Variable Selection for the Spatial Autoregressive Model with Autoregressive Disturbances
Along with the rapid development of the geographic information system, high-dimensional spatial heterogeneous data has emerged bringing theoretical and computational challenges to statistical modeling and analysis. As a result, effective dimensionality reduction and spatial effect recognition has be...
Saved in:
Published in | Mathematics (Basel) Vol. 9; no. 12; p. 1448 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Along with the rapid development of the geographic information system, high-dimensional spatial heterogeneous data has emerged bringing theoretical and computational challenges to statistical modeling and analysis. As a result, effective dimensionality reduction and spatial effect recognition has become very important. This paper focuses on variable selection in the spatial autoregressive model with autoregressive disturbances (SARAR) which contains a more comprehensive spatial effect. The variable selection procedure is presented by using the so-called penalized quasi-likelihood approach. Under suitable regular conditions, we obtain the rate of convergence and the asymptotic normality of the estimators. The theoretical results ensure that the proposed method can effectively identify spatial effects of dependent variables, find spatial heterogeneity in error terms, reduce the dimension, and estimate unknown parameters simultaneously. Based on step-by-step transformation, a feasible iterative algorithm is developed to realize spatial effect identification, variable selection, and parameter estimation. In the setting of finite samples, Monte Carlo studies and real data analysis demonstrate that the proposed penalized method performs well and is consistent with the theoretical results. |
---|---|
AbstractList | Along with the rapid development of the geographic information system, high-dimensional spatial heterogeneous data has emerged bringing theoretical and computational challenges to statistical modeling and analysis. As a result, effective dimensionality reduction and spatial effect recognition has become very important. This paper focuses on variable selection in the spatial autoregressive model with autoregressive disturbances (SARAR) which contains a more comprehensive spatial effect. The variable selection procedure is presented by using the so-called penalized quasi-likelihood approach. Under suitable regular conditions, we obtain the rate of convergence and the asymptotic normality of the estimators. The theoretical results ensure that the proposed method can effectively identify spatial effects of dependent variables, find spatial heterogeneity in error terms, reduce the dimension, and estimate unknown parameters simultaneously. Based on step-by-step transformation, a feasible iterative algorithm is developed to realize spatial effect identification, variable selection, and parameter estimation. In the setting of finite samples, Monte Carlo studies and real data analysis demonstrate that the proposed penalized method performs well and is consistent with the theoretical results. |
Author | Liu, Xuan Chen, Jianbao |
Author_xml | – sequence: 1 givenname: Xuan surname: Liu fullname: Liu, Xuan – sequence: 2 givenname: Jianbao surname: Chen fullname: Chen, Jianbao |
BookMark | eNpdUU1LAzEQDVLBWnvyDyx4lGq-djc5lvpVqHjwA29hks22KdtNTbKK_97VihTnMjNvHu8NvGM0aH1rETol-IIxiS83kFaSUMK5OEBDSmk5KXt8sDcfoXGMa9yXJExwOUSvLxAc6MZmj7axJjnfZrUPWVr1yBaSgyabdskHuww2Rvdus3tf2Sb7cGn1_3LlYuqChtbYeIIOa2iiHf_2EXq-uX6a3U0WD7fz2XQxMazgaZIX2jJBuDa4wKWWknGgnIrCMFZTSXHNKC9zJouCm5rn1oCQdb8TQkEDZyM03-lWHtZqG9wGwqfy4NQP4MNSQUjONFYZVtVMlGByUnHMhBAWck4KqinRGste62yntQ3-rbMxqbXvQtu_r2jOc4yZFKRnne9YJvgYg63_XAlW30movSTYF8LHfGo |
CitedBy_id | crossref_primary_10_3390_e24111660 crossref_primary_10_1016_j_geoderma_2023_116549 |
Cites_doi | 10.1080/17421770802353758 10.1111/j.2517-6161.1996.tb02080.x 10.1111/jors.12339 10.1080/01621459.1988.10478694 10.1002/cjs.10032 10.2307/2938168 10.1201/9781420064254 10.1111/j.1468-0262.2004.00558.x 10.1214/aos/1176344136 10.1002/wics.1284 10.1017/CBO9780511810817 10.1007/978-94-015-7799-1 10.1214/09-AOS729 10.1214/009053607000000019 10.1111/j.1467-9868.2010.00739.x 10.1214/aos/1176325766 10.1002/9781119115151 10.1198/jasa.2009.0127 10.1111/j.1538-4632.2007.00703.x 10.1023/A:1007707430416 10.1198/016214506000000735 10.1214/009053606000001334 10.1093/biomet/asm053 10.1023/A:1007762613901 10.1080/02331888.2012.719520 10.1016/S0304-4076(01)00064-1 10.1007/s00362-018-0984-2 10.1080/00343404.2012.678824 10.1016/0095-0696(78)90006-2 10.1016/j.spasta.2018.05.001 10.1257/jel.20191385 10.1007/s00181-015-1023-y 10.1111/j.1467-9868.2005.00503.x 10.1111/j.1467-9787.2009.00618.x 10.1080/01621459.1997.10473615 10.1093/comjnl/7.4.308 10.1093/biomet/60.2.255 10.1198/016214501753382273 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PIMPY PQEST PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math9121448 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_c3df387ac51d403888ea54162b21bb09 10_3390_math9121448 |
GroupedDBID | -~X 3V. 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABJNI ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO K6V K7- KQ8 L6V M0N M7S MODMG M~E OK1 PIMPY PQQKQ PROAC PTHSS RNS 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D P62 PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c364t-56be3814bc0607b9934a24286c33f2920f3247539664cf45eca89f539112aba43 |
IEDL.DBID | BENPR |
ISSN | 2227-7390 |
IngestDate | Tue Oct 22 14:53:36 EDT 2024 Thu Oct 10 20:13:41 EDT 2024 Wed Jul 17 13:00:22 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-56be3814bc0607b9934a24286c33f2920f3247539664cf45eca89f539112aba43 |
OpenAccessLink | https://www.proquest.com/docview/2545003981?pq-origsite=%requestingapplication% |
PQID | 2545003981 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c3df387ac51d403888ea54162b21bb09 proquest_journals_2545003981 crossref_primary_10_3390_math9121448 |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Mitchell (ref_17) 1988; 83 Raftery (ref_18) 1997; 92 Pace (ref_36) 1997; 14 Zou (ref_14) 2005; 67 Zou (ref_31) 2008; 36 Kelejian (ref_40) 2001; 104 Liu (ref_28) 2018; 25 Cuaresma (ref_25) 2018; 58 Piribauer (ref_26) 2016; 51 Wang (ref_33) 2007; 94 Jiang (ref_19) 2007; 35 Schwarz (ref_8) 1978; 6 LeSage (ref_23) 2008; 3 Zou (ref_15) 2006; 101 Steel (ref_21) 2020; 58 Tang (ref_37) 2014; 48 ref_39 Huo (ref_11) 2007; 35 ref_38 Wang (ref_30) 2009; 37 Akaike (ref_7) 1973; 60 Kelejian (ref_2) 1998; 17 Lee (ref_3) 2004; 72 Liang (ref_10) 2009; 104 Xie (ref_29) 2020; 61 Arraiz (ref_4) 2010; 50 Fan (ref_13) 2001; 96 Zhu (ref_27) 2010; 72 Case (ref_34) 1991; 59 Zhang (ref_16) 2010; 38 ref_1 Nelder (ref_32) 1965; 7 Cuaresma (ref_24) 2014; 48 Foster (ref_9) 1994; 22 Tibshirani (ref_12) 1996; 58 LeSage (ref_22) 2007; 39 Chen (ref_20) 2014; 6 Harrison (ref_35) 1978; 5 ref_5 ref_6 |
References_xml | – volume: 3 start-page: 275 year: 2008 ident: ref_23 article-title: Spatial growth regressions, model specification, estimation, and interpretation publication-title: Spat. Econ. Anal. doi: 10.1080/17421770802353758 contributor: fullname: LeSage – volume: 58 start-page: 267 year: 1996 ident: ref_12 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Statist. Soc. B doi: 10.1111/j.2517-6161.1996.tb02080.x contributor: fullname: Tibshirani – volume: 58 start-page: 81 year: 2018 ident: ref_25 article-title: Human capital accumulation and long-term income growth projections for European regions publication-title: J. Regional. Sci. doi: 10.1111/jors.12339 contributor: fullname: Cuaresma – volume: 83 start-page: 1023 year: 1988 ident: ref_17 article-title: Bayesian variable selection in linear regression publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1988.10478694 contributor: fullname: Mitchell – volume: 37 start-page: 607 year: 2009 ident: ref_30 article-title: Variable selection in spatial regression via penalized least squares publication-title: Can. J. Stat. doi: 10.1002/cjs.10032 contributor: fullname: Wang – volume: 59 start-page: 953 year: 1991 ident: ref_34 article-title: Spatial patterns in household demand publication-title: Econometrica doi: 10.2307/2938168 contributor: fullname: Case – ident: ref_38 doi: 10.1201/9781420064254 – volume: 72 start-page: 1899 year: 2004 ident: ref_3 article-title: Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models publication-title: Econometrica doi: 10.1111/j.1468-0262.2004.00558.x contributor: fullname: Lee – volume: 6 start-page: 461 year: 1978 ident: ref_8 article-title: Estimating the dimension of a model publication-title: Ann. Stat. doi: 10.1214/aos/1176344136 contributor: fullname: Schwarz – volume: 6 start-page: 1 year: 2014 ident: ref_20 article-title: Variable selection in linear models publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. doi: 10.1002/wics.1284 contributor: fullname: Chen – ident: ref_39 doi: 10.1017/CBO9780511810817 – ident: ref_1 – ident: ref_5 doi: 10.1007/978-94-015-7799-1 – volume: 38 start-page: 894 year: 2010 ident: ref_16 article-title: Nearly unbiased variable selection under minimax concave penalty publication-title: Ann. Stat. doi: 10.1214/09-AOS729 contributor: fullname: Zhang – volume: 35 start-page: 1487 year: 2007 ident: ref_19 article-title: Bayesian variable selection for high dimensional generalized linear models: Convergence rates for the fitted densities publication-title: Ann. Stat. doi: 10.1214/009053607000000019 contributor: fullname: Jiang – volume: 72 start-page: 389 year: 2010 ident: ref_27 article-title: On selection of spatial linear models for lattice data publication-title: J. R. Statist. Soc. B doi: 10.1111/j.1467-9868.2010.00739.x contributor: fullname: Zhu – volume: 22 start-page: 1947 year: 1994 ident: ref_9 article-title: The risk inflation criterion for multiple regression publication-title: Ann. Stat. doi: 10.1214/aos/1176325766 contributor: fullname: Foster – ident: ref_6 doi: 10.1002/9781119115151 – volume: 104 start-page: 234 year: 2009 ident: ref_10 article-title: Variable selection for partially linear models with measurement errors publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2009.0127 contributor: fullname: Liang – volume: 39 start-page: 241 year: 2007 ident: ref_22 article-title: Bayesian model averaging for spatial econometric models publication-title: Geogr. Anal. doi: 10.1111/j.1538-4632.2007.00703.x contributor: fullname: LeSage – volume: 17 start-page: 99 year: 1998 ident: ref_2 article-title: A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances publication-title: J. Real. Estate Financ. doi: 10.1023/A:1007707430416 contributor: fullname: Kelejian – volume: 101 start-page: 1418 year: 2006 ident: ref_15 article-title: The adaptive Lasso and its oracle properties publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214506000000735 contributor: fullname: Zou – volume: 35 start-page: 870 year: 2007 ident: ref_11 article-title: When do stepwise algorithms meet subset selection criteria? publication-title: Ann. Stat. doi: 10.1214/009053606000001334 contributor: fullname: Huo – volume: 94 start-page: 553 year: 2007 ident: ref_33 article-title: Tuning parameter selectors for the smoothly clipped absolute deviation method publication-title: Biometrika doi: 10.1093/biomet/asm053 contributor: fullname: Wang – volume: 14 start-page: 333 year: 1997 ident: ref_36 article-title: Using the spatial configuration of the data to improve estimation publication-title: J. Real. Estate Financ. doi: 10.1023/A:1007762613901 contributor: fullname: Pace – volume: 48 start-page: 388 year: 2014 ident: ref_37 article-title: Robust estimation for functional coefficient regression models with spatial data publication-title: Statistics doi: 10.1080/02331888.2012.719520 contributor: fullname: Tang – volume: 104 start-page: 219 year: 2001 ident: ref_40 article-title: On the asymptotic distribution of the Moran I test statistic with applications publication-title: J. Econom. doi: 10.1016/S0304-4076(01)00064-1 contributor: fullname: Kelejian – volume: 61 start-page: 1125 year: 2020 ident: ref_29 article-title: Variable selection for spatial autoregressive models with a diverging number of parameters publication-title: Stat. Pap. doi: 10.1007/s00362-018-0984-2 contributor: fullname: Xie – volume: 48 start-page: 44 year: 2014 ident: ref_24 article-title: The determinants of economic growth in European regions publication-title: Reg. Stud. doi: 10.1080/00343404.2012.678824 contributor: fullname: Cuaresma – volume: 5 start-page: 81 year: 1978 ident: ref_35 article-title: Hedonic housing prices and the demand for clean air publication-title: J. Environ. Econ. Manag. doi: 10.1016/0095-0696(78)90006-2 contributor: fullname: Harrison – volume: 25 start-page: 86 year: 2018 ident: ref_28 article-title: A penalized quasi-maximum likelihood method for variable selection in the spatial autoregressive model publication-title: Spat. Stat. doi: 10.1016/j.spasta.2018.05.001 contributor: fullname: Liu – volume: 58 start-page: 644 year: 2020 ident: ref_21 article-title: Model averaging and its use in economics publication-title: J. Econ. Lit. doi: 10.1257/jel.20191385 contributor: fullname: Steel – volume: 51 start-page: 659 year: 2016 ident: ref_26 article-title: Heterogeneity in spatial growth clusters publication-title: Empir. Econ. doi: 10.1007/s00181-015-1023-y contributor: fullname: Piribauer – volume: 67 start-page: 301 year: 2005 ident: ref_14 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Statist. Soc. B doi: 10.1111/j.1467-9868.2005.00503.x contributor: fullname: Zou – volume: 50 start-page: 592 year: 2010 ident: ref_4 article-title: A spatial Cliff-Ord-type model with heteroskedastic innovations: Small and large sample results publication-title: J. Regional. Sci. doi: 10.1111/j.1467-9787.2009.00618.x contributor: fullname: Arraiz – volume: 92 start-page: 179 year: 1997 ident: ref_18 article-title: Bayesian model averaging for linear regression models publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1997.10473615 contributor: fullname: Raftery – volume: 7 start-page: 308 year: 1965 ident: ref_32 article-title: A simplex method for function minimization publication-title: Comput. J. doi: 10.1093/comjnl/7.4.308 contributor: fullname: Nelder – volume: 60 start-page: 255 year: 1973 ident: ref_7 article-title: Maximum likelihood identification of Gaussian autoregressive moving average models publication-title: Biometrika doi: 10.1093/biomet/60.2.255 contributor: fullname: Akaike – volume: 96 start-page: 1348 year: 2001 ident: ref_13 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214501753382273 contributor: fullname: Fan – volume: 36 start-page: 1509 year: 2008 ident: ref_31 article-title: One-step sparse estimates in nonconcave penalized likelihood models publication-title: Ann. Stat. contributor: fullname: Zou |
SSID | ssj0000913849 |
Score | 2.2236526 |
Snippet | Along with the rapid development of the geographic information system, high-dimensional spatial heterogeneous data has emerged bringing theoretical and... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 1448 |
SubjectTerms | Algorithms Autoregressive models Data analysis Dependent variables Disturbances Econometrics Error reduction Feature selection Food science Geographic information systems Heterogeneity Iterative algorithms Iterative methods Methods Normality Parameter estimation Parameter identification penalized method Reptiles & amphibians SCAD spatial Spatial data Statistical methods Statistical models variable selection Variables |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1EoyANr1PiV2COvqkKCBYq6WbZjCyRUUB__nzsnoAIDC2MSR4m-S3zfZ_m-I-Q8KBFk2fCC1ToVEnJaoaV2RRDKBOC7XMS8Qfa-Gk_k7VRN11p94Z6w1h64BW4YRJOErl1QrJFoXaKjU8AiuOfM-650rzRrYirPwYYJLU1bkCdA1w-B_z0bhgZh-lsKyk79vybinF1GO2S7o4X0on2dXbIRZ3tk6-7LU3WxT6ZPIGux0Ik-5N41ACgFxklhCMXGwi94PzoSxCyhYRaj2OjsleJS688r1xDd1dxjyBcHZDK6ebwaF11fBECwkstCVT5CopU-lFVZe2AY0kGm1VUQImH3qQQsCWQIKBkZklQxOG0SHAO3ct5JcUh6s7dZPCK0Qj_RIHhCpy1tpI-6FkxyV3OvG-P7EM0OKvve2l9YkA2IqF1DtE8uEcavIehZnU9AJG0XSftXJPtk8BkE2_1ICwv6VWH9sGbH__GME7LJcVNKXkYZkN5yvoqnwCqW_ix_QB9iO8ji priority: 102 providerName: Directory of Open Access Journals |
Title | Variable Selection for the Spatial Autoregressive Model with Autoregressive Disturbances |
URI | https://www.proquest.com/docview/2545003981 https://doaj.org/article/c3df387ac51d403888ea54162b21bb09 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELZou8CAeIpCqTywRk38SJwJUWipkKgQUNQtih0HkFBbmvb_c-ea8pIYEzvLnX33fRf7O0LOjORGhAULokSVgYCcFiih8sBwmRrAu4xbd0B2GA9G4mYsx77gVvljlZ8x0QXqYmqwRt4BIiPxIqmKzmfvAXaNwr-rvoVGjTQYMIWwThrd3vDufl1lQdVLJdLVxTwO_L4DOPAljVAoTP1IRU6x_09Adlmmv0O2PTykFyt_7pINO9kjW7drbdVqn4yfgN7ihSf64HrYgGEpIE8KUyg2GH7F71GZwDoqDdGMYsOzN4ol198jV-Dl5Vyj66sDMur3Hi8Hge-PAJaMxSKQsbaQcIU2YRwmGpCGyCHjqthwXmIXqhLQEtARYDTClEJak6u0hGfAWLnOBT8k9cl0Yo8IjVFX1HBWouKWSoW2KuGRYHnCtCpS3QSvelNls5UMRgb0AS2afbNok3TRjOspqF3tXkznz5nfCpnhRclVkhsZFQLFaJTNJeBCplmkdZg2SevTCZnfUFX25f7j_4dPyCbDYyeuUNIi9cV8aU8BNyx0m9RU_7rtl0jbse8P-zbD5Q |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LU8IwEM4oHtSD43NEUXvw2oHm0aYnxxeiAhfB4ZZp0lSdcQAp_H93Q8DXjMe26WW32f2-bfZbQs6NYIY3chpGiSxCDjktlFxmoWEiNYB3KbPugGw3bvX5w0AMfMGt9McqFzHRBep8ZLBGXgciI7CRVEYX448Qp0bh31U_QmOVrHEGuRo7xZt3yxoLal5Kns7b8hiw-zqgwNc0Qpkw-SMROb3-P-HY5ZjmNtny4DC4nHtzh6zY4S7Z7CyVVcs9MngGcovtTsGTm2ADZg0AdwawJMDxwm_4PuoSWEekIZYFOO7sPcCC6-8nN-Dj2USj48t90m_e9q5boZ-OAHaM-TQUsbaQbrk2jbiRaMAZPIN8K2PDWIEzqArASkBGgM9wU3BhTSbTAq4BYWU64-yAVIajoT0kQYyqoobRAvW2ZMq1lQmLOM0SqmWe6ir41JtKjeciGArIA1pUfbNolVyhGZdLULna3RhNXpTfCMqwvGAyyYyIco5SNNJmAlAh1TTSupFWSW3hBOW3U6m-nH_0_-Mzst7qddqqfd99PCYbFA-guJJJjVSmk5k9AQQx1afuM_kE0C7DlQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gkxAcEE8xGNAD12ptk7TpCTG2iec0AUO7VU2aABLaxrr9f-wsGy-JY5v0Yjv2Z9f5TMiZ4lSxoIj8MBHGZxDTfMFE7ivKUwV4N6LaNsh246s-uxnwget_Kl1b5cInWkddjBTWyBuQyHC8SCrChnFtEb1W53z84eMEKfzT6sZprJJqwmIaVEi12e72HpYVF2TAFCydX9KjkOs3ABO-piGShokfYcmy9_9xzjbidLbIpoOK3sVct9tkRQ93yMb9kme13CWDZ0h18fKT92jn2YCQPUChHmzxcNjwG36PLAXaptXg2TwcfvbuYfn190oLND6bSDSDco_0O-2nyyvfzUoAqcZs6vNYagi-TKogDhIJqIPlEH1FrCg1OJHKAHKC1ASyG6YM41rlIjXwDHgrlzmj-6QyHA31AfFi5BhVNDLIviVSJrVIaMiiPImkKFJZAw07UWXjOSVGBqkESjT7JtEaaaIYl1uQx9q-GE1eMncsMkULQ0WSKx4WDIlphM45YMRIRqGUQVoj9YUSMne4yuzLFA7_Xz4la2Aj2d119_aIrEfYjWLrJ3VSmU5m-hjgxFSeODv5BDUwyTI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable+Selection+for+the+Spatial+Autoregressive+Model+with+Autoregressive+Disturbances&rft.jtitle=Mathematics+%28Basel%29&rft.au=Liu%2C+Xuan&rft.au=Chen%2C+Jianbao&rft.date=2021-06-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=9&rft.issue=12&rft.spage=1448&rft_id=info:doi/10.3390%2Fmath9121448&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math9121448 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |