106/829/2737
Bathymetry
Climate Change
Climate Change/Climate Change Impacts
Earth, ocean, space
Environment
Environmental Law/Policy/Ecojustice
Exact sciences and technology
External geophysics
Ice
Ice shelves
letter
Ocean basins
Physics of the oceans
Pliocene
Sea level
Snow. Ice. Glaciers
Surface waves, tides and sea level. Seiches
Title Ice plug prevents irreversible discharge from East Antarctica
URI https://link.springer.com/article/10.1038/nclimate2226
https://www.proquest.com/docview/1651370066
https://www.proquest.com/docview/1554952064
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED8x-jJpQgM2LQyQkTZepqhNYzv2wzQBKoJJIISo1LfIuTgIqUpDk_7_nBO3ayfgLZEtOznfx89n3x3Aj8iijYkXwixKZMg5YqitcYkg9bCIC57l3MU739zKqzH_OxET73Cr_bXKpU5sFXU-Q-cj70dSRHHiLOSf6jl0VaPc6aovofEBeqSCFW2-euej27v7lZeFDKiM27p2ZCZVSJp54m-_D2LVL3H6RLjQko2UG3bpU2VqIlHR1bbYAJ__nZe2ZujyM-x4_MjOugXfhS1b7kFwQ9B3Nm895OyUXbTztW_78PsaLaumi0dWddmaavY0d09zEoapZS4s12VLssxFmrCRqRt2VjbE_87L_QXGl6OHi6vQ10wIMZa8CYVxdb15ItBEORKttUUlFQlajEYnhdADObC5EEj7vkzYpEBeoBDWDDPt4MlX2C5npf0GLCuU5tRCexYaR-YGM4mDRCPmhmCMDODXkmIp-oTirq7FNG0PtmOVrtM3gJ-r3lWXSOONfscbxF91HirhAolVAIfL1Ui9vNXpP-4I4GTVTJLijj9MaWcL6kPISYsh_WQAp8tVXBvilY85eH-u7_CR8BPvbo4dwnYzX9gjwihNduwZ8QVDyekX
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1da9sw8OjShw1G2Sf1-jEN1r4M09iWZOuhlK5LSdYmjNFC3jz5LI9CcLzYofRP7Tfu5I-sGdve-mbjQ5LvQ3en090BvPcMmoB4wU28ULqcI7rKaFsIUvlZkPEk5TbfeTyRw2v-eSqmG_Czy4Wx1yq7PbHeqNM52jPyI08KLwithjwpfri2a5SNrnYtNBq2uDB3t-SylcejT0TfA98_H1ydDd22q4CLgeSVK7TtfM1DgdpLkVajDEYyIlYMUKswE6ov-yYVAskzSoQJM-QZCmG0nyirwGncR7DJA3JlerD5cTD58nV1qkMKWwZ1Hz1Sy5FLmmDa3rbvB9FRjrMbskMN6WS5pgefFrokkmRNL401Y_eP-Gyt9s6fwVZrr7LThsGew4bJX4AzJlN7vqhP5NkhO6vnq99ewvEIDStmy--saKpDlexmYZ8WJHwzw2wasK3OZJjNbGEDXVbsNK8IsfZU_RVcPwg2X0Mvn-dmG1iSRYrTF_KRaByZakwk9kOFmGoym6QDHzqMxdgWMLd9NGZxHUgPovg-fh04WEEXTeGOf8DtryF_BexHwiYuRw7sdtSIW_ku49_c6MC71WeSTBtu0bmZLwmGLDUlfPpJBw47Kt4b4i-LefP_ud7C4-HV-DK-HE0uduAJ2W68ubW2C71qsTR7ZB9VyX7LlAy-PbQc_AJjWCXf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swED-6FMZglH1Sr12nwdqXYeIPSbYeyujahGZdQxkr5M2Tz_IoBMeLHcb-tf11O_kja8a2t77Z-JDk00n3k-4L4I1v0IQkC27qR9LlHNFVRttEkCrIw5ynGbfxzpdTeX7NP8zEbAt-9rEw1q2y3xObjTpboL0jH_pS-GFkNeQw79wirs7G78pvrq0gZS2tfTmNVkQuzI_vdHyrjidnNNeHQTAefT49d7sKAy6Gkteu0LYKNo8Eaj9DGpkyGMuYxDJEraJcKE96JhMC6ZSUChPlyHMUwuggVVaZU7v3YDuiU5E3gO33o-nVp_UNDylvGTY19UhFxy5phVnnee-F8bDA-Q1hUkP6WW7oxIelrmh68rauxgbw_cNW26jA8SPY6bArO2mF7TFsmeIJOJcEuxfL5naeHbHTpr_m7SkcT9Cwcr76yso2U1TFbpb2aUkLcW6YDQm2mZoMs1EubKSrmp0UNTHW3rA_g-s74eZzGBSLwuwCS_NYcfpC5yVqR2YaU4lepBAzTRBKOvC251iCXTJzW1NjnjRG9TBObvPXgcM1ddkm8fgH3cEG89fEQSxsEHPswH4_G0m31qvkt2Q68Hr9mVapNb3owixWREOoTYmAftKBo34WbzXxl8G8-H9fr-A-yX_ycTK92IMHBON468C2D4N6uTIvCSrV6UEnkwy-3PUy-AXGrioU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ice+plug+prevents+irreversible+discharge+from+East+Antarctica&rft.jtitle=Nature+climate+change&rft.au=Mengel%2C+M.&rft.au=Levermann%2C+A.&rft.date=2014-06-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1758-678X&rft.eissn=1758-6798&rft.volume=4&rft.issue=6&rft.spage=451&rft.epage=455&rft_id=info:doi/10.1038%2Fnclimate2226&rft.externalDocID=10_1038_nclimate2226
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-678X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-678X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-678X&client=summon