Variable Selection for the Spatial Autoregressive Model with Autoregressive Disturbances

Along with the rapid development of the geographic information system, high-dimensional spatial heterogeneous data has emerged bringing theoretical and computational challenges to statistical modeling and analysis. As a result, effective dimensionality reduction and spatial effect recognition has be...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 9; no. 12; p. 1448
Main Authors Liu, Xuan, Chen, Jianbao
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Along with the rapid development of the geographic information system, high-dimensional spatial heterogeneous data has emerged bringing theoretical and computational challenges to statistical modeling and analysis. As a result, effective dimensionality reduction and spatial effect recognition has become very important. This paper focuses on variable selection in the spatial autoregressive model with autoregressive disturbances (SARAR) which contains a more comprehensive spatial effect. The variable selection procedure is presented by using the so-called penalized quasi-likelihood approach. Under suitable regular conditions, we obtain the rate of convergence and the asymptotic normality of the estimators. The theoretical results ensure that the proposed method can effectively identify spatial effects of dependent variables, find spatial heterogeneity in error terms, reduce the dimension, and estimate unknown parameters simultaneously. Based on step-by-step transformation, a feasible iterative algorithm is developed to realize spatial effect identification, variable selection, and parameter estimation. In the setting of finite samples, Monte Carlo studies and real data analysis demonstrate that the proposed penalized method performs well and is consistent with the theoretical results.
AbstractList Along with the rapid development of the geographic information system, high-dimensional spatial heterogeneous data has emerged bringing theoretical and computational challenges to statistical modeling and analysis. As a result, effective dimensionality reduction and spatial effect recognition has become very important. This paper focuses on variable selection in the spatial autoregressive model with autoregressive disturbances (SARAR) which contains a more comprehensive spatial effect. The variable selection procedure is presented by using the so-called penalized quasi-likelihood approach. Under suitable regular conditions, we obtain the rate of convergence and the asymptotic normality of the estimators. The theoretical results ensure that the proposed method can effectively identify spatial effects of dependent variables, find spatial heterogeneity in error terms, reduce the dimension, and estimate unknown parameters simultaneously. Based on step-by-step transformation, a feasible iterative algorithm is developed to realize spatial effect identification, variable selection, and parameter estimation. In the setting of finite samples, Monte Carlo studies and real data analysis demonstrate that the proposed penalized method performs well and is consistent with the theoretical results.
Author Liu, Xuan
Chen, Jianbao
Author_xml – sequence: 1
  givenname: Xuan
  surname: Liu
  fullname: Liu, Xuan
– sequence: 2
  givenname: Jianbao
  surname: Chen
  fullname: Chen, Jianbao
BookMark eNpdUU1LAzEQDVLBWnvyDyx4lGq-djc5lvpVqHjwA29hks22KdtNTbKK_97VihTnMjNvHu8NvGM0aH1rETol-IIxiS83kFaSUMK5OEBDSmk5KXt8sDcfoXGMa9yXJExwOUSvLxAc6MZmj7axJjnfZrUPWVr1yBaSgyabdskHuww2Rvdus3tf2Sb7cGn1_3LlYuqChtbYeIIOa2iiHf_2EXq-uX6a3U0WD7fz2XQxMazgaZIX2jJBuDa4wKWWknGgnIrCMFZTSXHNKC9zJouCm5rn1oCQdb8TQkEDZyM03-lWHtZqG9wGwqfy4NQP4MNSQUjONFYZVtVMlGByUnHMhBAWck4KqinRGste62yntQ3-rbMxqbXvQtu_r2jOc4yZFKRnne9YJvgYg63_XAlW30movSTYF8LHfGo
CitedBy_id crossref_primary_10_3390_e24111660
crossref_primary_10_1016_j_geoderma_2023_116549
Cites_doi 10.1080/17421770802353758
10.1111/j.2517-6161.1996.tb02080.x
10.1111/jors.12339
10.1080/01621459.1988.10478694
10.1002/cjs.10032
10.2307/2938168
10.1201/9781420064254
10.1111/j.1468-0262.2004.00558.x
10.1214/aos/1176344136
10.1002/wics.1284
10.1017/CBO9780511810817
10.1007/978-94-015-7799-1
10.1214/09-AOS729
10.1214/009053607000000019
10.1111/j.1467-9868.2010.00739.x
10.1214/aos/1176325766
10.1002/9781119115151
10.1198/jasa.2009.0127
10.1111/j.1538-4632.2007.00703.x
10.1023/A:1007707430416
10.1198/016214506000000735
10.1214/009053606000001334
10.1093/biomet/asm053
10.1023/A:1007762613901
10.1080/02331888.2012.719520
10.1016/S0304-4076(01)00064-1
10.1007/s00362-018-0984-2
10.1080/00343404.2012.678824
10.1016/0095-0696(78)90006-2
10.1016/j.spasta.2018.05.001
10.1257/jel.20191385
10.1007/s00181-015-1023-y
10.1111/j.1467-9868.2005.00503.x
10.1111/j.1467-9787.2009.00618.x
10.1080/01621459.1997.10473615
10.1093/comjnl/7.4.308
10.1093/biomet/60.2.255
10.1198/016214501753382273
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math9121448
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_c3df387ac51d403888ea54162b21bb09
10_3390_math9121448
GroupedDBID -~X
3V.
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABJNI
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
K6V
K7-
KQ8
L6V
M0N
M7S
MODMG
M~E
OK1
PIMPY
PQQKQ
PROAC
PTHSS
RNS
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
P62
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c364t-56be3814bc0607b9934a24286c33f2920f3247539664cf45eca89f539112aba43
IEDL.DBID BENPR
ISSN 2227-7390
IngestDate Tue Oct 22 14:53:36 EDT 2024
Thu Oct 10 20:13:41 EDT 2024
Wed Jul 17 13:00:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-56be3814bc0607b9934a24286c33f2920f3247539664cf45eca89f539112aba43
OpenAccessLink https://www.proquest.com/docview/2545003981?pq-origsite=%requestingapplication%
PQID 2545003981
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_c3df387ac51d403888ea54162b21bb09
proquest_journals_2545003981
crossref_primary_10_3390_math9121448
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Mitchell (ref_17) 1988; 83
Raftery (ref_18) 1997; 92
Pace (ref_36) 1997; 14
Zou (ref_14) 2005; 67
Zou (ref_31) 2008; 36
Kelejian (ref_40) 2001; 104
Liu (ref_28) 2018; 25
Cuaresma (ref_25) 2018; 58
Piribauer (ref_26) 2016; 51
Wang (ref_33) 2007; 94
Jiang (ref_19) 2007; 35
Schwarz (ref_8) 1978; 6
LeSage (ref_23) 2008; 3
Zou (ref_15) 2006; 101
Steel (ref_21) 2020; 58
Tang (ref_37) 2014; 48
ref_39
Huo (ref_11) 2007; 35
ref_38
Wang (ref_30) 2009; 37
Akaike (ref_7) 1973; 60
Kelejian (ref_2) 1998; 17
Lee (ref_3) 2004; 72
Liang (ref_10) 2009; 104
Xie (ref_29) 2020; 61
Arraiz (ref_4) 2010; 50
Fan (ref_13) 2001; 96
Zhu (ref_27) 2010; 72
Case (ref_34) 1991; 59
Zhang (ref_16) 2010; 38
ref_1
Nelder (ref_32) 1965; 7
Cuaresma (ref_24) 2014; 48
Foster (ref_9) 1994; 22
Tibshirani (ref_12) 1996; 58
LeSage (ref_22) 2007; 39
Chen (ref_20) 2014; 6
Harrison (ref_35) 1978; 5
ref_5
ref_6
References_xml – volume: 3
  start-page: 275
  year: 2008
  ident: ref_23
  article-title: Spatial growth regressions, model specification, estimation, and interpretation
  publication-title: Spat. Econ. Anal.
  doi: 10.1080/17421770802353758
  contributor:
    fullname: LeSage
– volume: 58
  start-page: 267
  year: 1996
  ident: ref_12
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
  contributor:
    fullname: Tibshirani
– volume: 58
  start-page: 81
  year: 2018
  ident: ref_25
  article-title: Human capital accumulation and long-term income growth projections for European regions
  publication-title: J. Regional. Sci.
  doi: 10.1111/jors.12339
  contributor:
    fullname: Cuaresma
– volume: 83
  start-page: 1023
  year: 1988
  ident: ref_17
  article-title: Bayesian variable selection in linear regression
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1988.10478694
  contributor:
    fullname: Mitchell
– volume: 37
  start-page: 607
  year: 2009
  ident: ref_30
  article-title: Variable selection in spatial regression via penalized least squares
  publication-title: Can. J. Stat.
  doi: 10.1002/cjs.10032
  contributor:
    fullname: Wang
– volume: 59
  start-page: 953
  year: 1991
  ident: ref_34
  article-title: Spatial patterns in household demand
  publication-title: Econometrica
  doi: 10.2307/2938168
  contributor:
    fullname: Case
– ident: ref_38
  doi: 10.1201/9781420064254
– volume: 72
  start-page: 1899
  year: 2004
  ident: ref_3
  article-title: Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models
  publication-title: Econometrica
  doi: 10.1111/j.1468-0262.2004.00558.x
  contributor:
    fullname: Lee
– volume: 6
  start-page: 461
  year: 1978
  ident: ref_8
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344136
  contributor:
    fullname: Schwarz
– volume: 6
  start-page: 1
  year: 2014
  ident: ref_20
  article-title: Variable selection in linear models
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
  doi: 10.1002/wics.1284
  contributor:
    fullname: Chen
– ident: ref_39
  doi: 10.1017/CBO9780511810817
– ident: ref_1
– ident: ref_5
  doi: 10.1007/978-94-015-7799-1
– volume: 38
  start-page: 894
  year: 2010
  ident: ref_16
  article-title: Nearly unbiased variable selection under minimax concave penalty
  publication-title: Ann. Stat.
  doi: 10.1214/09-AOS729
  contributor:
    fullname: Zhang
– volume: 35
  start-page: 1487
  year: 2007
  ident: ref_19
  article-title: Bayesian variable selection for high dimensional generalized linear models: Convergence rates for the fitted densities
  publication-title: Ann. Stat.
  doi: 10.1214/009053607000000019
  contributor:
    fullname: Jiang
– volume: 72
  start-page: 389
  year: 2010
  ident: ref_27
  article-title: On selection of spatial linear models for lattice data
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.1467-9868.2010.00739.x
  contributor:
    fullname: Zhu
– volume: 22
  start-page: 1947
  year: 1994
  ident: ref_9
  article-title: The risk inflation criterion for multiple regression
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176325766
  contributor:
    fullname: Foster
– ident: ref_6
  doi: 10.1002/9781119115151
– volume: 104
  start-page: 234
  year: 2009
  ident: ref_10
  article-title: Variable selection for partially linear models with measurement errors
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2009.0127
  contributor:
    fullname: Liang
– volume: 39
  start-page: 241
  year: 2007
  ident: ref_22
  article-title: Bayesian model averaging for spatial econometric models
  publication-title: Geogr. Anal.
  doi: 10.1111/j.1538-4632.2007.00703.x
  contributor:
    fullname: LeSage
– volume: 17
  start-page: 99
  year: 1998
  ident: ref_2
  article-title: A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances
  publication-title: J. Real. Estate Financ.
  doi: 10.1023/A:1007707430416
  contributor:
    fullname: Kelejian
– volume: 101
  start-page: 1418
  year: 2006
  ident: ref_15
  article-title: The adaptive Lasso and its oracle properties
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214506000000735
  contributor:
    fullname: Zou
– volume: 35
  start-page: 870
  year: 2007
  ident: ref_11
  article-title: When do stepwise algorithms meet subset selection criteria?
  publication-title: Ann. Stat.
  doi: 10.1214/009053606000001334
  contributor:
    fullname: Huo
– volume: 94
  start-page: 553
  year: 2007
  ident: ref_33
  article-title: Tuning parameter selectors for the smoothly clipped absolute deviation method
  publication-title: Biometrika
  doi: 10.1093/biomet/asm053
  contributor:
    fullname: Wang
– volume: 14
  start-page: 333
  year: 1997
  ident: ref_36
  article-title: Using the spatial configuration of the data to improve estimation
  publication-title: J. Real. Estate Financ.
  doi: 10.1023/A:1007762613901
  contributor:
    fullname: Pace
– volume: 48
  start-page: 388
  year: 2014
  ident: ref_37
  article-title: Robust estimation for functional coefficient regression models with spatial data
  publication-title: Statistics
  doi: 10.1080/02331888.2012.719520
  contributor:
    fullname: Tang
– volume: 104
  start-page: 219
  year: 2001
  ident: ref_40
  article-title: On the asymptotic distribution of the Moran I test statistic with applications
  publication-title: J. Econom.
  doi: 10.1016/S0304-4076(01)00064-1
  contributor:
    fullname: Kelejian
– volume: 61
  start-page: 1125
  year: 2020
  ident: ref_29
  article-title: Variable selection for spatial autoregressive models with a diverging number of parameters
  publication-title: Stat. Pap.
  doi: 10.1007/s00362-018-0984-2
  contributor:
    fullname: Xie
– volume: 48
  start-page: 44
  year: 2014
  ident: ref_24
  article-title: The determinants of economic growth in European regions
  publication-title: Reg. Stud.
  doi: 10.1080/00343404.2012.678824
  contributor:
    fullname: Cuaresma
– volume: 5
  start-page: 81
  year: 1978
  ident: ref_35
  article-title: Hedonic housing prices and the demand for clean air
  publication-title: J. Environ. Econ. Manag.
  doi: 10.1016/0095-0696(78)90006-2
  contributor:
    fullname: Harrison
– volume: 25
  start-page: 86
  year: 2018
  ident: ref_28
  article-title: A penalized quasi-maximum likelihood method for variable selection in the spatial autoregressive model
  publication-title: Spat. Stat.
  doi: 10.1016/j.spasta.2018.05.001
  contributor:
    fullname: Liu
– volume: 58
  start-page: 644
  year: 2020
  ident: ref_21
  article-title: Model averaging and its use in economics
  publication-title: J. Econ. Lit.
  doi: 10.1257/jel.20191385
  contributor:
    fullname: Steel
– volume: 51
  start-page: 659
  year: 2016
  ident: ref_26
  article-title: Heterogeneity in spatial growth clusters
  publication-title: Empir. Econ.
  doi: 10.1007/s00181-015-1023-y
  contributor:
    fullname: Piribauer
– volume: 67
  start-page: 301
  year: 2005
  ident: ref_14
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.1467-9868.2005.00503.x
  contributor:
    fullname: Zou
– volume: 50
  start-page: 592
  year: 2010
  ident: ref_4
  article-title: A spatial Cliff-Ord-type model with heteroskedastic innovations: Small and large sample results
  publication-title: J. Regional. Sci.
  doi: 10.1111/j.1467-9787.2009.00618.x
  contributor:
    fullname: Arraiz
– volume: 92
  start-page: 179
  year: 1997
  ident: ref_18
  article-title: Bayesian model averaging for linear regression models
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1997.10473615
  contributor:
    fullname: Raftery
– volume: 7
  start-page: 308
  year: 1965
  ident: ref_32
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
  contributor:
    fullname: Nelder
– volume: 60
  start-page: 255
  year: 1973
  ident: ref_7
  article-title: Maximum likelihood identification of Gaussian autoregressive moving average models
  publication-title: Biometrika
  doi: 10.1093/biomet/60.2.255
  contributor:
    fullname: Akaike
– volume: 96
  start-page: 1348
  year: 2001
  ident: ref_13
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501753382273
  contributor:
    fullname: Fan
– volume: 36
  start-page: 1509
  year: 2008
  ident: ref_31
  article-title: One-step sparse estimates in nonconcave penalized likelihood models
  publication-title: Ann. Stat.
  contributor:
    fullname: Zou
SSID ssj0000913849
Score 2.2236526
Snippet Along with the rapid development of the geographic information system, high-dimensional spatial heterogeneous data has emerged bringing theoretical and...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 1448
SubjectTerms Algorithms
Autoregressive models
Data analysis
Dependent variables
Disturbances
Econometrics
Error reduction
Feature selection
Food science
Geographic information systems
Heterogeneity
Iterative algorithms
Iterative methods
Methods
Normality
Parameter estimation
Parameter identification
penalized method
Reptiles & amphibians
SCAD
spatial
Spatial data
Statistical methods
Statistical models
variable selection
Variables
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1EoyANr1PiV2COvqkKCBYq6WbZjCyRUUB__nzsnoAIDC2MSR4m-S3zfZ_m-I-Q8KBFk2fCC1ToVEnJaoaV2RRDKBOC7XMS8Qfa-Gk_k7VRN11p94Z6w1h64BW4YRJOErl1QrJFoXaKjU8AiuOfM-650rzRrYirPwYYJLU1bkCdA1w-B_z0bhgZh-lsKyk79vybinF1GO2S7o4X0on2dXbIRZ3tk6-7LU3WxT6ZPIGux0Ik-5N41ACgFxklhCMXGwi94PzoSxCyhYRaj2OjsleJS688r1xDd1dxjyBcHZDK6ebwaF11fBECwkstCVT5CopU-lFVZe2AY0kGm1VUQImH3qQQsCWQIKBkZklQxOG0SHAO3ct5JcUh6s7dZPCK0Qj_RIHhCpy1tpI-6FkxyV3OvG-P7EM0OKvve2l9YkA2IqF1DtE8uEcavIehZnU9AJG0XSftXJPtk8BkE2_1ICwv6VWH9sGbH__GME7LJcVNKXkYZkN5yvoqnwCqW_ix_QB9iO8ji
  priority: 102
  providerName: Directory of Open Access Journals
Title Variable Selection for the Spatial Autoregressive Model with Autoregressive Disturbances
URI https://www.proquest.com/docview/2545003981
https://doaj.org/article/c3df387ac51d403888ea54162b21bb09
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELZou8CAeIpCqTywRk38SJwJUWipkKgQUNQtih0HkFBbmvb_c-ea8pIYEzvLnX33fRf7O0LOjORGhAULokSVgYCcFiih8sBwmRrAu4xbd0B2GA9G4mYsx77gVvljlZ8x0QXqYmqwRt4BIiPxIqmKzmfvAXaNwr-rvoVGjTQYMIWwThrd3vDufl1lQdVLJdLVxTwO_L4DOPAljVAoTP1IRU6x_09Adlmmv0O2PTykFyt_7pINO9kjW7drbdVqn4yfgN7ihSf64HrYgGEpIE8KUyg2GH7F71GZwDoqDdGMYsOzN4ol198jV-Dl5Vyj66sDMur3Hi8Hge-PAJaMxSKQsbaQcIU2YRwmGpCGyCHjqthwXmIXqhLQEtARYDTClEJak6u0hGfAWLnOBT8k9cl0Yo8IjVFX1HBWouKWSoW2KuGRYHnCtCpS3QSvelNls5UMRgb0AS2afbNok3TRjOspqF3tXkznz5nfCpnhRclVkhsZFQLFaJTNJeBCplmkdZg2SevTCZnfUFX25f7j_4dPyCbDYyeuUNIi9cV8aU8BNyx0m9RU_7rtl0jbse8P-zbD5Q
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LU8IwEM4oHtSD43NEUXvw2oHm0aYnxxeiAhfB4ZZp0lSdcQAp_H93Q8DXjMe26WW32f2-bfZbQs6NYIY3chpGiSxCDjktlFxmoWEiNYB3KbPugGw3bvX5w0AMfMGt9McqFzHRBep8ZLBGXgciI7CRVEYX448Qp0bh31U_QmOVrHEGuRo7xZt3yxoLal5Kns7b8hiw-zqgwNc0Qpkw-SMROb3-P-HY5ZjmNtny4DC4nHtzh6zY4S7Z7CyVVcs9MngGcovtTsGTm2ADZg0AdwawJMDxwm_4PuoSWEekIZYFOO7sPcCC6-8nN-Dj2USj48t90m_e9q5boZ-OAHaM-TQUsbaQbrk2jbiRaMAZPIN8K2PDWIEzqArASkBGgM9wU3BhTSbTAq4BYWU64-yAVIajoT0kQYyqoobRAvW2ZMq1lQmLOM0SqmWe6ir41JtKjeciGArIA1pUfbNolVyhGZdLULna3RhNXpTfCMqwvGAyyYyIco5SNNJmAlAh1TTSupFWSW3hBOW3U6m-nH_0_-Mzst7qddqqfd99PCYbFA-guJJJjVSmk5k9AQQx1afuM_kE0C7DlQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gkxAcEE8xGNAD12ptk7TpCTG2iec0AUO7VU2aABLaxrr9f-wsGy-JY5v0Yjv2Z9f5TMiZ4lSxoIj8MBHGZxDTfMFE7ivKUwV4N6LaNsh246s-uxnwget_Kl1b5cInWkddjBTWyBuQyHC8SCrChnFtEb1W53z84eMEKfzT6sZprJJqwmIaVEi12e72HpYVF2TAFCydX9KjkOs3ABO-piGShokfYcmy9_9xzjbidLbIpoOK3sVct9tkRQ93yMb9kme13CWDZ0h18fKT92jn2YCQPUChHmzxcNjwG36PLAXaptXg2TwcfvbuYfn190oLND6bSDSDco_0O-2nyyvfzUoAqcZs6vNYagi-TKogDhIJqIPlEH1FrCg1OJHKAHKC1ASyG6YM41rlIjXwDHgrlzmj-6QyHA31AfFi5BhVNDLIviVSJrVIaMiiPImkKFJZAw07UWXjOSVGBqkESjT7JtEaaaIYl1uQx9q-GE1eMncsMkULQ0WSKx4WDIlphM45YMRIRqGUQVoj9YUSMne4yuzLFA7_Xz4la2Aj2d119_aIrEfYjWLrJ3VSmU5m-hjgxFSeODv5BDUwyTI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable+Selection+for+the+Spatial+Autoregressive+Model+with+Autoregressive+Disturbances&rft.jtitle=Mathematics+%28Basel%29&rft.au=Liu%2C+Xuan&rft.au=Chen%2C+Jianbao&rft.date=2021-06-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=9&rft.issue=12&rft.spage=1448&rft_id=info:doi/10.3390%2Fmath9121448&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math9121448
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon